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Abstract

Strong foundational skills in mathematical problem solving, acquired in early childhood, are 

critical not only for success in the science, technology, engineering, and mathematical (STEM) 

fields but also for quantitative reasoning in everyday life. The acquisition of mathematical skills 

relies on protracted interactive specialization of functional brain networks across development. 

Using a systems neuroscience approach, this review synthesizes emerging perspectives on 

neurodevelopmental pathways of mathematical learning, highlighting the functional brain 

architecture that supports these processes and sources of heterogeneity in mathematical skill 

acquisition. We identify the core neural building blocks of numerical cognition, anchored in the 

posterior parietal and ventral temporal-occipital cortices, and describe how memory and cognitive 

control systems, anchored in the medial temporal lobe and prefrontal cortex, help scaffold 

mathematical skill development. We highlight how interactive specialization of functional circuits 

influences mathematical learning across different stages of development. Functional and structural 

brain integrity and plasticity associated with math learning can be examined using an individual 

differences approach to better understand sources of heterogeneity in learning, including cognitive, 

affective, motivational, and sociocultural factors. Our review emphasizes the dynamic role of 

neurodevelopmental processes in mathematical learning and cognitive development more 

generally.
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Introduction

Mathematical knowledge is essential for academic and professional success in the 21st 

century (Butterworth, Varma, & Laurillard, 2011; Geary, 1994; Iuculano & Menon, 2018; 

National Mathematics Advisory Panel, 2008; Parsons & Bynner, 2005; Richland, Zur, & 

Holyoak, 2007). Strong foundational skills in mathematical problem solving, acquired in 

early childhood, are critical not only for success in the science, technology, engineering, and 

mathematical (STEM) fields but also for quantitative reasoning in everyday life (Butterworth 

& Walsh, 2011; Geary, 2013; Geary, Berch, Ochsendorf, & Koepke, 2017; Geary, Nugent, & 

Bailey, 2013; National Mathematics Advisory Panel, 2008; PISA, 2017). More than ever, the 

use of mathematics is ubiquitous in all aspects of human cognition in our technologically-

driven society (Butterworth et al., 2011; Nelson & Reyna, 2007; Peters, 2007; Peters et al., 

2006; Reyna & Brainerd, 2007).

Current theories of brain development emphasize the role of learning, experience, and 

education in shaping brain function and structure (Posner & Rothbart, 2007). The emergence 

of regional functional specialization and fine-tuning of neuronal response properties is 

influenced by interactions and communications with other brain regions (Menon, 2013; 

Passingham, Stephan, & Kotter, 2002). This process of interactive specialization and 

reorganization of functional circuits is thought to play a prominent role in children’s 

cognitive development (Johnson, 2001, 2011; Menon, 2013). Repeated co-activation 

strengthens intrinsic functional connections between brain regions, resulting in increased 

differentiation between functional brain networks that subserve distinct cognitive processes 

(Fair, Dosenbach, et al., 2007; Fox & Raichle, 2007; Jolles, van Buchem, Crone, & 

Rombouts, 2013; Kelly et al., 2009; Mackey, Singley, & Bunge, 2013; Supekar, Menon, 

Rubin, Musen, & Greicius, 2008).

These interactive neurocognitive processes are particularly relevant for complex cognitive 

skills such as numerical problem solving that rely on coordinated interactions between 

distributed brain structures. Thus, the development of core brain systems for mathematical 

learning is supported by multiple distributed neural processes involved in quantity 

representations, symbolic number form, as well as memory and cognitive control (Arsalidou 

& Taylor, 2011; Cho et al., 2012; Fias, Menon, & Szucs, 2013; Qin et al., 2014; Rosenberg-

Lee, Barth, & Menon, 2011; Supekar & Menon, 2012) (Figure 1; Table 1). The manner in 

which distributed brain regions are engaged may depend on task complexity, individual’s 

level of expertise, or individual differences in domain-general cognitive abilities such as 

working memory associated with mathematical learning.

Here we synthesize emerging findings on the neurodevelopmental basis of mathematical 

learning. We use a systems neuroscience approach to characterize the development of 

distributed brain networks that support multiple aspects of math learning. We review core 
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neural building blocks of numerical cognition, interactive functional brain circuits associated 

with math learning, functional and structural brain plasticity that underlie math learning, as 

well as sources of individual differences in math learning in children. We discuss distributed 

brain systems involved in math learning, with a particular focus on emerging evidence for 

the role of the medial temporal lobe (MTL) in the acquisition of mathematical problem-

solving skills (Cho et al., 2012; Qin et al., 2014; Rosenberg-Lee et al., 2018; Supekar, 

Chang, Mistry, Iuculano, & Menon, 2021). We conclude by highlighting directions for 

future research.

Core building blocks of mathematical learning

The development of mathematical skills relies on distinct yet interacting neurocognitive 

processing systems, including those subserving perception of symbolic numbers, as well as 

declarative memory, working memory, and cognitive control processes used to manipulate 

representations of quantity (Arsalidou, Pawliw-Levac, Sadeghi, & Pascual-Leone, 2018; Fias 

et al., 2013) (Figure 1). Brain systems for representing non-symbolic (e.g., array of dots) and 

symbolic (e.g., Arabic numerals) numerical quantities may contribute to critical building 

blocks from which higher-level mathematical knowledge is constructed. Core functional 

systems of numerical cognition include quantity representation system, anchored in the 

intraparietal sulcus (IPS) in the posterior parietal cortex (PPC), and visual number form 

processing system, anchored in the ventral temporal-occipital cortex (VTOC). Quantity-

selective neurons have been found in non-human primate IPS (Nieder, 2016; Nieder & 

Dehaene, 2009) and functional magnetic resonance imaging (fMRI) adaptation paradigms 

have suggested that the human IPS is sensitive to quantity across stimulus formats (Bulthé, 

De Smedt, & Op de Beeck, 2014; Cohen Kadosh, Cohen Kadosh, Kaas, Henik, & Goebel, 

2007; Piazza, Pinel, Le Bihan, & Dehaene, 2007). Similarly, specialization for visually-

presented symbolic numbers has been detected in the VTOC (Abboud, Maidenbaum, 

Dehaene, & Amedi, 2015; Hannagan, Amedi, Cohen, Dehaene-Lambertz, & Dehaene, 2015; 

Piazza & Eger, 2016; Shum et al., 2013; Yeo, Wilkey, & Price, 2017). Together, the IPS and 

the VTOC build semantic representations of quantity (Ansari, 2008) and facilitate efficient 

manipulation of numerical quantity necessary for numerical problem solving (Menon, 

2015).

In addition to brain regions important for non-symbolic and symbolic representations of 

quantity, working memory and declarative memory systems facilitate mathematical learning 

and skill acquisition. Performance and learning in multiple mathematical domains, including 

numerical magnitude processing, arithmetic problem solving, and logical reasoning, involve 

maintenance and manipulation of quantity representations in working memory (Alloway & 

Alloway, 2010; Ashkenazi, Rosenberg-Lee, Metcalfe, Swigart, & Menon, 2013; Bugden & 

Ansari, 2016; De Visscher & Noël, 2014; De Visscher, Szmalec, Van Der Linden, & Noël, 

2015; Friso-Van Den Bos, Van Der Ven, Kroesbergen, & Van Luit, 2013; Geary, Hoard, 

Byrd-Craven, Nugent, & Numtee, 2007; Gilmore et al., 2013; Menon, 2016b; Metcalfe, 

Ashkenazi, Rosenberg-Lee, & Menon, 2013; Morsanyi, Devine, Nobes, & Szűcs, 2013; 

Raghubar, Barnes, & Hecht, 2010). Working memory is regulated by the visuospatial 

attention system, anchored in the IPS, supramarginal gyrus, frontal eye field, and 

dorsolateral prefrontal cortex (PFC) regions, and the cognitive control system, anchored in 
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the insula, dorsolateral and ventrolateral PFC, which serves as a flexible hub for integrating 

functional circuits engaged in numerical problem solving (Menon, 2016a).

It is important to note that multiple parietal and prefrontal cortical regions play a scaffolding 

role in mathematical skill acquisition during development (Arsalidou et al., 2018), and this is 

true even for basic magnitude processing tasks (Ansari, Garcia, Lucas, Hamon, & Dhital, 

2005). In the case of arithmetic problem solving, greater PFC activation has been observed 

in younger children (Rivera, Reiss, Eckert, & Menon, 2005). Together, these findings point 

to greater cognitive and working memory demands in children during the early stages of 

skill acquisition. In addition, growing evidence suggests that the declarative memory system, 

anchored in the MTL, also plays an important role in associative learning and the acquisition 

of math facts in children, a topic to which we return at some length in the following sections.

Mechanisms of interactive specialization in mathematical skill development

Developmental studies have shown age-related decreases in neural activity in the MTL and 

PFC and increases in IPS and VTOC activity during quantity judgment and mental 

arithmetic tasks (Arsalidou & Taylor, 2011; Houde, Rossi, Lubin, & Joliot, 2010; Rivera et 

al., 2005). Such a developmental shift reflects decreasing demands on declarative memory 

and cognitive control systems, accompanied by increased reliance on specialized functional 

networks (modules) along the dorsal and ventral visual pathways linking the IPS and VTOC. 

These neurodevelopmental changes are consistent with the theoretical framework of 

interactive specialization (IS) model, which posits that cognitive development depends on 

selective strengthening of some brain circuits and weakening of others, giving rise to the 

formation of specialized and inter-connected functional modules over time (Johnson, 2000, 

2001, 2011; Menon, 2013; Supekar, Musen, & Menon, 2009). The IS framework is 

especially relevant for understanding the mechanisms of acquisition of numerical problem-

solving skills in children, which involves engagement of distributed brain areas that changes 

dynamically with skill acquisition (Menon, 2016a).

To date, the majority of brain imaging studies applying the IS model has been based on 

observations of changes in regional brain responses, rather than changes in inter-regional 

interactions or functional brain circuits (Cohen Kadosh, Cohen Kadosh, Dick, & Johnson, 

2011; Cohen Kadosh, Bahrami, et al., 2011; He, Garrido, Sowman, Brock, & Johnson, 2015; 

Joseph, Gathers, & Bhatt, 2011). Moreover, although longitudinal studies are essential for 

investigating individual trajectories of learning and development in children (Bjorklund & 

Causey, 2018; Kraemer, Yesavage, Taylor, & Kupfer, 2000; Weinert & Schneider, 1999), 

much of the studies testing hypotheses arising from the IS model has used cross-sectional 

designs, which are less desirable for this purpose. Longitudinal designs examining plasticity 

of functional circuits over time are necessary for understanding how coordination of 

multiple functional circuits lead to specialized functional modules across development and 

contribute to mathematical learning and cognitive development more generally.

Using a longitudinal cohort of children sampled at multiple time points over a 6-year period 

spanning from childhood to early adolescence, Battista et al. (2018) characterized 

developmental trajectories associated with plasticity of functional connectivity of the IPS, 
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known to play a critical role in numerical problem solving. In line with the IS model, the 

developmental changes in numerical task-related IPS functional circuits were characterized 

by both increases and decreases over time. The left IPS connectivity with other posterior 

brain regions, including the right fusiform gyrus (FG) in the VTOC, the right superior 

parietal lobule (SPL) in the PPC, and the right IPS increased, while connectivity between the 

left IPS and PFC regions decreased across development (Figure 2). These changes in 

connectivity were accompanied by improvements in arithmetic task performance: from ages 

7 to 14, children improved their performance at a rate of 2%/yr increase in accuracy and 

179.8ms/yr decrease in reaction time (Battista et al., 2018). Consistent with these behavioral 

findings, significant age-related decreases in engagement of frontoparietal circuits point to 

reduced reliance on the cognitive control and working memory system (PFC) during 

numerical problem solving.

Stronger interactions between dorsal and ventral visual pathways, linking the parietal 

quantity representation system (IPS) with the visual number form processing system 

(VTOC), reflect tighter functional integration of key components of numerical processing at 

later developmental stages. Greater functional connectivity between the IPS and SPL may 

represent enhanced visuospatial attention to support arithmetic problem solving (Hubbard, 

Piazza, Pinel, & Dehaene, 2005; Knops, Thirion, Hubbard, Michel, & Dehaene, 2009). In 

line with this argument, in addition to the IPS, the SPL has also been reported to be involved 

in numerical processing (Ansari et al., 2005; Sokolowski, Fias, Mousa, & Ansari, 2017), 

arithmetic (Rosenberg-Lee, Barth, et al., 2011; Rosenberg-Lee, Chang, Young, Wu, & 

Menon, 2011), and abacus-based mental calculation (Chen et al., 2006). Together, these 

longitudinal findings provide direct evidence for age-related refinement of IPS functional 

circuits, with increased functional coupling between posterior brain systems and decreased 

frontoparietal interactions over time, that support neurocognitive development of 

mathematical skills.

These findings emphasize an important strength of the IS model that can incorporate 

multiple cognitive functions of a specific brain region, which depend on its context-

dependent interactions with task-relevant brain regions, rather than isolated, regional 

specialization of domain-specific functions (Johnson, 2001, 2011; McIntosh, 2000; Menon, 

2015). The IS model highlights an important perspective that specialization of functional 

modules emerges from dynamic changes in inter-regional connectivity with both increases 

and decreases in specific functional circuits, contributing to the development of cognitive 

skills over time. Consistent with this view, the IPS is not only important for quantity 

processing and manipulation, but also subserves other cognitive functions such as 

visuospatial representations and short-term memory that contribute to numerical problem 

solving (Hubbard et al., 2005; Knops, Piazza, Sengupta, Eger, & Melcher, 2014). In this 

context, selective strengthening of dorsal-ventral visual pathways and weakening of 

frontoparietal circuits over time in Battista et al. (2018) may reflect different cognitive 

mechanisms of numerical problem solving across development. Precisely how changes in 

functional circuits contribute to the development of fine-tuned regional representations (and 

vice versa) remains an important topic for future studies.
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Finally, it should be noted that the extent to which specialization of brain circuits that 

support mathematical skill acquisition depends on educational experience versus normative 

brain maturation remains to be determined. We suggest that short-term training studies can 

provide a way to examine the influence of learning experience, by minimizing the effects of 

ongoing brain maturation, a topic that is discussed below in Disentangling the effects of 
experience and brain maturation on mathematical learning section.

Role of medial temporal lobe declarative memory system in mathematical 

learning

In addition to IPS and VTOC regions which play important roles for representing non-

symbolic and symbolic representations of quantity and PFC regions important for working 

memory and cognitive control, the MTL declarative memory system helps scaffold 

mathematical learning and skill acquisition. Evidence for this comes from cross-sectional 

and longitudinal investigations of changes in arithmetic problem-solving strategies used by 

children at different stages of development. Children’s gains in arithmetic problem-solving 

skills during early school years are characterized by the gradual reduction of inefficient 

procedural strategies (e.g., counting) and increase in direct retrieval of math facts 

(Barrouillet & Fayol, 1998; Butterworth, 1999; Chen & Siegler, 2000; Cho, Ryali, Geary, & 

Menon, 2011; Geary, 1994, 2011; Geary & Brown, 1991; Geary & Hoard, 2003; Imbo & 

Vandierendonck, 2007; Qin et al., 2014; Siegler & Shipley, 1995; Siegler & Shrager, 1984). 

Over the past decade, evidence has been accumulating for a developmentally-specific role of 

the MTL declarative memory system in this gradual transition between arithmetic problem-

solving strategies. Specifically, converging evidence from multiple experiments points to the 

importance of the MTL during the development of arithmetic fact retrieval in elementary 

school children (Chang, Rosenberg-Lee, Qin, & Menon, 2019; Cho et al., 2012; Cho et al., 

2011; De Smedt, Holloway, & Ansari, 2011; Qin et al., 2014; Rosenberg-Lee et al., 2015; 

Rosenberg-Lee et al., 2018; Supekar, Swigart, et al., 2013).

The role of the MTL, particularly its hippocampal subdivision, in learning and memory 

consolidation for events in space and time is well known (Davachi, 2006; Davachi, Mitchell, 

& Wagner, 2003; Diana, Yonelinas, & Ranganath, 2007; Eichenbaum, Yonelinas, & 

Ranganath, 2007; Squire, 1992; Squire, Genzel, Wixted, & Morris, 2015; Squire, Stark, & 

Clark, 2004; Tulving, 1983). Importantly, the hippocampus plays an essential role in binding 

or integrating information together (Davachi, 2006; Eichenbaum, 2004; Giovanello, 

Schnyer, & Verfaellie, 2004; McClelland, McNaughton, & O’Reilly, 1995; Olsen, Moses, 

Riggs, & Ryan, 2012; Ranganath, 2010; Staresina & Davachi, 2009; Zeithamova & 

Bowman, 2020), which may support multiple complements of mathematical learning at 

different developmental stages of cognitive skill acquisition. For example, in the context of 

arithmetic fact learning, the hippocampus may be involved in binding operands (e.g., “3 + 

5”) to answers (e.g., “8”). In early childhood, the hippocampus may contribute to the 

binding of neural representations across non-symbolic and symbolic quantities when 

children understand the magnitude of symbolic numbers (e.g., numeral “3” or number word 

“three”) by linking them to concrete non-symbolic representations of quantities (e.g., three 

objects), which is thought to facilitate numerical problem-solving skill acquisition 
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(Brankaer, Ghesquiere, & De Smedt, 2014; Carey, 2004; Dehaene, 2011; Feigenson, 

Dehaene, & Spelke, 2004; Lipton & Spelke, 2005; Malone, Heron-Delaney, Burgoyne, & 

Hulme, 2019; Mundy & Gilmore, 2009; Szkudlarek & Brannon, 2017). Similarly, the 

hippocampus may also facilitate formation of structural mapping between “ordered set of 

numerals” (i.e., count list) and magnitude representations for larger quantities (Sullivan & 

Barner, 2013), allowing individuals to use knowledge about smaller numbers to guide 

estimation of larger numbers (Sullivan & Barner, 2014).

It has been proposed that the hippocampal engagement is required during the early stages of 

learning (McClelland et al., 1995; Smith & Squire, 2009) and for building schematic 

knowledge – i.e., frameworks of associative knowledge (Wang & Morris, 2010). For 

example, when learning arithmetic, children, who are still in the process of developing 

schematic knowledge, may rely more on the hippocampus, compared to adults. This 

proposal may help explain the lack of reliable hippocampal engagement reported in adults, 

when solving overlearned arithmetic or multiplication problems likely solved by fact 

retrieval (Delazer et al., 2003; Delazer et al., 2005; Grabner, Ischebeck, et al., 2009; 

Hayashi, Ishii, Kitagaki, & Kazui, 2000; Ischebeck, Zamarian, Egger, Schocke, & Delazer, 

2007; Ischebeck et al., 2006; Lee, 2000; Rosenberg-Lee, Chang, et al., 2011; Zamarian, 

Ischebeck, & Delazer, 2009) or problems self-reported as solved by retrieval strategy 

(Grabner, Ansari, et al., 2009). Adults in later stages of learning may have a well-established 

schema for arithmetic problem solving, which no longer require hippocampal engagement. 

Further, decreased MTL involvement may be accompanied by concomitant increases in the 

reliance on neocortical systems in later stages of learning (McClelland et al., 1995). Indeed, 

adults frequently show a relative increase in engagement of the angular gyrus (AG) in the 

inferior parietal lobe during arithmetic fact retrieval (Delazer et al., 2003; Delazer et al., 

2005; Fresnoza et al., 2020; Grabner, Ansari, et al., 2009; Grabner et al., 2007; Grabner, 

Ischebeck, et al., 2009; Ischebeck et al., 2007; Ischebeck et al., 2006; Jost, Khader, Burke, 

Bien, & Rösler, 2011; Klein et al., 2016; Lee, 2000), processing symbolic numbers (Price & 

Ansari, 2011; Van Der Ven, Takashima, Segers, Fernández, & Verhoeven, 2016), 

metacognitive functioning (Anderson, Betts, Ferris, & Fincham, 2011), schematic memory 

(Thakral, Madore, & Schacter, 2017; van der Linden, Berkers, Morris, & Fernández, 2017; 

Wagner et al., 2015), and multimodal integration (Cabeza, Ciaramelli, & Moscovitch, 2012; 

Ramanan & Bellana, 2019; Ramanan, Piguet, & Irish, 2017; Seghier, 2013). Although AG 

activity has been also observed during arithmetic fact retrieval in children (Polspoel, Peters, 

Vandermosten, & De Smedt, 2017), the findings in adults are much more robust across 

multiple studies. Thus, despite its critical role in learning and memory formation, 

hippocampal contributions to mathematical learning, and cognitive development more 

broadly, have received little attention until recent evidence in children.

The first evidence for the differential engagement of the hippocampal memory system in 

mathematical cognition over development came from a cross-sectional study in children, 

adolescents, and young adults spanning the ages between 8 to 19 (Rivera et al., 2005). 

Younger children exhibited significantly greater engagement of MTL regions, including the 

hippocampus, when solving small single-digit addition and subtraction problems with sums 

and minuends less than 10 (Figure 3A). Similarly, De Smedt and colleagues (2011) 

demonstrated greater hippocampal response when solving smaller, compared to larger, 
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arithmetic problems and during addition, compared to subtraction, problem solving in 10–

12-year old children (Figure 3B). Rosenberg-Lee et al. (2015) further observed greater 

hippocampal activity during addition compared to subtraction in 7–9-year-old children 

(Figure 3C). As memory-based problem-solving strategies are more often observed in 

smaller, compared to larger, arithmetic problems, and addition, compared to subtraction, 

problems (Barrouillet, Mignon, & Thevenot, 2008; Imbo & Vandierendonck, 2008), these 

findings suggest a role of the hippocampus in arithmetic fact retrieval.

Many previous studies on arithmetic problem solving rely on the assumption that certain 

amount of practice, problem size, and arithmetic operations elicit a particular strategy. 

Highly practiced problems, smaller problems, and addition and multiplication, relative to 

subtraction and division, have been shown to be more often solved by retrieval than 

procedural strategy (Barrouillet & Lepine, 2005; Barrouillet et al., 2008; Campbell & Xue, 

2001; Grabner, Ansari, et al., 2009; Imbo & Vandierendonck, 2008; LeFevre et al., 1996; 

LeFevre, DeStefano, Penner-Wilger, & Daley, 2006; Rosenberg-Lee, Chang, et al., 2011; 

Siegler & Shipley, 1995). However, variations in strategy use can occur between individuals 

as well across trials within an individual (Dowker, 2019; Siegler, 1987). Thus, an alternate, 

more direct approach is to assess strategy use in each individual on a trial-by-trial basis. In a 

trial-by-trial strategy assessment, participants are first asked to solve an arithmetic problem, 

and then are probed on how they solved the problem. This approach has been demonstrated 

to have strong construct validity (e.g., children who report using retrieval more often than 

counting strategies show faster reaction times than children who report to rely more on 

counting; Wu et al., 2008), and has been successfully used in adults (Campbell & Xue, 2001; 

Campbell & Timm, 2000) and children (Barrouillet & Lepine, 2005; Barrouillet et al., 2008; 

Ramirez, Chang, Maloney, Levine, & Beilock, 2016).

Utilizing strategy assessments, Cho and colleagues (2011) divided a sample of 7–9 year old 

children into ‘Retrievers’ and ‘Counters’ (children who retrieved and counted more than 

60% of correctly solved trials, respectively). In this study, ‘Retrievers’ showed greater 

activation in the left ventrolateral PFC, compared to ‘Counters’ during addition problem 

solving, which suggests that the use of memory retrieval strategy (or shifting from counting 

to retrieval strategy) relies on PFC cognitive control resources in children. Additionally, 

multivariate activation pattern analysis revealed that these groups could be significantly 

discriminated by differences in spatial activity patterns in multiple brain regions, including 

the MTL, ventrolateral PFC, and PPC. Notably, high classification accuracy was observed in 

the bilateral hippocampus (86% accuracy). The existence of decodable, fine scale 

differences in the spatial pattern of fMRI signals suggests that the underlying neural activity 

in distributed brain regions, including the hippocampus, are accessed and used differently 

during each strategy. A follow-up study revealed that higher activity levels in the right 

hippocampus are associated with an increased use of retrieval strategy and faster reaction 

time to solve addition problems (Cho et al., 2012). Furthermore, dynamic bidirectional 

interactions were observed between the right hippocampus and dorsolateral and ventrolateral 

PFC during addition problem solving. Taken together, these findings suggest that 

hippocampal activity and connectivity contribute to children’s use of efficient retrieval 

strategy during arithmetic problem solving.
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To better understand neurodevelopmental changes associated with shifts in strategy use 

during arithmetic problem solving, Qin and colleagues (2014) used a longitudinal design 

with two time points for strategy assessment and fMRI session (Time 1 at ages between 7 to 

9 years and Time 2 at 1.2 years later). After 1.2 years, children reported using retrieval 

strategy during addition problem solving more frequently than before (Figure 4A). Crucially, 

task-related activity in the hippocampus increased over this time interval (Figure 4B). These 

changes in brain activity were not correlated with changes in retrieval strategy use. 

Additional cross-sectional data analysis comparing strategy use and brain activity between 

children from two time points, adolescents, and adults provided evidence that while 

adolescents and adults use retrieval strategy more frequently than children, their 

hippocampal engagement was significantly lower than children at Time 2, and not 

distinguishable from children at Time 1. This pattern of initial increase and subsequent 

decrease in hippocampal activation supports the models of long-term memory consolidation, 

which posit that the hippocampus plays a time-limited role in the early phases of knowledge 

acquisition (McClelland et al., 1995; Smith & Squire, 2009; Tse et al., 2007).

Interestingly, although Qin et al. (2014) showed that regional changes in hippocampal 

activity were not associated with changes in retrieval strategy use, changes in hippocampal 

connectivity with dorsolateral PFC and IPS were positively correlated with changes in 

retrieval strategy use in this study (Figure 4C). Similarly, in a training study designed to 

facilitate rapid retrieval of arithmetic facts, hippocampal functional circuits predicted 

training-related performance gains (Figure 4D). Specifically, children who exhibited higher 

intrinsic functional connectivity of the hippocampus with dorsolateral and ventrolateral PFC, 

basal ganglia, supplementary motor area, and middle temporal gyrus prior to training 

showed greater performance improvements in arithmetic problem solving (Supekar, Swigart, 

et al., 2013). Together, these findings suggest that hippocampal-neocortical circuit 

reorganization, rather than changes in activation in isolated brain regions, plays an important 

role in children’s shift from effortful procedural strategy to more efficient memory-based 

problem-solving strategy (Barrouillet & Fayol, 1998; Imbo & Vandierendonck, 2007; 

Siegler & Shipley, 1995; Siegler & Shrager, 1984).

It is noteworthy that several recent findings have begun to demonstrate hippocampus-

dependent math learning in adults as well. Qin and colleagues (2014) found refinements in 

multivariate patterns of activity in the hippocampus in adolescence and adulthood, even 

without significant hippocampal activity relative to baseline. In addition, Bloechle and 

colleagues (2016) have recently found greater hippocampal activity for trained relative to 

untrained problems after training as well as trained (after training) relative to to-be-trained 

(before training) problems in adults, using repeated fMRI measures before and after training. 

Furthermore, Klein and colleagues (2016) found hippocampal activity associated with 

arithmetic fact retrieval during number bisection and mental addition tasks in adults. These 

results suggest that the hippocampus may continue to be involved in retrieval of math facts 

across development. However, earlier arithmetic training studies in adults have not reported 

changes in hippocampal activity associated with learning (Delazer et al., 2003; Delazer et 

al., 2005; Grabner, Ischebeck, et al., 2009; Ischebeck et al., 2007; Ischebeck et al., 2006; 

Zamarian et al., 2009). Inconsistent findings of MTL engagement in studies of adults may in 

part be due to different levels of math proficiency or different educational backgrounds that 
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vary in emphasis on retrieval-based learning (Geary, Chen, Salthouse, & Fan, 1996; Geary & 

Wiley, 1991; Imbo & LeFevre, 2009) across participants. Further work with larger samples 

with different educational backgrounds and more comprehensive assessments of math and 

other cognitive abilities combined with multivariate neuroimaging analysis, which provides 

more sensitive measures of distributed patterns of brain activity (Kragel, Koban, Barrett, & 

Wager, 2018; Popal, Wang, & Olson, 2019), is needed to understand sources of variability 

across studies.

Taken together, emerging evidence highlights the developmentally-specific role of the 

hippocampus in the acquisition of memory-based numerical problem solving, with greater 

engagement during a key developmental stage for acquisition of arithmetic skills in 

childhood. Findings also suggest that interactions between the MTL and the PFC and 

parietal cortex, contribute to mathematical learning, consistent with the view that 

coordination of multiple functional circuits leads to specialized cognitive functions 

(Johnson, 2011; Menon, 2013). Future studies will need to further examine the role of the 

MTL and other brain areas in learning mathematical concepts such as cardinality or 

associativity as well as skill acquisition in more complex domains of mathematical 

cognition.

Disentangling the effects of experience and brain maturation on 

mathematical learning

A fundamental goal of developmental cognitive neuroscience is to distinguish brain 

mechanisms associated with different aspects of cognitive skill acquisition from normative 

brain development. Although longitudinal studies provide essential knowledge about 

individual trajectories of learning, changes observed over an extended time period cannot be 

solely attributed to learning experiences, due to the ongoing brain maturation during 

childhood and adolescence. Training studies are uniquely positioned to assess trajectories of 

learning-related cognitive and brain plasticity in a more precise manner. For example, 

learning from effective, targeted training programs can be achieved in a relatively short time 

period in training studies, thus minimizing the effects of ongoing brain maturation. 

Moreover, training studies with systematic experimental manipulations enable direct links 

between specific learning experiences and changes in brain and behavior across individuals. 

Tightly constrained short-term training studies with appropriate control groups or conditions 

can evaluate the causal role of training on behavioral changes and specialization of brain 

circuits that support math learning, thereby disentangling the effects of experience and brain 

maturation on cognitive skill development, which has broader implications for educational 

practices and learning interventions.

To address whether longitudinal changes in the hippocampal recruitment in children are 

results of maturational changes in the brain or experience-dependent effects of mathematical 

learning, Rosenberg-Lee et al. (2018) examined whether eight weeks of short-term training 

in arithmetic alters brain responses and connectivity in a similar way as longitudinal 

developmental changes do over the course of a year in children, as shown in Qin et al. 

(2014). This study found that training leads to increased activity in the anterior hippocampus 
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during numerical problem solving. Additionally, decreased frontoparietal activity and 

increased hippocampal-parietal connectivity were associated with greater use of memory-

based strategies with training (Figure 5). These changes were not observed in the control 

group. These results demonstrate that similar to long-term cognitive skill development, 

short-term training-induced learning is accompanied by the plasticity of hippocampal 

activation and connectivity in children. Convergent findings of hippocampal engagement in 

math learning across longitudinal and training study designs suggest that it is the learning 

experience, through formal education or short-term intervention, that drives brain plasticity, 

rather than maturational changes in the brain. These findings further advance our 

understanding of the neurobiological mechanisms of learning and provide insights into 

designing interventions that induce learning and brain plasticity more effectively.

It should be noted that the changes in hippocampal-cortical connectivity were less 

distributed after short-term training in Rosenberg-Lee et al. (2018), compared to after a year 

of longitudinal change in Qin et al. (2014). In Qin et al., changes in hippocampal-parietal 

and hippocampal-prefrontal circuits were related to changes in retrieval strategy use. In 

contrast, Rosenberg-Lee et al. showed plasticity of hippocampal-parietal connectivity but no 

changes in the hippocampal-prefrontal circuits associated with training-related gains in 

retrieval strategy use. These results suggest that learning-related reorganization of 

hippocampal-prefrontal connectivity might be better characterized over longer time periods. 

In fact, the prefrontal cortex is known to mature more slowly than the parietal cortex (Giedd 

et al., 1996; Tamnes et al., 2017; Ziegler, Ridgway, Blakemore, Ashburner, & Penny, 2017). 

Follow-up experiments with multiple brain and behavioral measures at different time 

intervals may provide a better understanding of when and how different functional circuits 

contribute to various aspects of mathematical learning.

Functional and structural brain plasticity in response to intervention

Recent research has identified remarkable plasticity in brain systems underlying 

mathematical skill development. Several fMRI studies have now begun to examine the 

extent to which interventions alter aberrant functional activity and connectivity in relevant 

neurocognitive systems in children with learning disabilities. Utilizing a similar intervention 

shown to significantly improve mathematical skills in children with different levels of math 

abilities (Christensen & Gerber, 1990; Fuchs, Fuchs, Hamlet, et al., 2006; Fuchs, Fuchs, & 

Compton, 2013; Fuchs, Fuchs, Compton, et al., 2006; Fuchs, 2007a, 2007b, 2004, 2002; 

Okolo, 1992), Iuculano et al. (2015) found that math intervention leads to marked reductions 

in brain responses in children with mathematical learning disabilities (MLD), resulting in 

normalization of brain activity to levels similar to those seen in typically developing (TD) 

children. Brain plasticity in children with MLD was evident in a distributed network of 

parietal, VTOC, and prefrontal regions important for numerical problem solving (Arsalidou 

et al., 2018; Fias et al., 2013; Peters & De Smedt, 2017) (Figure 6A). Remarkably, machine 

learning algorithms revealed that brain activity patterns in children with MLD were 

significantly different from TD peers before training, but statistically indistinguishable after 

training (Figure 6B). Similarly, a mental number line training has been shown to induce 

greater decrease in recruitment of frontal and parietal regions in children with developmental 

dyscalculia (DD), compared to TD children (Kucian et al., 2011) (Figure 6C). Moreover, this 
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type of training has been associated with normalization of brain hyperconnectivity between 

the IPS and parietal, temporal, occipital, and frontal areas in children with DD to levels seen 

in TD controls (Michels, O’Gorman, & Kucian, 2018) (Figure 6D).

Observations of pre-training hyperactivation and hyperconnectivity in regions typically 

involved in mathematical processing (Iuculano et al., 2015; Kucian et al., 2011; Michels et 

al., 2018) are consistent with cross-sectional studies in children with mathematical 

difficulties (Cappelletti & Price, 2013; Davis et al., 2009; Kaufmann et al., 2009; Rosenberg-

Lee et al., 2015) and likely reflect the need for additional neural resources rather than 

inability to engage task-relevant brain areas. Findings of normalization of brain activity and 

connectivity indicate that intervention increases automaticity and decreases reliance on 

working memory resources during numerical task performance in children with learning 

disabilities. Taken together, these studies suggest that mathematical training more likely 

leads to normalization of brain activity and connectivity in children with learning 

disabilities, rather than engagement of compensatory mechanisms of plasticity (which would 

posit that after training, children with learning disabilities would recruit additional or distinct 

brain systems compared to controls). The extent to which these effects persist or “fade out” 

(Bailey, Duncan, Cunha, Foorman, & Yeager, 2020) after months or years post-intervention 

remain to be investigated in follow-up studies.

In addition to determining task-dependent functional brain plasticity, it is important to 

understand whether interventions also alter brain circuits in a context-independent manner. 

To address such question, researchers have used resting-state fMRI to examine intrinsic 

functional connectivity, which is less likely to be influenced by task engagement or 

individual differences in performance or strategy use (Church et al., 2009; Fair, Schlaggar, et 

al., 2007; Finn et al., 2014; Koyama et al., 2011; Supekar, Uddin, et al., 2013; Uddin, 

Supekar, & Menon, 2013). Using this approach, Jolles et al. (2016) characterized plasticity 

of intrinsic connectivity of parietal circuits in response to math intervention in children, 

incorporating the emerging view that higher-level cognition requires inter-regional 

interactions between multiple brain areas (Bressler & Menon, 2010; McIntosh, 2000). 

Several key findings from this study provide evidence for experience-dependent brain 

plasticity and differentiation of parietal networks underlying math learning. First, training in 

arithmetic problem-solving improved performance and strengthened IPS connectivity with 

VTOC, MTL, and PFC regions. Second, changes in IPS connectivity were correlated with 

individual differences in training-induced performance gains. Finally, training-related 

changes in IPS connectivity patterns were remarkably distinct from those of an adjacent 

parietal region, AG (Figure 7).

While studies of functional brain circuits provide rich information about task-related and 

context-independent brain plasticity associated with behavioral changes, neuroanatomical 

investigations of gray and white matter allow researchers to more directly examine how 

cognitive functions emerge from brain structures (Kucian et al., 2014; Matejko & Ansari, 

2015; Rotzer et al., 2008; Rykhlevskaia, Uddin, Kondos, & Menon, 2009; Wilkey, Cutting, 

& Price, 2018). Moreover, systematic identification of anatomical deficits can provide 

concrete and convergent evidence for neurodevelopmental disorders and individual 

differences in mathematical performance and learning. Decreased gray matter volume in 
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multiple PPC, VTOC, and MTL areas implicated in numerical problem solving has been 

consistently reported in children and adolescents with mathematical difficulties (Ranpura et 

al., 2013; Rotzer et al., 2008; Rykhlevskaia et al., 2009) (Figure 8A). Structural 

abnormalities in children with MLD have been shown to persist across 4 years of 

development from 8 to 10 years of age (McCaskey, von Aster, O’Gorman, & Kucian, 2020). 

Increased gray matter volume of the left IPS (Li, Hu, Wang, Weng, & Chen, 2013; Price, 

Wilkey, Yeo, & Cutting, 2016), bilateral hippocampus, and right inferior frontal gyrus 

(Wilkey et al., 2018) have been reported to be associated with higher math achievement. 

Further, plasticity in cortical surface measures (cortical thickness, folding regularity) in 

parietal, temporal, and frontal regions from 5 to 8 years of age have been associated with 

individual differences in math skills (Kuhl, Friederici, & Skeide, 2020). Finally, it has been 

shown that gray matter volume in the left PPC, VTOC, and PFC areas predict long-term 

gains in math ability from 8 to 14 years of age (Evans et al., 2015), whereas gray matter 

volume in the right hippocampus predicts learning in response to short-term math training 

(Supekar, Swigart, et al., 2013), consistent with the view that the hippocampus plays time-

limited role during the early stages of learning (McClelland et al., 1995). Remarkably, both 

neuroanatomical and functional circuit measures are shown to be more sensitive predictors 

of learning than behavioral measures alone in children (Evans et al., 2015; Supekar, Swigart, 

et al., 2013).

In addition to differences in gray matter, children with MLD show deficits in white matter 

pathways linking parietal, temporal, and frontal regions, compared to TD children (Kucian 

et al., 2014; Rykhlevskaia et al., 2009) (Figures 8B–C). In TD children and young adults, 

these white matter pathways have been linked to individual differences in mathematical 

abilities (Li, Hu, Wang, Weng, & Chen, 2013; Matejko, Price, Mazzocco, & Ansari, 2013; 

Tsang, Dougherty, Deutsch, Wandell, & Ben-Shachar, 2009). Notably, a training study 

demonstrated that experience-dependent plasticity of white matter tracts is associated with 

individual differences in mathematical learning. Using novel fiber tracking algorithms, Jolles 

et al. (2016) identified sections of the superior longitudinal fasciculus linking frontal and 

parietal, parietal and temporal, and frontal and temporal cortices. They found that training-

related changes in white matter integrity in the left frontotemporal tract that connects 

posterior temporal and lateral prefrontal cortices is positively correlated with individual 

differences in math performance gains (Figure 8D). This tract is well positioned to integrate 

symbolic number form and cognitive control processing systems (Arsalidou & Taylor, 

2011).

Taken together, findings to date suggest that structural integrity and plasticity of multiple 

parietal, temporal, and prefrontal cortical regions contribute to mathematical learning and 

skill development. Further validation and advances in developmental systems neuroscience 

research will allow researchers to develop brain-based biomarkers for early identification of 

individual differences in mathematical learning as well as special needs for individualized 

instructions in children (Hale et al., 2010).
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Brain network plasticity associated with math learning

Moving beyond properties of individual brain regions, there is now growing evidence that 

learning involves changes in large-scale brain network organization (Bassett & Mattar, 2017; 

Bassett, Zurn, & Gold, 2018). For example, global and regional network organization 

(Stanley, Dagenbach, Lyday, Burdette, & Laurienti, 2014; Stevens, Tappon, Garg, & Fair, 

2012; Wang, Hu, Weng, Chen, & Liu, 2020) and dynamic changes in brain networks 

(Bassett et al., 2011; Bassett, Yang, Wymbs, & Grafton, 2015; Braun et al., 2015; Finc et al., 

2020; Yin et al., 2020) are shown to be related to individual differences in cognitive abilities 

or learning. By providing rich, quantitative, and mechanistic information about interactions 

between distributed brain systems linked to behavior (Bassett & Sporns, 2017; Bullmore & 

Sporns, 2009; Cohen & D’Esposito, 2016; Grayson & Fair, 2017; Petersen & Sporns, 2015; 

Rubinov & Sporns, 2010; Sporns, 2014; Supekar et al., 2009; Uddin, Supekar, & Menon, 

2010), functional and structural network organizations are emerging as reliable biomarkers 

for clinical symptoms (Collin et al., 2018), learning difficulties (Astle, Bathelt, Team, & 

Holmes, 2019; Siugzdaite, Bathelt, Holmes, & Astle, 2020), and intervention-related gains 

(Gallen & D’Esposito, 2019).

Given that mathematical cognition and learning involve distributed brain systems (Arsalidou 

et al., 2018; Fias et al., 2013; Peters & De Smedt, 2017), research incorporating brain 

network analysis approaches can provide valuable insights into understanding the emergence 

of specialized functional brain networks. For example, analysis of global and regional 

functional network organization for symbolic and non-symbolic number processing has 

revealed that overlapping and distinct characteristics of brain network architecture support 

quantity processing in the two number formats (Conrad, Wilkey, Yeo, & Price, 2020). In 

Conrad et al. (2020), the community membership (i.e., the extent to which two regions 

belong to the same network) of the left IPS and the right inferior temporal gyrus in the 

VTOC was significantly different between the number formats, which demonstrates 

distinguishable patterns of functional connectivity of quantity processing systems between 

number formats in the context of large-scale brain network organization. This study also 

showed that the global modularity (i.e., the degree of functional segregation relative to 

integration across brain networks) is similar between the number formats, which points to 

common neural mechanisms between symbolic and non-symbolic number processing and 

suggests that global and regional network properties may support different aspects of 

cognition (Stanley et al., 2014).

In the context of math learning in children, Supekar et al. (2021) examined how plasticity of 

brain networks supports efficient math learning in children. Using quantitative network 

analysis and neurocognitive process modeling of latent memory processes, this study 

demonstrated that training designed to improve children’s arithmetic problem solving skills 

induces changes in global modular organization and regional network reorganization of 

hippocampal-cortical circuits, as well as increase in use and efficiency of latent measures of 

memory retrieval-based strategies during addition problem solving. Notably, training-related 

changes in inter-modular functional connections of the right rostral hippocampus predicted 

learning gains and changes in efficiency of memory retrieval-based strategies. Interestingly, 

these effects were specific to the hippocampus and no other brain regions typically 
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associated with numerical processing (e.g., IPS) showed changes in inter-modular functional 

connections that relate to learning gains. Taken together, these findings provide novel 

evidence that the emergence of brain network modules support the development of 

mathematical skills. Further understanding of individual differences in integrity and 

plasticity of brain networks associated with math learning may provide a more 

comprehensive understanding of the neurobiology of mathematical learning and skill 

development.

Mechanisms of individual differences in transfer of mathematical learning

Successful learning not only involves acquiring knowledge efficiently but also entails 

transferring the newly acquired knowledge beyond specific instances and contexts. Transfer 

is an essential mechanism for discovering and applying the regularities of learnt knowledge 

by linking individual events or knowledge to more complex structural knowledge 

(Zeithamova & Bowman, 2020). For example, in early childhood, transfer occurs when 

children understand that the number word, “three,” represents three objects after learning 

that “two” represents two objects and subsequently infer this knowledge across the count list 

(Spelke, 2000). Yet, how and to what extent individuals transfer their knowledge from one 

problem, context, or domain to others has been one of unresolved challenges across various 

cognitive domains (Melby-Lervag & Hulme, 2013; Simons et al., 2016). Moreover, few 

studies have considered individual differences in learning that may influence one’s ability to 

generalize newly acquired knowledge and skills (Jaeggi, Buschkuehl, Jonides, & Shah, 

2011; Jaeggi, Buschkuehl, Shah, & Jonides, 2014). Understanding the neurocognitive 

mechanisms underlying learning and transfer is crucial for determining why some children 

learn and transfer their knowledge better than others.

Using an individual differences approach, a recent study addressed critical gaps in our 

understanding of brain mechanisms that support mathematical learning and transfer in 

elementary school children. Chang et al. (2019) showed that the two aspects of learning – 

speed of learning and depth of learning (transfer) – are related. Using multivoxel 

representational similarity and large-scale functional network analysis, this study 

demonstrated that distinct, complementary neural processes occur in parallel to support 

learning and transfer: overlap in neural representations at the level of regional circuitry and 

differentiation of functional brain circuits between highly practiced and novel problems in 

8–10-year-old children. Notably, these patterns of results were learning-rate dependent: 

faster learners drew on common neural representations across practiced and novel problems 

in multiple brain areas including the MTL, while efficiently recruiting specialized brain 

networks for practiced problems (Figure 9). These results are in line with behavioral 

findings: faster learners performed better on both practiced and novel problems and 

demonstrated greater ability to differentiate between practiced and novel problems post-

training. Importantly, these findings suggest that learning and transfer are interrelated and 

can occur at the same time through shared and distinct neural mechanisms. Similar findings 

have been observed in other domains, where segregation and integration of functional 

circuits promote efficient learning (Bassett et al., 2015; Finc et al., 2020; Salmi et al., 2020) 

and transfer or generalization (Dahlin, Neely, Larsson, Backman, & Nyberg, 2008; 

Schlichting, Mumford, & Preston, 2015), respectively. While these studies are promising, 
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much more work is needed to advance our understanding of transfer and generalization 

associated with mathematical skill acquisition.

The level of mathematical problem-solving skills studied in Chang et al. (2019) was more 

complex than simple arithmetic used in most neuroimaging studies with children of similar 

age. Across 5 days of intensive tutoring sessions, children learned how to solve a set of 

double-digit plus single-digit addition (“practiced problems”), which are complex arithmetic 

problems that are not typically solved by memory retrieval strategy without deliberate 

practice in early elementary school children. In this context, transfer between practiced and 

novel problems would likely have occurred by applying generalizable knowledge and skills 

related to arithmetic problem solving. More broadly, transfer of procedural knowledge and 

skills may be the mechanism by which children acquire proficiency in solving a wide range 

of different mathematical problems. Future studies will need to address neurodevelopmental 

changes accompanying transfer that facilitate more complex math problem solving. This 

topic may be best addressed by integrating neuroscience research with computational 

models that dissociate multiple processing stages (Anderson, Betts, Ferris, & Fincham, 

2012; Qin et al., 2004).

The role of affective, motivational, and sociocultural factors in 

mathematical learning

In addition to cognitive abilities, multiple lines of evidence suggest that affective, 

motivational, and sociocultural factors (Aiken, 1976; Duckworth et al., 2019; Halpern et al., 

2007) contribute to individual differences in mathematical learning. For instance, math 

anxiety, which involves feelings of tension or apprehension in a wide variety of math-related 

academic and life situations (Richardson & Suinn, 1972), is a prominent affective factor 

generally associated with poor math performance and learning (Aiken, 1976; Chang & 

Beilock, 2016). The neural correlates of math anxiety have been investigated in various 

fMRI, event-related brain potential (ERP), and transcranial direct current stimulation (tDCS) 

studies in adults (Chang, Sprute, Maloney, Beilock, & Berman, 2017; Lyons & Beilock, 

2012a, 2012b; Núñez-Peña & Suárez-Pellicioni, 2014; Pletzer, Kronbichler, Nuerk, & 

Kerschbaum, 2015; Sarkar, Dowker, & Cohen Kadosh, 2014; Suarez-Pellicioni, Nunez-

Pena, & Colome, 2014; Suaŕez-Pellicioni, Nú̃nez-P̃ena, & Colomé, 2013; Suárez-Pellicioni, 

Núñez-Peña, & Colomé, 2013). In children, several studies have begun to provide some 

insights into the neurodevelopmental basis of math anxiety (Hartwright et al., 2017; Kucian, 

McCaskey, O’Gorman Tuura, & von Aster, 2018; Supekar, Iuculano, Chen, & Menon, 2015; 

Young, Wu, & Menon, 2012). Young et al. (2012) observed increased activity in the right 

amygdala, a brain region associated with processing negative emotion, and decreased 

activity in fronto-parietal regions that support numerical problem solving in highly math 

anxious children. Moreover, reduced gray matter volume in the right amygdala and left IPS 

has been reported in children with higher levels of math anxiety (Hartwright et al., 2017; 

Kucian et al., 2018). Finally, it is noteworthy that training designed to improve numerical 

problem solving skills reduces math anxiety and amygdala activity in children (Supekar et 

al., 2015) (Figure 10A), suggesting that math interventions can be beneficial for both 

reducing math anxiety and enhancing math learning, converging with behavioral findings 
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from a randomized controlled study in children (Berkowitz et al., 2015). The direction of the 

relation between math anxiety and math learning (Carey, Hill, Devine, & Szucs, 2015; Geary 

et al., 2019) remains to be elucidated.

Math anxiety has also been related to gender-biased beliefs and expectations (stereotypes) 

about who is better at math, which can be transmitted from teachers or parents to students. 

For example, female teachers’ math anxiety has been associated with first- and second-grade 

female students’ belief that “boys are good at math, and girls are good at reading” (Beilock, 

Gunderson, Ramirez, & Levine, 2010). Such stereotypes can result in higher math anxiety in 

female than male students (Baloglu & Koçak, 2006; Betz, 1978; Devine, Fawcett, Szucs, & 

Dowker, 2012; Else-Quest, Hyde, & Linn, 2010; Hembree, 1990; Ma & Cartwright, 2003; 

Wigfield & Meece, 1988) and negatively influence math performance in female students, 

compared to male students with equivalent math backgrounds (Spencer, Steele, & Quinn, 

1999). Although societal stereotypes could be one mechanism that relates to negative math 

attitudes in female students (Cvencek, Brečić, Gaćeša, & Meltzoff, 2021), it remains to be 

determined whether other factors such as interests in math or spatial skills (Ganley et al., 

2013) also play a role in gender differences in math performance.

While negative math attitudes have been associated with poor math performance and 

learning, positive attitudes toward math (e.g., the degree to which a child likes math or 

considers themselves good at math) have been associated with higher math achievement 

(Aiken, 1976; Aiken & Dreger, 1961; Lee, Ning, & Goh, 2014; Marsh & Yeung, 1997; 

Pinxten, Marsh, De Fraine, Van Den Noortgate, & Van Damme, 2014; Seaton, Parker, 

Marsh, Craven, & Yeung, 2013; Stankov & Lee, 2014; Zimmerman, Bandura, & Martinez-

Pons, 1992). Chen et al. (2018) examined the neurocognitive mechanisms by which positive 

attitudes toward math enhance math achievement in children. In this fMRI study, positive 

attitudes toward math were associated with brain activity in the hippocampus during 

arithmetic problem solving. Notably, hippocampal activity and the use of retrieval strategy 

mediated the relation between positive attitudes toward math and math achievement (Figure 

10B). These findings suggest that positive attitudes facilitate math achievement through 

greater engagement of the hippocampus involved in learning and memory formation 

(Gruber, Gelman, & Ranganath, 2014; Kao, Davis, & Gabrieli, 2005).

Other non-cognitive, motivational factors linked to academic learning and achievement 

include grit and growth mindset (Blackwell, Trzesniewski, & Dweck, 2007; Duckworth, 

Peterson, Matthews, & Kelly, 2007; Duckworth et al., 2019; Dweck, 2008; Park, 

Tsukayama, Yu, & Duckworth, 2020; Parker, Marsh, Ciarrochi, Marshall, & Abduljabbar, 

2013; Yeager et al., 2019; Yeager et al., 2016). One fMRI study examined neural correlates 

of grit (perseverance of one’s long-term goals) and growth mindset (belief about malleability 

of one’s ability) in adolescents (Myers, Wang, Black, Bugescu, & Hoeft, 2016). Myers et al. 

(2016) found that these measures are associated with greater functional connectivity of the 

striatum, a region important for reward-based learning (Cardinal, Parkinson, Hall, & Everitt, 

2002; Clithero, Reeck, Carter, Smith, & Huettel, 2011; Liljeholm & O’Doherty, 2012; Pauli, 

O’Reilly, Yarkoni, & Wager, 2016; Shohamy, 2011), with the dorsolateral PFC, a region 

associated with cognitive control (Menon, 2016a) (Figure 10C). In addition, when 

controlling for grit, growth mindset was uniquely associated with connectivity of the 
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striatum with the dorsolateral PFC and dorsal anterior cingulate cortex (ACC). Converging 

evidence from ERP studies in adults also suggests an important role of the ACC in efficient 

error monitoring in individuals who endorse higher growth mindset (Mangels, 2006; Moser, 

Schroder, Heeter, Moran, & Lee, 2011). Taken together, these findings suggest cortico-

striatal networks are involved in motivational factors associated with mathematical learning.

To date, the majority of investigations on the neurodevelopmental basis of affective and 

motivational factors that contribute to mathematical learning have been based on cross-

sectional studies. To establish causal links between these constructs and brain systems 

involved, particularly in regard to brain plasticity associated with changes in affect, attitude, 

or motivation that underlie individual differences in mathematical learning, future studies 

will need to use longitudinal or training designs that incorporate multiple brain and 

behavioral measures across time. Finally, investigations of complex interactions between 

affective, motivational, and sociocultural factors (Cargnelutti, Tomasetto, & Passolunghi, 

2017; Halpern et al., 2007; Wang et al., 2015), and their underlying neurocognitive 

processes that contribute to mathematical skill acquisition remain important areas for future 

research. More generally, a better understanding of neural mechanisms of the development 

of these non-cognitive characteristics will complement and refine neurodevelopmental 

models of mathematical learning, which could serve as an important step for tailoring 

various interventions.

Conclusions and future directions

Children show a wide range of individual differences in their learning and developmental 

trajectories of mathematical problem-solving skills (Geary, 1994; Menon, 2015; Siegler, 

1996). Understanding neurocognitive processes underlying heterogeneity of mathematical 

development can provide important insights into optimizing math education (Hyde & 

Ansari, 2018). Converging evidence from neuroimaging studies suggests that distributed, 

interactive brain circuits encompassing the PPC, VTOC, MTL, and PFC (Figure 1) support 

multiple aspects of numerical problem-solving skill acquisition during development, 

consistent with the theoretical framework that interactions between multiple brain circuits 

dynamically change with skill acquisition and give rise to specialized cognitive functions 

(Johnson, 2011; Menon, 2013). Of particular relevance to this perspective is the pivotal role 

of emergent hippocampal-cortical circuitries in mathematical learning (Supekar et al., 2021).

Further work is needed to determine neurodevelopmental changes associated with learning 

in other mathematical domains beyond arithmetic problem solving as well as neurocognitive 

biomarkers important for early identification and remediation of mathematical learning 

difficulties Advances in combined modeling of cognitive and neural processes, from a 

systems neuroscience perspective, may distinguish latent neurocognitive processes 

associated with different aspects of mathematical learning. The efficacy of training programs 

that enhance or remediate children’s mathematical skills will need to be assessed on multiple 

dimensions of cognitive, affective, and motivational factors that collectively contribute to 

mathematical learning (Cargnelutti et al., 2017; Duckworth et al., 2019; Geary, 2011; Geary, 

Nicholas, Li, & Sun, 2017; Lyons, Price, Vaessen, Blomert, & Ansari, 2014; Vukovic, 

Kieffer, Bailey, & Harari, 2013; Wang et al., 2015; Wu et al., 2017). Further studies are also 
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needed to determine the extent of transfer and generalization as well as long-term effects of 

training on brain function and behavioral outcomes.

Recent advances in brain network analysis approaches to investigate large-scale brain 

network organization associated with numerical processing and learning are promising 

(Conrad et al., 2020; Supekar et al., 2021). Future studies will need to determine whether 

observed patterns of network organization remain stable or change across development. 

Further advances in multivariate predictive models (Woo, Chang, Lindquist, & Wager, 2017) 

may provide greater insights into how functional and structural brain network organizations 

predict individual differences in math learning and whether these findings are generalizable 

beyond study contexts and populations.

Finally, while it has been reported that gender differences in math performance have 

decreased or even diminished (Hyde, 2005; Hyde, Lindberg, Linn, Ellis, & Williams, 2008; 

Lindberg, Hyde, Petersen, & Linn, 2010; Stoet & Geary, 2018), implicit stereotypes that 

associate males with math and science are still prevalent (Kiefer & Sekaquaptewa, 2007; 

Nosek, Banaji, & Greenwald, 2002; Nosek et al., 2009), persistently contributing to 

underrepresentation of female students and women in the STEM fields. Future research 

investigating the neural mechanisms of sociocultural influences on math attitudes, 

performance, and learning may provide important insights into the development of effective 

interventions that reduce the gender gap and promote both female and male students’ 

engagement in math and science.

Successful progress on these fronts will need an integrative approach, bringing in expertise 

from neuroscience, psychology, and education, as well as advanced analytical tools 

including computational modeling and machine learning. Such a multidisciplinary approach 

will not only enrich our understanding of brain mechanisms underlying individual 

differences in mathematical learning across development, but also inform evidence-based 

decisions in educational practice and policy (Carew & Magsamen, 2010; De Smedt, Ansari, 

et al., 2011; Goswami, 2006; Sigman, Pena, Goldin, & Ribeiro, 2014; Thomas, Ansari, & 

Knowland, 2019), eventually enabling all individuals to reach their highest potential.
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Highlights

• Cognitive development emerges from interactions between functional brain 

circuits.

• Distributed brain networks support mathematical learning.

• Emerging evidence for hippocampus-dependent math learning in children.

• Math interventions induce functional and structural brain plasticity in 

children.

• Multiple cognitive and noncognitive factors contribute to mathematical 

learning.
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Figure 1. Brain network model of mathematical learning.
Schematic diagram of neurocognitive systems involved in mathematical skill development. 

The visual number form processing system, anchored in the VTOC, and the quantity 

representation system, anchored the IPS, build semantic representations of numerical 

quantity, which form core building blocks for higher-level mathematical cognition (light 

green). The declarative memory system, anchored in the MTL, plays an important role in 

long-term memory formation of number and math knowledge and generalization of learning 

(orange yellow). Parietal and frontal systems, including the IPS, SMG, FEF, and DLPFC, 

support visuospatial attention for objects and short-term representations and manipulations 

of quantities (light blue). Finally, prefrontal control circuits, anchored in the DLPFC, 

VLPFC, and AI, serve as flexible hubs for integrating information across multiple brain 

systems, thereby facilitating numerical problem-solving skill acquisition (red). AI: anterior 

insula; DLPFC: dorsolateral prefrontal cortex; IPS: intraparietal sulcus; FEF: frontal eye 

field; MTL: medial temporal lobe; SMG: supramarginal gyrus; VLPFC: ventrolateral 

prefrontal cortex; VTOC: ventral temporal-occipital cortex. Adapted from Menon (2016a).
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Figure 2. Interactive specialization of IPS circuitry.
The left IPS connectivity with the (A) right fusiform gyrus (FG) in the VTOC and (B) right 

SPL, and (C) right IPS increases with age, while the left IPS connectivity with the (D) left 

DLPFC, (E) left VLPFC, and (F) left insula decreases with age during arithmetic problem 

solving. Target brain regions of left IPS circuits positively and negatively associated with 

age are shown in orange-yellow and light blue, respectively. Line plots show hierarchical 

linear modeling (HLM) fits for target brain regions from the left IPS to whole-brain 

connectivity analysis. Model fits and individual trajectories are shown in thick black and 

light gray lines, respectively. L: Left; R: Right. Other abbreviations are the same as in Figure 

1. Adapted from Battista et al. (2018).
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Figure 3. The role of the hippocampus in memory-based numerical problem-solving in children.
A. Children show significant hippocampal engagement during single-digit arithmetic 

problem solving, which decreases with age between childhood and adulthood. Areas of 

activation that are positively and negatively associated with age are shown in red and blue, 

respectively. B. The left hippocampus shows greater activation during addition than 

subtraction problem solving (shown in blue) in 10–12-year-old children. C. Greater brain 

activation for addition than subtraction problem solving (shown in red) is observed in the 

bilateral hippocampus in 7–9-year-old children. L: Left; R: Right. Adapted from Rivera et 

al. (2005) [A], De Smedt et al. (2011) [B], and Rosenberg-Lee et al. (2015) [C].
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Figure 4. Hippocampal-neocortical circuits support mathematical learning.
A. The use of memory-based problem-solving strategy increases while counting strategy use 

decreases during addition problem solving across development. Solid and dotted lines 

represent longitudinal data from children at Time 1 (T1) and Time 2 (T2; ~1.2 years apart) 

and cross-sectional data from adolescents and adults, respectively. B. The right hippocampus 

shows longitudinal changes associated with arithmetic problem-solving skill development, 

with a greater engagement at T2 relative to T1. C. Plasticity of functional connectivity of the 

right hippocampus with the bilateral DLPFC and left IPS is associated with longitudinal 

improvements in retrieval fluency from T1 to T2. D. Pre-training functional connectivity of 

the right hippocampus (Hipp) with the left DLPFC, left VLPFC, right supplementary motor 

area (SMA), left basal ganglia (BG), and right middle temporal gyrus (MTG) is positively 

correlated with training-related performance gains in arithmetic problem solving. *p < .05, 

**p < .01, ***p < .001. L: Left; R: Right. Other abbreviations are the same as in Figure 1. 

Adapted from Qin et al. (2014) [A–C] and Supekar et al. (2013) [D].
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Figure 5. Effects of math training on hippocampal response and connectivity.
A. The left anterior hippocampus shows greater activation after training, compared to before 

training, in children. B. Changes in brain activity in the bilateral angular gyrus and right 

inferior frontal gyrus are negatively correlated with training-induced changes in retrieval 

strategy use. C. Plasticity of functional connectivity of the left anterior hippocampus with 

the right intraparietal sulcus is associated with training-related increase in retrieval strategy 

use. Adapted from Rosenberg-Lee et al. (2018).
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Figure 6. Brain plasticity in distributed functional networks in response to math training.
A. Math training induces functional brain plasticity in children with mathematical learning 

disabilities (MLD). Before training, compared with post-training, children with MLD exhibit 

hyper-activation during arithmetic problem solving in the bilateral DLPFC, VLPFC, AI, IPS, 

and fusiform gyrus (FG) in the VTOC. No brain areas show greater activation post-training, 

compared to pre-training. B. A linear classifier built using a support vector machine with 

leave-one-out cross validation reveals that brain activation patterns between MLD and 

typically developing (TD) groups are highly discriminable before training, but no longer 

discriminable after training. C. Training in mental number line results in greater reduction in 

brain activation during numerical task performance in children with developmental 

dyscalculia (DD), compared to TD children. D. Before training, greater bilateral IPS 

functional connectivity with parietal, temporal, occipital, and frontal regions is evident in the 

DD group relative to TD group. After training, IPS hyperconnectivity in the DD group only 

remains in a small parietal region. *p < .05. L: Left; R: Right. Other abbreviations are the 

same as in Figure 1. Adapted from Iuculano et al. (2015) [A–B], Kucian et al. (2011) [C], 

and Michels et al. (2018) [D].

Menon and Chang Page 43

Dev Rev. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Interactive specialization of parietal circuits in response to math training.
A. Math training increases performance efficiency in arithmetic problem solving in third 

grade children. B. Training increases functional connectivity of the IPS with the right 

VTOC, left hippocampus (HIPP), and right inferior frontal gyrus (IFG). C. Training-related 

performance gains are associated with increased connectivity between the IPS (but not 

angular gyrus [AG]) and right hippocampus. D. Training leads to differential functional 

connectivity patterns of IPS vs. AG. Post-training, compared to pre-training, IPS shows 

greater functional connectivity with the right frontal pole, left middle frontal gyrus (MFG), 

and left middle temporal gyrus (MTG), while AG shows greater connectivity with the right 

precentral gyrus and right occipital cortex. *p < .05. L: Left; R: Right. Other abbreviations 

are the same as in Figure 1. Adapted from Jolles et al. (2016).
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Figure 8. Structural integrity and plasticity associated with individual differences in 
mathematical learning.
A. Children with developmental dyscalculia (DD) show reduced gray matter volume in the 

PPC, VTOC, and MTL regions, compared to typically developing (TD) children. B. 

Children with DD show aberrant white matter pathways passing through the right temporal-

parietal regions, compared to TD children. C. Children with DD, compared to TD children, 

showed significantly lower fractional anisotropy (FA), a quantitative measure of white 

matter integrity (Le Bihan et al., 2001), in the posterior part of superior longitudinal 

fasciculus (SLF), shown in pink. D. Changes in FA in the left SLF linking frontal and 

temporal cortices are positively associated with individual differences in training-related 

performance gains in numerical problem solving. **p < 0.01. Adapted from Rykhlevskaia et 

al. (2009) [A–B], Kucian et al. (2014) [C], and Jolles et al. (2016) [D].
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Figure 9. Distinct neurocognitive processes support mathematical learning and transfer.
A. Learning rate over five days of training in arithmetic problem solving is correlated with 

neural representational similarity between trained and novel problems in multiple brain 

regions, including the MTL and frontal, temporal, and occipital regions after training. B. 

Learning rate predicts greater differentiation of large-scale brain networks between trained 

and novel problems, measured by connectivity pattern distance. Functional brain network 

was constructed from arithmetic task-related brain activation. Links significantly different 

between trained and novel problems were used as input features in a linear support vector 

machine (SVM) classifier with leave-one-out cross validation. Connectivity pattern distance 

was computed using sum of absolute distance to each condition from the SVM hyperplane 

that separated connectivity between trained and novel conditions. L: Left; R: Right. AG: 

angular gyrus; aHipp: anterior hippocampus; CAU: caudate; CBL: cerebellum; HIPP: 

hippocampus; IFG: inferior frontal gyrus; ITG: inferior temporal gyrus; IPS: intraparietal 

sulcus; LG: lingual gyrus; MFG: middle frontal gyrus; MOG: middle occipital gyrus; 

mHipp: medial hippocampus; mPFC: medial prefrontal cortex; PCC: posterior cingulate 

cortex; PHG: parahippocampal gyrus; PreCG: precentral gyrus; SFG: superior frontal gyrus; 

SMG: supramarginal gyrus; SMA: supplementary motor area; STG: superior temporal 

gyrus. Adapted from Chang et al. (2019).
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Figure 10. Neural mechanisms of affective and motivational factors in mathematical learning.
A. Math anxiety decreases with training in arithmetic problem solving, with greater 

reductions for high math anxious (HMA) group, compared to low math anxious (LMA) 

group. Before training, the HMA relative to LMA group shows greater activation in the right 

amygdala. After training, there is no group difference in brain responses. Remediation of 

aberrant amygdala reactivity is correlated with training-induced reductions in math anxiety. 

B. Structural equation model illustrates that the relation between positive attitudes toward 

math and math achievement is mediated by hippocampal activation and memory retrieval. 

Values represent standardized estimates of path coefficients; solid and dashed lines indicate 

significant and nonsignificant paths, respectively. C. Functional connectivity of the ventral 

striatum (nucleus accumbens) with the dorsolateral prefrontal cortex (DLPFC) correlates 

with both growth mindset and grit. **p < .01. L: Left; R: Right. dACC: dorsal anterior 

cingulate cortex; MCC: midcingulate cortex; mPFC; medial prefrontal cortex; PCC: 

posterior cingulate cortex; rACC: rostral anterior cingulate cortex. Adapted from Supekar et 

al. (2015) [A], Chen et al. (2018) [B], and Myers et al. (2016) [C].
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Table 1.

Overview of neurocognitive systems involved in mathematical skill development.

Neurocognitive systems Brain regions Functional roles

Visual number form 
processing

Ventral temporal-occipital cortex (VTOC)
• fusiform gyrus
• inferior temporal gyrus • symbolic number processing

• semantic representations of numerical quantity

Quantity representation Posterior parietal cortex (PPC)
• intraparietal sulcus (IPS)

Declarative memory
Medial temporal lobe (MTL)
• hippocampus
• parahippocampal gyrus

• long-term memory formation of number and math knowledge
• generalization of learning

Parietal and prefrontal 
cortices

Posterior parietal cortex (PPC)
• IPS
• supramarginal gyrus (SMG)
Prefrontal cortex
• dorsolateral prefrontal cortex (DLPFC)
• frontal eye field (FEF)

• visuospatial attention for objects
• short-term representations and manipulations of quantities

Prefrontal control

Prefrontal cortex
• anterior insula (AI)
• DLPFC
• ventrolateral prefrontal cortex (VLPFC)

• cognitive control
• flexible hubs for integrating information across multiple brain 
systems
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