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Identification of core gene in obese type 2 diabetes patients using 
bioinformatics analysis
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ABSTRACT
Objectives Adipocytes and adipocyte lipid metabolism are closely related with obesity and type 2 
diabetes, but the molecular mechanism still needs further investigation. The aim of this study is to 
discover the adipocyte genes and pathways involved in obesity and type 2 diabetes using 
bioinformatics analysis.
Methods The GSE27951 gene expression profile was obtained. Software and online tools (STRING, 
Cytoscape, BioGPS, CTD, and FunRich) were used to identify core genes.21 human subcutaneous 
adipose samples, with 10 from type 2 diabetic patients and 11 from normal controls, were 
included in these analyses.
Results 184 differentially expressed genes (DEGs) including 42 up-regulated genes and 142 down- 
regulated genes were found to be enriched in metabolism, receptor activity, collagen type IV and 
glutamine biosynthesis I pathway by using the enrichment analysis. Seven hub genes were 
identified from the PPI network using various software (Cytoscape, STRING, BioGPS, and CTD). 
Four core genes (COL4A2, ACACB, GLUL, and CD36) were found to be highly expressed in 
subcutaneous adipose tissue of obese patients accompanying type 2 diabetes.
Conclusion COL4A2, ACACB, GLUL and CD36 might be the core molecular biomarkers of obesity 
in patients with or without type 2 diabetes.
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Introduction

Obesity is a serious chronic medical condition where 
patients have accumulated excess adipose tissue that 
could cause serious complications such as metabolic syn-
drome, type 2 diabetes mellitus (T2DM) and hyperten-
sion [1]. Studies have shown that obesity is increasing 
every year worldwide, with the number of adults with 
obesity increasing from 100 (81–122) million in 1975 to 
671 (620–725) million in 2016 [2]. According to the 
statistics released by the International Diabetes 
Federation (IDF) in December 2015, there were about 
450 million diabetic patients worldwide, who mainly suf-
fered from T2DM; 75% were from developing countries 
[3,4]. Obesity and T2DM have become a burden globally 
as healthcare costs have increased with a growing popula-
tion. Thus, determination of target genes promoting the 
pathogenesis of obesity and T2DMis vital for providing 
the future personalized treatment plans and offering 
timely preventative measures.

Obesity leads to accumulation of excess fatty tissues, 
such as the subcutaneous fat. Adipocytes are the major 
cell type in the fat tissue. Adipocytes and their meta-
bolism are involved in the development of obesity and 
T2DM [5,6]. Research suggests that adiponectin is an 
insulin sensitizing hormone secreted by adipocytes that 
may promote the absorption of glucose, inhibit glyco-
gen metabolism, stimulate the oxidation of adipocytes, 
and improve glycolipid metabolism disorders by bind-
ing to receptors of liver and skeletal muscle cells [7–9]. 
It has been reported that leptin, visfatin, and FGF21 
play important roles in obesity and T2DM [10–12]. 
Moreover, Klimcakova E. et al. used mRNA and pro-
tein expression profiling techniques to confirm that 
adipose tissue macrophage-specific genes (e.g., TRAP, 
GP110, and M130) are markers of insulin resistance 
and the metabolic syndrome in human subcutaneous 
and visceral adipose tissue and thus play leading roles 
in adiposity [13]. However, it is still uncertain whether 
adipose tissue preferentially expresses core target genes 
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of obesity and/or T2DM. The vast amount of the gene 
expression data deposited in public databases provides 
an opportunity to search for potential key genes of 
obesity and T2DM in adipose tissue. NCBI-Gene 
Expression Omnibus (GEO) is such a public database 
containing high-quantity gene expression data, such as 
gene chips, microarrays, and next generation sequence- 
based data [14]. With the gene data torrent from high 
throughput research in biology, the identification and 
analysis of differentially expressed genes (DEGs) is an 
important albeit massive undertaking. An integrated 
bioinformatics analysis, however, can be used to ana-
lyse these data for the discovery of human disease 
related DEGs.

In this study, we found gene datasets from human 
adipose tissue associated with obesity and/or T2DM in 
the GEO database and utilized the GEO2R web tool to 
define the groups and detect DEGs. We then used the 
Retrieval of Interacting Genes (STRING) online tool 
and Cytoscape software to analyse the DEGs and deter-
mine hub genes with a combined score of >0.4. 
Furthermore, the FunRich software was used to per-
form Gene Ontology (GO) and the pathway enrich-
ment analysis. BioGPS, Comparative Toxicogenomic 
Database (CTD), and GEO2R were used to determine 
any correlation between diseases and expression of hub 
genes. Using all of these strategies, we found the poten-
tial gene markers associated with obese patients at risk 
for T2DM which may be useful for the personalized 
treatment of those epidemic diseases.

METHODS

Microarray data and patient sample selection

GEO (https://www.ncbi.nlm.nih.gov/geo/) is a public 
functional genomics data repository supporting array 
and next generation sequence-based data (including 
RNAseq, DNAseq, and ChIPseq) submissions. We 
searched the GEO DataSets using the keywords ‘dia-
betes’ AND ‘obesity’ AND ‘adipose’ to find related gene 
expression profiles. The gene expression profile of 
GSE27951 including 21 human subcutaneous adipose 
tissues regardless of T2DM status was obtained from 
the GEO database [14].

Analysis and the identification of differentially 
expressed genes (DEGs)

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) is an 
interactive net software tool that allows operators to com-
pare two or more different groups of samples in a GEO 
series to identify DEGs across experimental conditions via 

the GEO query and limma R packages (Bioconductor 
project). GEO2Rwas used to detect DEGs from different 
groups. We performed a t-test to identify DEGs with a P 
value <0.05. Log2-fold change (|logFC|) ≥2 cut-off was 
considered as statistical significance, with logFC≥2 consid-
ered as an up-regulated gene and LogFC ≤-2 considered 
down-regulated. The adjusted P values were used for mul-
tiple testing and genes with the smallest adjusted P-values 
were considered to be the most reliable. We also performed 
the distribution to see whether the selected samples were 
suitable for comparison by GEO2R where the median- 
centred values suggested that the data is normalized and 
cross-comparable. If not, samples were omitted.

Integration of protein–protein interaction (PPI) 
network and modular analysis

STRINGv10.5 (https://string-db.org/) is a web tool used 
to calculate and evaluate the PPI information in order to 
expose the potential correlation among DEGs indifferent 
patient groups [15,16]. Following STRING analysis, we 
further utilized the Cytoscape software (V3.5.1, integrat-
ing biomolecular interaction networks with high- 
throughput expression data and other molecular states) 
to identify hub genes with k-core = 2, degree cut-off = 
2and cut-off = 0.2. Confidence score of v ≥ 0.4 was 
considered significant. The related proteins in the central 
nodes were thought of as the core genes that have impor-
tant biological regulatory functions [17].

Comparison of the expression level of core genes 
on normal human adipose tissues by BioGPS

The BioGPS (http://biogps.org/#goto=welcome) is a free 
online extensible and customizable gene annotation por-
tal tool, supplying a complete resource about gene and 
protein function. Based on HG_U133A/GNF1H and 
GNF1M Gene Atlas Data sets [18], we used BioGPS to 
identify the expression of newly identified core genes on 
subcutaneous and omental adipose tissues (E-GEOD- 
15,773 data, http://biogps.org/dataset/E-GEOD-15773/ 
expression-data-from-human-adipose-tissue/). The bar-
code function of the R package ‘frma’ (http://www.bio 
conductor.org/packages/2.6/bioc/html/frma.html) was 
used to determine z-scores. A z-score of >5 implies that 
the gene was expressed in the tissue [19].

Demonstration of the core genes associated with 
potential diseases

Comparative Toxicogenomic Database (CTD) (http:// 
ctdbase.org/) is a public database that provides manu-
ally curated information about gene–disease 
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relationships [20]. Based on the NCBI gene database 
(NCBI’s RefSeq project), we identified the diseases 
which were associated with each core gene by CTD.

Functional enrichment and pathway analysis of 
hub genes

FunRich 3.0 (FR) is a software used to establish the 
functional enrichment of GO and pathways, gene 
expression, and interaction network analysis of genes 
and proteins [21]. FunRich software utilizes several 
databases (see: http://funrich.org/forum/faq). The data 
are integrated with functional and pathway data from 
GO. Pathway analysis via FR. P < 0.05 was considered 
as the cut-off criterion. We performed the GO analysis 
using FR with biological processes (BP), molecular 
functions (MF), cellular components (CC), and path-
ways among the hub genes [22]. The heat map used to 
show gene expression was generated by FunRich.

Patient and public involvement

This bioinformatics’ research was conducted without 
patient and public involvement.

Results

Target samples and microarray information

The gene expression profile of GSE27951: ‘Adipo\gen-
esis and obesity: subcutaneous adipose tissue’ was 
obtained from the GEO database. The microarray data 
fromGSE27951 (University of Stirling, United Kingdom 
was based on the GPL570 platform ([HG-U133 
_Plus_2] Affymetrix Human Genome U133 Plus 2.0 

Array). Twenty-one homo sapiens subcutaneous adi-
pose tissue obtained from 10 T2DM patients (three 
patients BMI >35 kg/m2, six patients BMI 25–34.9 kg/ 
m2 and one patient BMI 18-24.9 kg/m2)) and 11 non- 
diabetes (NDM) (four patients BMI >35 kg/m2, four 
patients BMI 25–34.9 kg/m2, and three patients BMI 
18–24.9 kg/m2) (Submission date: 14 2011; Last update 
date: 27 December 2017). Table 1 showed the charac-
teristics of tissue information selected from GSE27951.

Identification of DEGs

The distribution of samples was viewed by GEO2R, the 
median-centred values are shown in Figure 1. It suggests 
that the data are normalized and cross-comparable, so 
the sample quality is reliable and suitable for compari-
son. These samples were cross-compared in BMI ≥35 kg/ 
m2, BMI 25–34.9 kg/m2, and BMI 18–24.9 kg/m2 of 
NDM with T2DM patients (nine comparison groups in 
total), and the DEGs analysis was conducted in every 
group. The results showed that a total of 184 DEGs, 
including 42 up-regulated genes and 142 down- 
regulated genes, were found using GEO2R analysis. 
Based on BMI, T2DM and NDM patients were further 
divided into BMI ≥35 kg/m2, BMI 25–34.9 kg/m2 and 
BMI 18–24.9 kg/m2 (normal weight) group, respectively. 
We found 14 DEGs inT2DM with BMI ≥35 kg/m2 versus 
NDM with BMI ≥35 kg/m2 group, one DEG in T2DM 
with BMI 25–34.9 kg/m2 versus NDM with BMI 
25–34.9 kg/m2 group, and 46 DEGs in T2DM-normal 
weight versus NDM-normal weight group. Within 
T2DM patients, we found two DEGs in BMI ≥35 kg/ 
m2 versus BMI 24.9–35 kg/m2 group, 78 DEGs in BMI 
≥35 kg/m2 versus normal weight group, and 16 DEGs in 

Table 1. The characteristics of patients information selected from GSE27951.
Group Gene Accession Tissue Source clinical status BMI Age Fasting insulin Fasting glucose Hba1C

DM & BMI 35 kg/m2 GSM691125 SAT DM 42.2 56 67 9.0 6.1
GSM691129 SAT DM 50.2 49 162 6.9 6.2
GSM691144 SAT DM 39.1 44 43 8.5 7.3

DM & BMI 25–34.9 kg/m2 GSM691142 SAT DM 32.2 58 226 7.3 6.3
GSM691138 SAT DM 31.8 51 69 8.1 5.9
GSM691141 SAT DM 28.8 64 88 11.7 7.0
GSM691137 SAT DM 27.8 59 92 10.1 7.1
GSM691133 SAT DM 27.2 50 36 5.9 6.6
GSM691148 SAT DM 25.1 62 42 7.7 6.4

DM & BMI 18–24.9 kg/m2 GSM691136 SAT DM 23.2 55 61 9.5 8.4
DM & BMI 35 kg/m2 GSM691122 SAT NGT 38.1 22 117 5.2 5.5

GSM691130 SAT NGT 37.4 46 52 4.5 5.9
GSM691131 SAT NGT 36.7 45 59 5.0 5.7
GSM691123 SAT NGT 35.3 48 37 4.5 5.5

NDM & BMI 25–34.9 kg/m2 GSM691134 SAT NGT 33.2 60 33 5.4 5.7
GSM691124 SAT NGT 32.9 39 62 5.0 5.7
GSM691147 SAT NGT 26.4 27 57 5.1 5.5
GSM691150 SAT NGT 26.2 57 19 4.8 5.5

NDM & BMI 18–24.9 kg/m2 GSM691143 SAT NGT 23.6 37 35 5.5 5.5
GSM691154 SAT NGT 23.2 64 26 4.9 5.3
GSM691153 SAT NGT 23.1 42 28 5.1 5.4

Subcutaneous adipose tissue: SAT; GSE27951 
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BMI 24.9–35 kg/m2 versus normal weight group. Within 
NDM patients, there were two DEGs in BMI≥35 kg/m2 

versus BMI 24.9–35 kg/m2 group, 16 in DEGs in BMI 
≥35 kg/m2 versus normal weight group and nine DEGs 
in BMI 24.9–35 kg/m2 versus normal weight group 
(selected by P. Value <0.05, �LogFC>2) �). Table 2 
showed the detailed information of DEGs in nine com-
parison groups.

Module screening from the PPI network

We entered the DEGs of each comparison group and 
searched through the STRING database. The data was 
imported from the network as a simple tabular text 
using Cytoscape software to detect the hub genes. 
A combined score of>0.4 was considered statistically 
significant. Figure 2a-g showed the results of PPI ana-
lysis by STRING for interaction between the hub genes 
in four comparison groups: T2DM vs NDM in BMI 
≥35 kg/m2 patients (Figure 2a); T2DM vs NDM in 
normal weight patients (Figure 2c); BMI ≥35 kg/m2 vs 

normal weight patients in T2DM patients (Figure 2d); 
and BMI ≥35 kg/m2 versus normal weight patients in 
NDM patients (Figure 2e). The results indicated that 
TRDN, PLN, and MYH11 were potential hub genes for 
the DM versus NDM in BMI ≥35 kg/m2 patients group 
(Figure 2a), GLUL, ELOVL7, MYH2, ACACB, 
COL4A2 and COL6A6 were potential hub genes for 
DM versus NDM in normal weight patients (Figure 
2c), TNNC2 and MYH2 were potential hub genes for 
BMI 24.9–35 kg/m2 versus normal weight group in DM 
patients (Figure 2d), and MS4A6A, CD36, PTPRC, 
FCGR2A and CD163 were potential hub genes for 
BMI ≥35 kg/m2 versus normal weight in T2DM 
patients (Figure 2e). We did not find potential hub 
genes when we compared T2DM versus NDM in BMI 
24.9–35 kg/m2 patients (Figure 2b, F, H, I and G). 
Because MYH2 was the same gene in the two groups, 
so taken together, TRDN, PLN, MYH11, COL4A2, 
COL6A6, ACACB, GLUL, ELOVL7, CD36, FCGR2A, 
PTPRC, CD163, MS4A6A, TNNC2 and MYH2, 15 
genes were considered as hub genes.

Figure 1. The median-centred values of included samples.
Legends: DM: type 2 diabetes. NDM: non-diabetes. 
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The potential hub gene expression levels in normal 
tissues

We used BioGPS to identify the hub gene expression in 
normal tissues (Dataset: Barcode in 262 normal tissue 
samples; Probe set: 242194_×_at). This data set demon-
strated a survey across various normal human tissues 
(platform: U133plus2 Affymetrix microarray). The 
median, 3X median, 10X median, and 30X are defaults 
of the BioGPS presentation sketched by the lines and 
are not central to this analysis. The results showed that 
COL4A2, GLUL and CD36 were highly expressed both 

in insulin resistant omental adipose tissue and subcu-
taneous adipose tissue, and PLN, ACACB, and 
ELOVL7 were highly expressed in insulin resistant sub-
cutaneous adipose tissue (Figure 3). Figure 4 showed 
the expression level of hub genes in normal human 
organs by FunRich. Table 3 illustrates the expression 
level of hub genes in normal human adipose tissues.

Demonstration of the potential hub genes 
associated with potential diseases

To identify the diseases that are most associated with 
hub genes, we input the potential hub genes to CTD for 
defining the greater the inference score of the indivi-
dual gene, which means the more relevance with dis-
ease. The CD36, GLUL, MYH11, CD163, and COL4A2 
genes were closely associated with weight loss, while the 
ACACB gene was closely related to insulin resistance 
(Table 3). The results also showed that PLN was less 
relevant to glucose intolerance. The heat-map gener-
ated by EnRich showed the expression level of the 
potential hub genes in normal human organs, with 
MYH11 having the highest expression in every normal 
organ. However, MYH11 is a non-specific gene and 
thus was not considered as a hub gene in this study 
(Figure 4). Taken together, CD36, GLUL, COL4A2, and 
ACACB were considered as core genes in human adi-
pose tissue with obesity or T2DM.

The outcome of function and pathway enrichment 
analysis

In order to identify the function and pathway of the 
potential hub genes, GO function and pathway enrich-
ment analyses were applied by using FunRich. CD36, 
GLUL, COL4A2, and ACACB were put into FR soft-
ware, the gene enrichment analyses showed that hub 
genes enriched in biological processes (BP), including 
metabolism, cell growth and/or maintenance, and cell 
communication. Molecular function (MF) includes 
receptor activity, ion channel activity, and transaminase 
activity. Cell component (CC) includes collagen type 
IV, Golgi apparatus, and platelet alpha granule mem-
brane). The significantly enriched biological pathways 
include neurotransmitter uptake and metabolism in 
glial cells, astrocytic glutamate-glutamine uptake and 
metabolism, and glutamine biosynthesis I (Table 4).

Discussion

It is estimated that 493 million people will be either 
obese or overweight by 2030, and 629 million people 

Table 2. The identification of DEGs in various groups.
Groups DEN Differentially Expressed, Gene.symbol

BMI > 35 kg/m2:DM VS 
NDM

14 Up-regulated: MYH11, PLN, MYH11, 
SORBS2; Down-regulated: ANKDD1A, 
PCK1, FGF1, PEG10,MAL2, PHLDA2, 
TRDN, P2RY12 ERAP1, EGFL6

BMI 25–34.9 kg/m2:DM 
VS NDM

1 Down-regulated: CHI3L1

BMI 18–24.9 kg/m2:DM 
VS NDM

46 Up-regulated: EGFL6, LOC100509457/// 
HLA-DQA2///HLA-DQA1, ABO, HLA- 
DRB4, ATP5E, LOC340107, HAMP, 
ELOVL7.Down-regulated: FAT3,MCOLN3, 
GLUL,TNN,PRKCD,ALPK3,AZGP1P1/// 
AZGP1,ALDOC,MIR1908///FADS1,HILPDA, 
MYH2,RORB,ACACB,TMTC1,COL4A2,SIX1, 
CTBP1,MME,NRCAM,HLA-DQB1,OR51E1, 
PCNX1,STK26,COL6A6,PDE8B,PDE8B, 
PKD1L2,AZGP1,DEFB132,SPX

DM: BMI>35 kg/m2 VS 
24.9–35 kg/m2

2 Up-regulated:PLN; Down-regulated:EGFL6

DM: BMI>35 kg/m2 VS 
18–24.9 kg/m2

78 Up-regulated:ATP5E,SORBS2,ERAP1, 
PHLDB2,MS4A6A,FGF1,SULF1;Down- 
regulated:NMT2,REEP6,TFRC,ADAM12, 
MS4A7,COL11A1,IRF8,NQO1,IL1RN, 
MMP9,VGLL3,SIX1,PTPRC, #

DM: BMI 24.9–35 kg/m2 

VS 18–24.9 kg/m2
16 Up-regulated:MYH2,TNNC2,NPR3, 

LOC101060835///LOC100996809///HLA- 
DRB6///HLA-DRB5///HLA-DRB4///HLA- 
DRB3///HLA-DRB1///HLA-DQB1,CTBP1, 
PKD1L2,TUFT1,MME;Down-regulated: 
ADGRG7,SMC3,HAMP,LOC340107, 
MALAT1,MALAT1,MALAT1,ATP5E

NDM: BMI>35 kg/m2 VS 
24.9–35 kg/m2

2 Up-regulated:MALAT1;Down-regulated:HP

NDM: BMI>35 kg/m2 VS 
18–24.9 kg/m2

16 Up-regulated:SPX,CA3,PCK1,RORB,AZGP1, 
GPAT3,MALAT1,PCNX1,DUSP4,TRDV3, 
GLUL;Down-regulated:IGHA2///IGHA1/// 
IGH,MIR8071-2///MIR8071-1///IGHV4- 
31///IGHM///IGHG2///IGHG1,SFRP4, 
LOC100509457///HLA-DQA2///HLA- 
DQA1,EGFL6

NDM: BMI 24.9–35 kg/ 
m2 VS 18–24.9 kg/m2

9 Up-regulated:HLA-DRB4;Down-regulated: 
RORB,YME1L1,LOC100509445/// 
LOC728715///OVOS///OVOS2,DMRT2, 
SPX,PPP1R1B,MCOLN3,COL4A2

DEG: Differentially Expressed Genes No. DEGs were selected by PValue < 
0.05; |logFC|> 2. DM:Type 2 Diabetes. NDM: None Diabetes 

#:LOC100653057///CES1,LOC101060835///LOC100996809///HLA-DRB6 
///HLA-DRB5///HLA-DRB4///HLA-DRB3///HLA-DRB1///HLA-DQB1,ADAM12, 
MS4A6A,CTBP1,SLC1A4,BCAT1,CD63,PKD1L2,PHLDA2,CD163,SGK2,ITGB2, 
S100A8,FGF1,SLC41A2,ERAP1,RAB2A,HIST1H2AC,ABCC3,NRCAM,MIR675/// 
H19,TUFT1,EGFL6,B4GALT6,COL11A1,NPR3,FCGR2A,GPLD1, 
LOC101930053///LOC101930048///VLDLR-AS1,MAL2,UBE2QL1,THBS1, 
TFPI2,MME,LOC100509457///HLA-DQA1,CHI3L1,DEFB132,P2RY12,HLA- 
DQB1 
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will be diabetic by 2045 worldwide [23]. It will consume 
enormous resources and cause immense challenges to 
maintain well-being in a population with the majority 
being obese or overweight [24]. Dietary adjustment, 
medication, and/or surgical intervention can help to 
obtain certain weight loss achievements, but persona-
lized treatment by identifying key genes or pathways 
relating obesity and diabetes may provide major 
improvements in the treatment of obesity and T2DM. 
Obesity and T2DM are closely related to similar 
genetic, epigenetic, adipose, metabolism, and endocrine 
aberrations [25]. Understanding the molecular 
mechanism behind obesity and T2DM is critically 
important for early diagnosis and precise treatment. 
Therefore, it is vital to discover these sensitive and 
specific gene biomarkers of obesity or T2DM.

In this analysis, 21 subcutaneous adipose tissues 
were extracted from the GEO database of GSE27951. 
Then, bioinformatics analysis was performed to identify 
candidate genes from biological database. It is useful for 
understanding the differences between expressed genes, 
potential hub genes, pathways, genetics, or unique 

adaptations amongst samples. Forty-two up-regulated 
and 142 down-regulated DEGs were selected. Then, 
TRDN, PLN, GEFL6, MYH11, COL4A2, COL6A6, 
ACACB, GLUL, ELOVL7, MYH2, CD36, FCGR2A, 
PTPRC, CD163, CD36, MS4A6A, TNNC2, and 
MYH2 were considered as hub genes by bioinformatics 
analysis. It was shown that no hub genes were found in 
NDM groups (BMI ≥35 kg/m2 versus BMI 25–34.9 kg/ 
m2, BMI ≥35 kg/m2 versus normal weight, and BMI 
25–34.9 kg/m2 versus normal weight), suggesting that 
there were no differences among those NDM samples 
with different BMIs [26]. The lack of DEGs in the BMI 
≥35 kg/m2 group (DM versus NDM) indicated that if 
there are more DEGs between DM and the NDM, the 
greater differential BMI values will be. Obesity is a risk 
for diabetes as the incidence of diabetics with obesity is 
more than those with diabetes who are overweight and 
those with diabetes who are normal weight [23]. Here 
BioGPS, CTD, FunRich, GO and pathway analysis were 
used to identify the potential hub genes. As a result, 
CD36, COL4A2, GLUL, and ACACB were selected and 

Figure 2. The interaction hub genes in different groups showed by STRING.
Legends: (A) BMI >35 kg/m2: DM versus NDM group. (B) BMI 25–34.9 kg/m2: normal weight: DM versus NDM group. (C) BMI 18–24.9 kg/m2: 
DM versus NDM group. (D) DM: BMI ≥35 kg/m2 versus 24.9–35 kg/m2 group. (E) DM: BMI > 35 kg/m2 versus normal weight group. (F) DM: 
BMI 24.9–35 kg/m2 versus normal weight. (H) NDM: BMI > 35 kg/m2 versus 24.9–35 kg/m2 group. (I) NDM: BMI > 35 kg/m2 versus normal 
weight group. (G) NDM: BMI 24.9–35 kg/m2 versus normal weight group. 
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considered as hub genes that may provide novel targets 
for further studying obese diabetic patients.

The GO and pathway analysis showed that CD36 
enriched biological function (FP, MF, CC) in metabo-
lism, receptor activity, and platelet alpha granule mem-
brane where the enriched pathway exists due to platelet 
adhesion to exposed collagen. CD36 is member 3 of the 
scavenger receptor class B family of cell surface pro-
teins and is located on the long arm of chromosome 7 
at band 11.2 in humans. It may play a key role in the 

development of glucose intolerance and diabetes 
[27,28]. Tahar et al. reported that, in a low fat and 
high starch diet, CD36 deficiency enhanced insulin 
responsiveness in CD36-null mice [29]. Pravenec et al. 
reported that transgenic expression of CD36 was closely 
associated with reduced serum fatty acids as well as 
improvement of insulin resistance and glucose intoler-
ance in the spontaneously hypertensive transgenic rat 
models [30]. Drover et al. indicated that CD36 defi-
ciency is a possible risk factor for diet-induced T2DM 

Figure 3. The expression level of hub genes on normal human adipose tissues, using by BioGPS.
Legends: Blue sharp is subcutaneous adipose tissue. Read sharp is omental adipose tissue. 

Figure 4. Heatmap showing log2 transformed ratios of hub genes in normal human organ or cell lines by FunRich.
Legends: the rectangle of right side is fold change value (log), red means positive correlation; blue means negative correlation. 
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in both the postprandial and fasting states in humans 
[31]. Our results also showed that CD36 was more 
highly expressed in T2DM with normal weight than 
T2DM with obesity. In addition, CD36 was closely 
correlated with weight loss (analysed by GEO2R), sug-
gesting that a decreased CD36 levels may lead to an 
increase in body weight.

The GO and pathway analysis showed that GLUL 
enriched the biological functions (FP, MF, CC) of 
metabolism and transaminase activity in the Golgi 
apparatus, and its closest related pathway is glutamine 
biosynthesis I. GLUL (ligase) is an enzyme-coding gene 
that belongs to the glutamine synthetase family [32,33]. 
GLUL plays a crucial role in the metabolism of the 
nitrogen form of glutamine in an ATP-dependent 

reaction [32]. Our study also showed that GLUL had 
a higher expression in non-diabetic normal weight 
patients than in diabetic normal weight patients; 
GLUL was also closely correlated with weight loss. 
Petrus et al. also reported that GLUL expression was 
lower in the obese group with human white adipose 
tissue than non-obese group [34]. This observation 
suggests that increasing GLUL levels may help to 
reduce diabetes. Prudente et al. reported that the 
rs10911021 polymorphism of the GLUL genies an inde-
pendent modulator of mortality in T2DM patients [35]. 
The Look AHEAD Research Group performed genetic 
analyses in 3,845 overweight/obese participants with 
T2DM over a median of 9.6 years. The results showed 
that the risk (C) allele for GLUL rs10911021 was 

Table 3. The hub genes miRNA expressed in normal adipose tissue using BioGPS and related disease by CTD.
Groups Hub genes Adipose tissue Adipose tissue omental Related Disease Inference Score

BMI > 35 kg/m2:DM VS NDM TRDN 0.37 ± 0.19 0.48 ± 0.09 Weight Loss 37.25
PLN 10.13 ± 2.16 6.33 ± 1.16 Glucose Intolerance 37.13
MYH11 9.08 ± 1.83 9.36 ± 0.60 Weight Loss 100.69

BMI 18–24.9 kg/m2:DM VS NDM COL4A2 17.04 ± 0.69 16.53 ± 0.27 Weight Loss 92.25
COL6A6 5.80 ± 2.80 5.21 ± 1.05 Diabetes Mellitus 16.00
ACACB 6.25 ± 1.61 9.03 ± 0.19 Insulin Resistance 85.45
GLUL 11.26 ± 0.94 11.23 ± 0.77 Weight Loss 175.47
ELOVL7 9.41 ± 1.43 1.19 ± 0.37 Weight Loss 77.78
MYH2 −0.76 ± 3.09 −0.23 ± 1.19 Insulin Resistance 40.55

DM: BMI>35 kg/m2 VS 18–24.9 kg/m2 CD36 19.01 ± 0.75 16.29 ± 0.41 Weight Loss 239.26
FCGR2A 4.96 ± 1.16 2.48 ± 1.00 Weight Loss 34.41
PTPRC 5.57 ± 1.42 2.78 ± 0.35 Weight Loss 84.92
CD163 0.86 ± 0.59 0.7 ± 0.12 Weight Loss 98.07
MS4A6A 7.76 ± 1.17 7.56 ± 1.00 Glucose Intolerance 33.85

DM: BMI 24.9–35 kg/m2 VS 18–24.9 kg/m2 TNNC2 1.14 ± 0.37 0.42 ± 0.17 Weight Loss 70.86
MYH2 −0.76 ± 3.09 −0.23 ± 1.19 Insulin Resistance 40.55

CTD: comparative toxicogenomics database; BMI: Body mass index; DM: type 2 diabetes; NDM: non-diabetes. mean± SD: miRNA expression 

Table 4. GO and pathway enrich analysis of hub gene associated with obesity type 2 diabetes.

Enrichment terms
No. of genes in 

the dataset
No. of genes in the 
background dataset

Percentage 
of genes

Fold 
enrichment

P-value 
(Hypergeometric 

test)
Q-value (Storey- 

Tibshirani method) Genes

Biological process
Metabolism 3 1683 42.85714 4.906155 0.017897 1 CD36; 

GLUL; 
ACACB;

Cell growth and/or 
maintenance

2 1125 28.57143 4.901186 0.059 1 COL4A2;

Cell communication 2 3713 28.57143 1.485017 0.40418 1 CD163;
Molecular function
Transaminase activity 1 23 14.28571 120.411 0.008344 1 GLUL;
Ion channel activity 1 66 14.28571 41.9733 0.023783 1 PLN;
Receptor activity 2 361 28.57143 15.27349 0.006934 1 CD36; 

CD163;
Cellular component
Golgi aparatus 3 897 42.85714 9.205146 0.003074 1 CD36; 

GLUL; 
ACACB;

Platelet alpha granule 
membrane

1 11 14.28571 251.6492 0.003998 1 CD36;

Collagen type IV 1 5 14.28571 553.0255 0.001819 1 COL4A2;
Biological pathway
Neurotransmitter uptake and 

Metabolism In Glial Cells
1 2 14.28571 1378.437 0.000728 1 GLUL;

Astrocytic Glutamate-Glutamine 
Uptake And Metabolism

1 2 14.28571 1378.437 0.000728 1 GLUL;

glutamine biosynthesis I 1 1 14.28571 2743.225 0.000364 1 GLUL;
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significantly associated with morbidity and mortality 
from cardiovascular disease among T2DM 
patients [36].

COL4A2 was found to enrich the biological func-
tions (FP, MF, CC) of cell growth and/or maintenance 
as well as the expression of extracellular matrix struc-
tural constituents and collagen type IV (COL4). 
However, no pathways were enriched. COL4 Alpha 2 
(COL4A2) chain is the encoded basement membranes 
by the COL4A2 gene that exist in humans [37]. Du 
et al. suggested that the reduction of miR-29a caused by 
high glucose may increase the risk of excess COL4A2 in 
proximal tubule cells [38]. This study showed that 
COL4A2 is highly expressed in adipose tissue, which 
is related to weight loss. We plan to examine the rela-
tionship between COL4A2 expression and the patho-
genesis and progression of T2DM and obesity in future 
studies.

ACACB (Acetyl-CoA carboxylase β) was found to 
enrich the biological functions (FP, MF, CC) of meta-
bolism, ligase activity, and the Golgi apparatus and its 
closest related pathway is the import of palmitoyl-CoA 
into the mitochondrial matrix. ACACB is an enzyme 
that associated with diseases including Acetyl-Coa 
Carboxylase-Beta Deficiency and Biotin deficiency 
and it is related with the glucagon signalling pathway. 
ACACB is thought to control fatty acid oxidation 
through malonyl-CoA to inhibit carnitine palmitoyl 
transferase I, which is the rate-limiting step in fatty 
acid uptake and oxidation by mitochondria [39]. Our 
study also showed that ACACB had higher expression 
in non-diabetic normal weight patients compared to 
diabetic patients with normal weight. It also showed 
that ACACB was closely correlated to insulin resis-
tance. This denotes that increasing ACACB levels 
may help to reduce diabetes. MA et al. showed that 
ACACB plays a role in obesity-altered lipid metabolism 
in susceptibility to T2DM [40]. An et al. analysed 12 
case-control studies containing 3273 cases and 3242 
controls, which indicated that there are significant 
associations between the ACACB gene, rs2268388 
polymorphism, and diabetic nephropathy among 
Caucasian patients with diabetes. Some case reports 
also suggested that ACACB expression may be related 
to obesity [41]. For example, the Corbett et al. study 
used ACACB as a target in the design of isozyme-non- 
selective acetyl-CoA carboxylase inhibitors in obese 
mice [42]. After analysing the array dataset, 
GSE29718 [43], it is concluded that immune system 
pathways may have a significant role in child obesity. 
In contrast, Wei et al. reported that ACACB poly-
morphisms were associated with blood pressure in an 

analysis of Han Chinese T2DM populations from 1975 
[44]. In a twin study, ACACB polymorphisms in bio-
tin-dependent carboxylases were found to be down- 
regulated in adipose tissue and adipocytes of the 
obese twin in comparison with the non-obese twin. 
Taken together, CD36, COL4A2, GLUL, and ACACB 
were considered as core genes closely related to obesity 
and T2DM.

Limitation

First, the sample size of each group in this study was 
limited, and regarding the inevitably bias from the 
heterogeneity of clinical tissues, more other databases 
containing tissues from obesity or T2DM should be 
included further. Second, the gender and age should 
be considered as well. Third, the adipose tissues from 
different parts of the body, including subcutaneous 
adipose, the omentum, jejunal mesentery, and ileal 
mesentery, as well as the adipose near to the lesser 
curvature and greater curvature of stomach of obese 
or overweight patients, should be utilized to confirm 
those core genes.

Conclusions

CD36, COL4A2, GLUL, and ACACB that are signifi-
cantly enriched in metabolism and glutamine bio-
synthesis I, astrocytic glutamate-glutamine uptake, 
and neurotransmitter uptake and metabolism in 
glial cells. They are also related to weight loss and 
insulin resistance. These genes might be the core 
molecular biomarkers for obesity or T2DM. 
Furthermore, these results provided strong evidence 
for forthcoming therapeutic research involving pre-
cise gene targets in T2DM and NDM obese patients. 
We anticipate identifying the genes closely related to 
obesity and T2DM and further investigate their rela-
tionship with the CD36, COL4A2, GLUL, and 
ACACB as they may be target genes for future 
therapies.
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