
REVIEW

The role of extracellular DNA (exDNA) in cellular processes
Ileana J. Fernández-Domíngueza, Joaquin Manzo-Merinoa, Lucia Taja-Chayeba, Alfonso Dueñas-Gonzáleza,b, 
Enrique Pérez-Cárdenasa, and Catalina Trejo-Becerrila

aDivision of Basic Research, Instituto Nacional de Cancerología, México City; bInstituto de Investigaciones Biomédicas, Universidad Nacional Autónoma 
de México, Mexico City, Mexico

ABSTRACT
Nowadays, extracellular DNA or circulating cell-free DNA is considered to be a molecule with clinical 
applications (diagnosis, prognosis, monitoring of treatment responses, or patient follow-up) in diverse 
pathologies, especially in cancer. Nevertheless, because of its molecular characteristics, it can have many 
other functions. This review focuses on the participation of extracellular DNA (exDNA) in fundamental 
processes such as cell signaling, coagulation, immunity, evolution through horizontal transfer of genetic 
information, and adaptive response to inflammatory processes. A deeper understanding of its role in each 
of these processes will allow development of better tools to monitor and control pathologies, as well as 
helping to generate new therapeutic options, beyond the applicability of DNA in liquid biopsy.
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Introduction

It is a common knowledge that in eukaryotes, DNA is located 
inside the cell nucleus. One of the first studies that reported the 
presence of DNA in the extracellular space, specifically in 
plasma, was performed by the French researchers Mandel 
and Métais in 1948;1 they demonstrated the presence of DNA 
in the plasma of patients and healthy individuals. Extracellular 
DNA (exDNA) has been observed in many conditions such as 
inflammatory and autoimmune diseases, lupus erythematosus, 
myocardial infarction, diabetes, and cancer.2 Subsequent stu-
dies suggested that this exDNA acts as a reflection of the 
disease state so it has been a subject of study ever since. In 
this finding, some concepts were defined: exDNA which refers 
to DNA located beyond cellular membrane; while circulating 
DNA (circDNA) refers to the exDNA molecules found in 
circulating physiological fluids such as bloodstream, lymphatic 
system, bile, milk, urine, saliva, mucous suspension, spinal 
fluid, and amniotic fluid.3,4

Regarding the biology of exDNA, the most studied aspects 
have been the origin of exDNA and the release mechanisms. 
exDNA originates from all cells and it can be present in the 
circulation in different forms, mainly in macromolecular com-
plexes (linked with proteins, lipids, or other nucleic acids) or 
associated with extracellular vesicles.5 This largely depends on 
the way the exDNA is released from the cell, and a variety of 
passive and active exDNA release mechanisms have been 
described in the literature. These studies have demonstrated 
that the release of DNA to the extracellular space might 
occur 1) directly by metabolically active secretion of living cells 
through macromolecular structures such as DNA-protein com-
plexes (1000 to 3000 base pairs) and DNA extracellular traps,4 by 
micro-enucleation of extrachromosomal circular DNA induced 
by genomic instability (30 to 20,000 bp of size) and through 

vesicular transport (exosomes, virtosome, and AGO2),6–8 or 2) 
indirectly as a consequence of the mechanisms of cell disruption 
generated by the different death pathways including apoptosis 
and necrosis;9–13 as well as other pathways comprising neutro-
phil extracellular trap release, phagocytosis, and oncosis.14–16 

Processes that increase the release of exDNA include disease, 
inflammation, tissue injury, and exercise.5 In healthy indivi-
duals, hematopoietic maturation is a major contributor to the 
normal exDNA pool. Multiple studies since then further con-
firmed that the lymphoid/myeloid tissues mainly contribute to 
the normal exDNA pool.17

In cancer patients, the level of exDNA was estimated to be 
threefold higher compared with healthy individuals.18 Diehl et al. 
reported that the exDNA level correlates with tumor burden, that 
is to say, the amount of exDNA in a patients’ blood is closely 
correlated with tumor burden and increases significantly with 
tumor growth and/or with disease progression.19 However, it 
has been postulated that circulating tumor cells are not the only 
source of total exDNA; thus, it can be speculated that another part 
of the exDNA also originates from cells in the tumor microenvir-
onment, from cells involved in the antitumor response, and 
potentially from stressed normal cells.20

Concerning the clinical applications of exDNA in plasma/ 
serum or biological fluid, most studies have been done in the 
oncological field. Early studies demonstrated that the DNA 
released to the extracellular space retains the genetic and epige-
netic characteristics of the tissue from which it was released, for 
example, changes in DNA integrity,21 mutations in oncogenes 
or tumor suppressor genes, gene methylation abnormalities, 
microsatellite alterations,22 changes in mitochondrial DNA 
load levels,23 chromosomal genome rearrangements, etc.22 

Additionally, the concentration in blood can reflect the latest 
developments and specificity of tumors in real time.24 Due to 
these characteristics, exDNA was proposed as a possible cancer 
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biomarker.25 Currently, the diagnostic importance of exDNA is 
increasingly noticeable; in fact, its importance in oncology has 
led to thousands of studies within the novel field of “liquid 
biopsy”. In short, liquid biopsy is a noninvasive diagnostic test 
that provides information on early cancer detection, accurate 
diagnosis, therapy response, prognosis, and follow-up avoiding 
the invasive procedures needed to obtain tissue samples, parti-
cularly when these are needed serial samples.26 The treatment of 
some cancer types has improved because of increased knowledge 
of the molecular abnormalities that drive human cancer growth. 
This has led to the development of targeted cancer therapies.27 

In light of these advances, the testing of molecular biomarkers 
for cancer patient stratification has become mandatory. Such 
tests are performed routinely using biopsy/cytology material 
from primary tumors obtained at the time of diagnosis. While 
this approach is suitable for diagnostic purposes, it precludes the 
follow-up of the patient during disease progression and eventual 
relapse. The concept of liquid biopsy was introduced to oncol-
ogy with the potential to revolutionize the management of 
cancer patients, eliminating the invasive procedures needed to 
obtain tissue samples and provide information on therapy 
response and disease relapse on the fly.28–30 Currently, liquid 
biopsy is already used in clinical trials, there are, however, some 
hurdles that need to be overcome in order to introduce liquid 
biopsy into routine clinical practice.31–34 This interesting issue is 
beyond the scope of this review.

However, the biological role of exDNA in the organisms 
remains uncertain. In this review, we are trying to explore 
some biological processes as ç cellular signaling, oxidative 
stress response, in inflammation or innate immunity, blood 
coagulation, and evolution through horizontal transfer of 
genetic information in which exDNA could participate directly 
or indirectly.

Role of exDNA in cellular signaling

In 1969, E. Bell identified for the first time an association 
between exDNA and intercellular communication, through 
DNA molecules packaged in lipoprotein complexes named 
informational DNA (I-DNA) or informasome (I-somes). This 
I-DNA is nuclear DNA (not mitochondrial) found in the 
cytoplasm, described as an information intermediary between 
the nucleus and cytoplasm acting as a template for protein 
synthesis.35–37

It has been suggested that exDNA is a biologically active 
molecule and could be categorized as a heterogeneous complex 
entity made up of different types of DNA: free DNA fragments, 
vesicle bound DNA, and DNA-macromolecular complexes (pro-
teolipid nucleic acid complexes), which are formed by the elec-
trostatic and autocondensation properties of DNA and whose 
function is to provide protection against nucleases and immune 
surveillance.4,20,38–40 The exDNA can have different activities, 
either when it enters the cell or when it interacts with the surface 
of the target cells, acting as an intercellular messenger thus 
triggering various biological responses; the nucleotide sequence 
is not always implicit in its functions.4,40–42 Recent studies have 
proposed that the specific signaling properties of exDNA partly 
depend on diverse factors including sequence length, 3D struc-
ture, the association of DNA molecules with histones and non- 

histone chromatin-binding, subcellular localization, methylation 
status, sequence (i.e. dinucleotide CG content), and oxidation 
status (8-oxodG).20,43–46

The exDNA free or associated with macromolecules (pro-
teins-lipids), is detected by sensors in the cell membrane of 
leucocytes4,47 and by ligand-receptors in the cell cytoplasm, 
e.g., RIG-1, AIM2, DAI, IFI16, and STING43 which are part of 
the family PRRs (Patterns Recognition Receptors) and that can 
recognize to exDNA as DAMPs (Damage-Associated Molecular 
Patterns).48 It has also been reported that some proteins such as 
albumin are able to form complexes with exDNA and favor its 
internalization into the cell via endocytosis.20 Once inside the 
cell, exDNA is detected by TLR-9 (Toll-like receptor 9) located 
in the endosome membrane and is activated by unmethylated 
sequences.49–55

On the other hand, the DNA bound to extracellular vesicles 
(EVs) is biologically functional and serves like an intercellular 
messenger, and can regulate the biological functions of the 
target cells by increasing DNA-coding mRNA and protein 
levels stimulating their proliferation and induce phenotype 
changes.16,38 The EVs contain DNA fragments randomly 
selected from the entire genome spanning the 5ʹ promoter 
region, gene coding region, and 3ʹ untranslated region of 
chromatin-associated double-stranded DNA.38 The exDNA is 
transported either on the surface or inside diverse EVs pre-
dominantly apoptotic bodies, microvesicles, and exosomes,56 

the latter being the most related to cell–cell communication 
that results in the activation of signaling pathways such as the 
activation of the interferon type I (IFN-I) response through the 
cGAS-STING;20 and eliciting molecular responses in the target 
cells.56 The exosomes can be transferred cell-to-cell through 
different mechanisms such as endocytosis, fusion, or through 
specific receptor binding.38 It appears that exosomes may use 
several types of receptors to facilitate its internalization either 
directly, e.g., C-type lectin, CD33, cadherin 11, integrin α6β4, 
CD9, CD81, and TIM1/TIM4, or indirectly, e.g., EGFR.57

The horizontal transfer of genomic DNA and the signal 
transduction might mediate intercellular communication and 
influence the functions of the affected cells, either by integrat-
ing into the genome or binding to receptors of target cells to 
elicit a biological effect, such as induction of tolerance against 
detrimental substances, immunological changes, development 
of metastasis, and generation of genetic instability that enables 
transformation to cancer cells.20,36,39,40,47 This type of activity 
of exDNA (free or bound-EVs) has been observed in cardio-
myopathies, cancer, Alzheimer’s disease, and skeletal muscle 
diseases, acting by intercellular communication, thus influen-
cing the biological functions of recipient cells.38

A possible activity of exDNA in cell signaling was tested 
in vitro: T cells were extracted from donors and then exposed 
to Herpes Simplex Virus (HSV); T cells’ released DNA follow-
ing stimulation by HSV was isolated and added to B cells 
culture for 3 days resulting in the synthesis of anti-HSV anti-
bodies. The same was observed in in vivo assays when nude 
mice were injected with the DNA released in the culture of 
T cells exposed to HSV or polioviruses; 5 days after injection, 
the nude mice produced specific anti-HSV or anti-polio anti-
bodies without having been directly exposed to the mentioned 
pathogens. These experiments seem to indicate that the T cell 
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released DNA could act as a mediator in cell signaling involved 
in the adaptive immune response.4,47

Role of exDNA in oxidative stress response

To keep homeostasis either at the molecular, cellular, or tissu-
lar level, different pathways are activated. Kostyuk and colla-
borators have demonstrated that oxidized exDNA influences 
survival and cell death, depending on the type of receptor cell 
that acquires the DNA; their model suggests that oxidized 
exDNA stimulates different pathways implicated in the inflam-
matory response depending on the translocation of NF-kB to 
the nucleus, which favors the synthesis of pro-inflammatory 
cytokines such as TNFα, IL-1, IL-2, IL-6, IL-12, and adhesion 
molecules.58 This increases the levels of Reactive Oxygen 
Species (ROS) being the effect in the immune response stimu-
lation 12 times greater in comparison with non-oxidized 
exDNA.58 The magnitude of the response differs greatly since 
non-oxidized exDNA causes a weak and prolonged response of 
oxidative stress due to the increase in the expression of NF-kB 
and NRF-2, which favors chronic long-term cell death.58,59 

8-oxodG triggers a massive and acute cell death by inducing 
a reduction in the production of nitric oxide (NO) along with 
the reduction of endothelial NO-synthase60, increasing 
NAD(P)H oxidases (coded by NOX4).61 Oxidative stress 
decreases proliferation in fibroblasts associated with 
a decrease in Ki-67, subsequently causing cell death.58,60

On the other hand, the activity of systems that protect cells 
from ROS, for instance, NRF-2, is increased by the effect of the 
oxidized exDNA in mesenchymal stem cells, meanwhile, in cell 
lines like HUVEC and MCF-7, the levels of NF-kB and NOX4 
are increased instead.48,61 All this indicates that GC content in 
DNA as well as its oxidation level are directly involved in cell 
survival.58,59

It is widely accepted that ROS produced during oxidative 
stress cause damage to nuclear and mitochondrial DNA; there-
fore, ROS released to the extracellular medium could oxidize 
exDNA to form 8-oxodG,triggering a feedback cycle between 
the production of 8-oxodG and its internalization in cells, 
causing a greater production of ROS and so on until the cell 
dies.58,62 Based on this, it has been suggested that oxidized 
exDNA might be an oxidative stress marker and that its level 
of oxidation is associated with the abundance of the CG dinu-
cleotide due to its susceptibility to be oxidized.63 The presence 
of this exDNA has been linked to the inhibition of proliferation 
and to ROS-triggered apoptosis.63,64

In this regard, a recent study demonstrated that oxidized 
exDNA (8-oxodG) is a signaling molecule that regulates the 
radio-adaptive response through a “bystander” effect in cells 
adjacent to the irradiation site.62 The bystander effect has been 
linked to development of genomic instability, cell death, and 
adaptive responses by the bystander cells, which in turn 
depend on the irradiation-dose received. Radiation itself trig-
gers primary oxidative stress, increasing the levels of ROS, 
causing damage to genomic DNA by the rupture of the deox-
yribose rings and consequently, the appearance of apuric/apyr-
imidinic sites, double-strand breaks, DNA-protein cross- 
linking, and the formation of oxidized bases.62,65 All this 
increases 8-oxodG levels, induce apoptosis and favors the 

release of oxidized exDNA, which is then acquired by the 
bystander cells and triggers the pathways involved in the initial 
steps of apoptosis. However, during the adaptive response, the 
increase in intracellular ROS comes accompanied by the acti-
vation of antioxidant responses that lead to the repair of DNA 
rupture which in turn explains the cell cycle' arrest in the short 
term.62,66,67 On the other hand, low doses of radiation might 
induce a radio-adaptive response and the inhibition of apop-
tosis due to the reduction of ROS levels.65

In conclusion, the binding of (dG)n oxidized exDNA to 
a variety of receptors triggers different signaling pathways, as 
has been observed with the binding to TLR-9 which activates 
NF-kB and increases the levels of ROS. To a certain extent, 
whether DNA is repaired, or cell death is undergone, depends 
on the differentiation state of each cell (Figure 1).58,65

Role of exDNA in inflammation (or innate immunity)

Different studies have shown the relationship between exDNA 
and the immune system, since exDNA can be recognized by 
TLR-9,68,69 which triggers the production of cytokines, speci-
fically those involved in inflammatory processes, and activates 
neutrophils which might release DNA extracellular traps, 
known as Neutrophil Extracellular Traps (NETs).70,71 

However, this phenomenon is not exclusive to neutrophils 
since it has been reported that extracellular DNA traps might 
also be released by eosinophils (EETs), basophils (BETs), mast 
cells, and plant cells.72,73 It has also been observed that acti-
vated T cells, B cells, NK cells, and monocytes are also able to 
release mitochondrial DNA forming extracellular web-like 
structures.73

NETs are extracellular structures that resemble networks 
consisting of DNA, histones, granules, cytoplasmic proteins, 
neutrophil elastase, myeloperoxidase, cathepsin G, proteinase 
3, gelatinase, LL-37, lactoferrin, and calprotectin. NETs’ main 
function is to trap microorganisms to avoid dissemination.74,75 

This supramolecular structure contains a high local concentra-
tion of granulocytic enzymes released by neutrophils, that 
eliminates the invading microorganism (bacteria, fungi, 
viruses, and parasites).73 The mechanism that initiates the 
formation of NETs is known as NETosis and might be trig-
gered by the Pathogen-Associated Molecular Patterns 
(PAMPs) as well as by inflammatory cytokines (TNF and IL- 
8), and by the chromatin binding protein HMGB1.76 This 
mechanism is also combined with oxidative stress, since ROS 
is required to initiate NETosis, which induces actin and tubulin 
glutathionylation. Therefore, an intact cytoskeleton is required 
for the formation of NETs.73,75 During this process genomic 
DNA is uncoiled by the peptidyl arginine-deiminase 4 (PAD4), 
a nuclear enzyme that converts arginine residues into citrulline 
in histones 3 and 4; with this, the positive charge of the histones 
is neutralized favoring chromatin decondensation.77,78 NETs 
also activate the coagulation cascade, which contributes to the 
antimicrobial activity of NETs. The combined action of these 
factors results in the antimicrobial activity of NET´s. In sum-
mary, the antimicrobial activity of NETs comes from the com-
bined action of all the components that make it up.72,79
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Histones are essential for eukaryotes and archaea; however, 
in the middle of the last century some researchers found that 
histones are potent antibiotics80 that can eliminate bacteria at 
concentrations in the nanomolar order.81 In mammals, the 
antimicrobial activity or NET is exerted through the formation 
of ROS resulting from the enzymatic activity of different pro-
teins, by the slight alkalinization of the area (pH 7.6), and by 
direct contact with the antimicrobial peptides found immersed 
within a network made up of naked DNA and histones 
(polynucleosomes).75 The histones released to the extracellular 
space through NETosis have been found in the cell surface of 
the affected organ, interacting with receptors such as TLR-2, 
TLR-4 y TLR-9,75,82 having cytotoxic effects in epithelial and 
endothelial cells in a dose-dependent way.83 The binding of 
histones to the cellular membrane might be due to its cationic 
nature, this could cause an increase in the cell permeability 
through the formation of holes in the membrane.84 It has also 
been demonstrated that extracellular histones can bind to the 
plasmid DNA of prokaryotes84 interfering with the activity of 
DNA-gyrase.85 Moreover, the cytotoxic activity of these extra-
cellular histones in NETs during the inflammation process can 
also kill the eukaryotic cells, classifying them as an essential 
component in the toxicity observed in the sepsis process.83,86,87

On the other hand, the innate immune system has evolved 
to detect and react to the interruption of the systemic home-
ostasis; disturbances are sensed through the PAMP and DAMP 
receptors.88 In the case of exDNA, it is detected by extra and 
intracellular receptors, such as TLR-9, which resides inside the 
phagosomes of monocytes and dendritic cells. TLR-9 is pre-
ferentially activated by GpC enriched-unmethylated DNA, 
which is more abundant in prokaryotes than eukaryotes.79 It 
has also been demonstrated that exDNA bound to the anti-
microbial LL-37 (cathelicidin antimicrobial peptide of 37 
amino acids) or to the HMGB1 protein activates dendritic 

cells more potently than naked DNA, and this is because 
exDNA bound to different molecules forms stable structures, 
which ensure recognition and interaction with various recep-
tors like TLR-9.79,89

Recently, it has been pointed out that exDNA can bind to 
IL-26 due to its cationic charge, facilitating its entrance to the 
receptor cell using two alpha-helices with amphipathic char-
acteristics contained in its sequence as an anchor to the 
membrane.90 Binding of exDNA to IL-26 involves the activa-
tion of STING, a transmembrane protein that might be directly 
activated by DNA or by intermediary cytosolic sensors like 
cGAS (cyclic GMP-AMP synthase). The complex exDNA-IL 
26 induces the production of IL 6 and IL 1β in human 
monocytes.90 Based on this evidence, the authors conclude 
that IL-26 confers immuno-stimulating properties to different 
types of DNA (genomic, mitochondrial, and NETs) which 
triggers the secretion of proinflammatory cytokines in mono-
cytes and NK cells.54

In addition, it has been shown that NETs also have a critical 
role in noninfectious pathologies, such as 1) systemic lupus 
erythematous, characterized by the synthesis of autoantibodies 
against self-DNA and antimicrobial peptides present in NETs 
that trigger B-cell activation, 2) small vessel vasculitis, where 
NETs cause the expansion of Th1 pathogenic cells through 
maturation of dendritic cells leading to the production of 
IFN-γ, 3) atherosclerosis, in which it has been demonstrated 
that NETs can stimulate plasmacytoid dendritic cells to pro-
duce IFN-α, promoting atherosclerotic plaque growth, and 4) 
cancer, being tumor cells the ones that cause the stimulation of 
neutrophils, through the release of IL-8 and G-CSF to form 
NETs, creating a favorable microenvironment for metastasis. 
In summary, the presence of NETs in this type of disease finally 
leads to the vicious cycle of chronic inflammation sterile.73

Figure 1. Schematic representation of the cellular signaling pathways activated by oxidized exDNA (8-oxodG). The exDNA released by different mechanisms of cellular 
stress and cell damage, might be enriched with oxidized nucleotides, forming complexes with proteins and/or lipids. The 8-oxodG acting as DAMP (Damage-Associated 
Molecular Pattern) signal might easily enter into cells and interact with different PRRs (Patterns Recognition Receptors) such as STING, AIM-2, RIG-1 or DAI, and ROS 
(Reactive Oxygen Species) induces DDR (DNA Damage Response) responses.
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This kind of immunity mediated by NETs is no exclusive to 
mammals, it has also been reported that the roots of several 
plants actively release DNA; this was demonstrated when the 
roots were fed with the radioactive phosphorus labeled dCTP 
which was collected in the extracellular medium without evi-
dent cell death.91,92 This extracellular nucleic acid form struc-
tures similar to NETs; although until now the main DNA 
release mechanism is not known, it is evident that its function 
must be similar to mammals since these plant-networks also 
avoid the invasion of pathogenic microorganisms on the root 
of the plant (Figure 2).91,92

In the case of cancer, Albrengues showed that proliferative 
disseminated breast cancer cells during inflammation process 
induced by smoking, the activated NETs, initiate the awaken-
ing of dormant metastatic cells.93 The DNA along with MMP- 
9, integrin α3β 1, FAK (focal adhesion kinase) and laminin-111 
plays an important role in the evasion of immune system and 
cancer progression.93,94

Role of exDNA in blood coagulation

Recently, the participation of proteins that belong to the coa-
gulation cascade in the release of chromatin has been reported, 
particularly Factor VII Activating Protease (FSAP) which has 
been identified as responsible for nucleosome release.95 FSAP 
associates with the DNAse I participating in the degradation of 
DNA, in the nucleosome release in apoptotic and necrotic cells, 
and physically binding them by an unknown mechanism; 
forming complexes with its targets serpin α2-antiplasmin 

(AP) and the C1 inhibitor (C1-inh). FSAP might be activated 
by nucleosomes, glycosaminoglycans, and RNA, probably 
through the release of its inhibitors.96,97

A recent analysis has revealed that exDNA is considered as 
a “natural singular surface” of the human body that promotes 
blood clotting in vivo. Evidence that support this asseveration, 
is that purified genomic DNA increases the activation of pro-
teases that participate in the contact pathway of blood clotting, 
such as the coagulation factors XII (FXII) and XI (FXI); simi-
larly, it has been observed that the exDNA from activated 
neutrophils that are part of the NETs, trigger blood clotting 
that relies on FXII and FXI.98,99 This was corroborated through 
a scanning with an electron microscope, which demonstrated 
that exDNA binds to FXII and HK (high molecular weight 
kininogen) and that the double-stranded structure with highly 
negative charge density of the exDNA are required to promote 
procoagulant activity given by a high affinity for HK.100,101 

Furthermore, it has been observed that histones interact with 
the A1 domain of the von Willebrand human factor (VWF), 
which can propagate platelet adhesion mediated by GPIbα.102

NETs have been shown to interbreed with the fibrin clot 
forming a structural network resistant to DNA lysis and to the 
tissue plasminogen-activator (tPA), due to the addition of the 
chromatin-bound to fibrin, the formation of thicker and stea-
dier fibers which are more resistant to shear forces is 
induced.103 These findings indicate that histones modify the 
structure of the clot holding the fibrillar network together. An 
in vitro study showed that fibrin co-localized with the exDNA 
in the clot.103 Consisting with the above, a recent study 

Figure 2. Possible implications of exDNA in immune response. Bacteria, fungi and other opportunistic parasites might be recognized by the immune system cells such as 
macrophages and dendritic cells, and thus induce the release of pro-inflammatory cytokines as well as the generation of ROS (Reactive Oxygen Species). Several stimuli 
trigger the activation and set up of the NETs (Neutrophil Extracellular Traps), which involve the participation of several proteins such as PAD4, NF-kB and histones, that 
help in the construction of the DNA molecular network and to trap different pathogens. All this induces the participation of multiple immune cells, which ultimately 
leads to the death and elimination of exogenous microorganisms.
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revealed that histones can bind to platelets and recruit plasma 
adhesion proteins, such as fibrinogen, causing platelet aggrega-
tion inducing thrombotic occlusion of the microvasculature 
and thrombocytopenia in an in vivo model; this finding sug-
gests that the extracellular interaction of histones with glyco-
saminoglycans negatively charged and located on the surface of 
endothelial cells, might contribute to the activation of clotting 
and interfere with the anticoagulant properties of the endothe-
lium´s glycocalyx.104 Likewise, it has been determined that the 
increase in the concentrations of exDNA increases the viscosity 
of blood, which causes problems with microcirculation since 
autoimmune immunogenic processes are triggered.72

Role of in horizontal genetic transfer

It has been clearly demonstrated that exDNA has the ability to 
enter other cells in vitro and in vivo, being capable of transfer-
ring genetic information. Consequently, the biology of the 
recipient cells is modified since the exDNA contains sequences 
and even mutations similar to their parent cells, and this might 
result in inherited modifications.105 The first report that sug-
gested this ability of the exDNA was done by Perc106 in 1968 
who named this transferable DNA as “metabolic DNA”. This 
fact was later corroborated by Rogers107 in 1972 and by 
Anker108 3 years later. In parallel, in the year 1965, it was 
hypothesized that the exDNA might be involved in the spread 
of metastases, due to its ability to travel in the bloodstream 
and/or the lymphatic system.109 Years later, García-Olmo et -
al.,110 called this phenomenon “genometastasis” and in 2010 
demonstrated that the exDNA found in the plasma of cancer 
patients transfers oncogenic information to susceptible cells 
in vitro,110 concluding that metastasis can occur through the 
transfection of susceptible cells in distant organs with the 
sequences of dominant oncogenes that circulate in plasma. 
Due to these characteristics, exDNA obtained from cancer 
patients was called “oncosome”, which has also been related 
to the promotion of angiogenesis.111,112

The non-clonal transference of exDNA has been corrobo-
rated through the malignant transformation of the cell line 
NIH3T3 (immortalized non-neoplastic murine fibroblasts) 
after the incubation of the cells with the serum of colon cancer 
patients, strongly suggesting that the DNA contained in the 
serum might be acquired and integrated by the receptor 
cells.113,114 This event can also occur in nonpathogenic condi-
tions such as pregnancy; the transference and integration of 
a specific segment of the Y chromosome in the brain of 
a woman who gave birth to a male fetus has been observed. 
This description gave rise to the phenomenon called “micro-
chimerism” derived from the horizontal gene transfer.115

According to the previous information, Mittra and colla-
borators in 2015 showed for the first time that the exDNA from 
patients and healthy individuals, which was transferred to 
NHI3T3 for later specific identification of fragments of the 
exDNA in the nucleus of NIH3T3, might induce apoptosis 
and DNA ruptures in vitro and in vivo.116 It should be noted 
that the DNA extracted from the sera of patients and healthy 
individuals was fragments of chromatin and DNA of apoptotic 
cells. However, this work only focused on the damage gener-
ated but never considered the possible functional effects, such 

as changes in the cellular metabolism or changes in the overall 
enzyme activity.116

An important feature of exDNA that might permit its 
entrance to the target cells, is the fact that it contains a great 
number of (dG)n motifs. Particularly, human cells have GpC 
enriched sequences in nuclear DNA, with a large number of 
(dG)n motifs, specifically in repetitive ribosomal sequences; in 
fact, this characteristic allows to differentiate between mito-
chondrial and bacterial DNA. The length of these sequences 
might be (dG)11 or (dG)13 and when oxidized, they are able to 
increase adaptive responses up to 20 times.48 It has also been 
observed that exDNA sequences that contain (dG)n motifs can 
enter the cell nucleus and be expressed, allowing cell survival in 
the case of cancer cells.48,59 It has been postulated that the 
genomic DNA of cancer cells has a rich content of these 
amplified sequences as well as of activated oncogenes.117,118 

The amplified sequences might have copies of certain chromo-
somal regions. The exDNA can also have amplified sequences, 
favoring the synthesis of certain proteins when it enters 
cells.119,120 The presence of transposable mobile genetic ele-
ments in exDNA can facilitate the transference of fragments of 
DNA from one cell to another, as well as the illicit integration 
into the genome of the receptor cells, contributing to genome 
instability.119,121

A recent study demonstrated that when exDNA enters a cell, 
it is recognized by the receptor TLR-9; initiating the NF-kB 
signaling pathway which leads to an increment in the expression 
of cyclin D through the TLR signaling axis TLR9/NK-kB/Cyclin 
D1. This promoted proliferation of at least one hormone- 
dependent breast cancer cell line.40 Other authors have con-
firmed that exDNA is released by cells that can act as an inter-
cellular messenger, having two possibilities when it enters 
a receptor cell: 1) to integrate into the host genome or 2) to 
bind to certain receptors and trigger different signaling pathways 
that ultimately lead to some biological effects, e.g., induction of 
tolerance toward detrimental substances, immunomodulation, 
metastasis development or genomic instability.40,119,122

In agreement with the above, Tuomela and collaborators in 
2013123 demonstrated that the exDNA from doxorubicin-killed 
MDA-MB-231 cells could promote invasion of this same wild type 
cell line when exposed to the cell debris and that this event was 
mediated by the receptor TLR-9.123 Likewise, García-Arranz124 

concluded that the exDNA from non-neoplastic cells can reduce 
cell proliferation and metastasis; which suggests that the released 
exDNA might have different effects depending on the biological 
context of the cell from which it is originated. Using these effects as 
a possible method of inhibiting tumor growth.124,125

Perspectives

In past years, liquid biopsy has involved an active research 
field, in the attention to early cancer detection.126 The use of 
circulating tumor DNA in accurate diagnosis, prognosis deter-
mination, treatment selection, and serial monitoring of disease 
is enormously crucial in the context of survival, quality life, and 
response to treatment in cancer patients.127 The use of this 
information can be employed for a personalized depiction of 
the disease; having other advantages: is noninvasive, its low 
cost, its adequate and efficient.126,127
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However, the biological role of exDNA has another scope 
not only in cancer research, but also in several medical applica-
tions, taken remarkable steps toward other pathologies and 
normal physiological conditions. The data presented in this 
review propose that exDNA has functions beyond what has 
been historically established (see Table 1); suggesting that this 
biomolecule associated with proteins and lipids when is 
actively secreted, serves as a molecular messenger between 
neighboring cells; possibly to synchronize the activities of the 
cells or as a collective reservoir of lost functions, which could 
be easily recovered by the incorporation of this DNA when 
physiological conditions demand it. In agreement with the 
above, the release of exDNA among the different biological 
kingdoms suggests that chromatin evolved with two different 
functions: 1) to organize large DNA fragments and 2) to act as 
a defense mechanism maintaining the genome integrity. 
A possible example of chromatin as a safeguard and regulator 
of genetic information is the structures known as NETs, which 
could be one of the configurations where chromatin is used to 
guard against foreign organisms. However, exDNA is not only 
a component of chromatin or NETs but it can also activate the 
immune system through different receptors like TRL-9, TLR-2, 
and TLR-4 which induce the recruitment of different cells to 
trigger an adaptive immune response or to dissolve an inflam-
matory process.

On the other hand, the acquisition of exogenous DNA has 
a role in evolution, since it provides favorable characteristics in 
the development and survival of organisms in their habitats, 
facilitating the acquisition of genes and genetic polymorphisms 
among prokaryotes or eukaryotes and between them. The 
importance of horizontal gene transference is hard to deter-
mine, but it is clear that it has a transcendental role in the 
microbial evolution; it has been estimated that between 1.6% 
and 32% of the genes in the genomes of these organisms have 
been acquired in this way.128 In the case of eukaryotes, the 
acquisition of new genes is also a driver in their evolutionary 
process as seen clearly in the case of endosymbiosis and in 
genetic hybridization.128

In recent years, there has been increasing evidence that 
complexes of DNA associated with proteins and lipids are 
more effective than naked DNA in gene delivery to the nucleus, 
which raises the following questions: 1) How exDNA travels 
during the pathophysiological processes of different diseases? 
And what is the difference with that released under normal 
conditions? 2) Is this exDNA a linear structure with or without 
DNA binding proteins? The knowledge of the composition of 
other components that interact with exDNA will provide 
a better understanding of the homeostasis of extracellular 
nucleic acids and the different interaction with several target 
cells.

New approaches to using exDNA as a therapeutic target in 
the treatment of different human diseases have been proposed. 
For example, Linardou in 1995 suggested the employed of 
recombinant DNAse I in cancer therapy.129 DNAse I and 
DNAse1L3 are endonucleases involved in repair, replication, 
and degradation of DNA, and in the homeostasis of 
exDNA.130,131 The treatment with DNAse I in in vitro and 
in vivo cancer models reduces the tumor cell proliferation, 
migration, adhesion, and invasion and correlates a significant Ta
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reduction of levels of plasma exDNA and metastasis 
development.93,130,132 In patients with cancer it has been 
reported a decrease in DNAse blood levels with 
a concomitant exDNA increment.130 Part of the therapeutic 
effect of DNAse is mediated by the inhibition of NETosis and 
the anti-inflammatory and immunomodulatory reactions.133 

Alzheimer´s disease is another possibility for the use of 
DNAse I.134 The systemic administration of this endonuclease 
can affect the amyloid cascade and the rupture or fusion of 
exosomes, suggesting three possible mechanisms of action: an 
anti-inflammatory effect, the dissolution of NETs, and the 
reduction of DNA-amyloid-β complex.134,135

Finally, the efforts made so far have shown a plausible over-
view of the biological role of exDNA in cellular homeostasis. 
However, it is still evident the need for more adequate tools 
and biological models that help to understand the functionality 
of exDNA, and the pathological changes associated directly 
with the presence of exDNA.
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