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Abstract

The kinetochore is a proteinaceous structure that assembles onto centromeric DNA and mediates 

chromosome attachment to microtubules during mitosis. This description is deceivingly simple: 

recent proteomic studies suggest that the diminutive kinetochores of Saccharomyces cerevisiae are 

comprised of at least 60 proteins organized into as many as 14 different subcomplexes. Many of 

these proteins, such as the centromeric histone variant CENP-A, and entire subcomplexes, such as 

the Ndc80Hec1 complex, are conserved from yeast to humans despite the diverse nature of the 

DNA sequences on which they assemble. There have recently been advances in our understanding 

of the molecular basis of how kinetochores establish dynamic attachments to spindle microtubules, 

and how these attachments are correctly oriented to ensure segregation of sister chromatids to 

daughter cells.

Introduction

The many tasks of the mitotic kinetochore include attaching chromosomes to the mitotic 

spindle, coupling force production by microtubule polymer dynamics and/or motor proteins 

to chromosome movement, and inhibiting the anaphase segregation of chromatids until all 

chromosomes are attached and properly aligned [1,2]. Here, we discuss recent work on the 

binding of kinetochores to spindle microtubules, on the regulation of the dynamics of 

kinetochore-attached microtubules, and on the mechanisms that ensure proper orientation of 

attached chromosomes on the spindle. We will not discuss the spindle checkpoint [2,3] or 

the specification of kinetochore assembly [4], which have been reviewed recently elsewhere.

Forming and maintaining stable microtubule attachments

The kinetochore forms on centromeric chromatin to generate a microtubule-binding 

interface that links chromosomes to the mitotic spindle. Numerous proteins and protein 

subcomplexes have been implicated in proper kinetochore assembly and microtubule 

attachment [2,5–7], although the precise functions of the majority of these proteins remain 

unclear. New ideas about how the kinetochore attaches chromosomes to spindle 

microtubules have emerged from studies of the Ndc80 complex (Ndc80Hec1, Nuf2, Spc24, 

and Spc25), which is conserved from fungi to humans [8–17,18•,19,20••,21••,22•,23•] 

(Table 1). The variation in chromosomal architecture and kinetochore-microtubule binding 

capacity within the animal kingdom [24] makes the conservation of this complex an exciting 
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finding. Immunofluorescence and immuno-electron microscopic analyses of vertebrate cells 

reveal that Ndc80 complex proteins localize to the outer kinetochore plate [14,15,19,25••], 

where microtubule plus ends terminate [26]. Ndc80Hec−1 and Nuf2 are stably bound to 

kinetochores, as assessed by fluorescence recovery after photobleaching [19], and their 

levels at the kinetochore remain unchanged during the formation of kinetochore-microtubule 

attachments [15,19,20••,22•, 25••,27]. These attributes make components of the Ndc80 

complex good candidates for playing a direct role in mediating interactions between 

kinetochores and microtubules.

Defects in the Ndc80 complex disrupt kinetochore-microtubule attachments, chromosome 

congression and chromosome segregation in all systems that have been analyzed, although 

the underlying cause is controversial (please see Table 1 and all references therein). In 

addition to technical variations between studies, particularly with respect to mammalian cell 

RNAi, difficulties in distinguishing between a role in outer kinetochore assembly versus a 

direct role in kinetochore-microtubule interactions probably underlie many of the apparently 

contradictory conclusions. Recent findings in tissue culture cells, budding yeast and 

Caenorhabditis elegans embryos indicate that targeting of most outer kinetochore proteins is 

largely preserved upon disruption of Ndc80 complex proteins, although some spindle 

checkpoint protein levels are decreased [12,15,18•,21••,22•,23•,27, 28,29•,30••,31••,32] 

(Table 1). In contrast, chromosomes assembled in Xenopus egg extracts immunodepleted of 

Ndc80 and Nuf2 fail to localize multiple outer kinetochore components [20••]. However, as 

these assembly defects have not yet been rescued using purified proteins, the possibility that 

they result from the depletion of additional interacting proteins cannot be excluded [20••] 

(Table 1). Recent work in metazoans has identified a larger network of conserved interacting 

proteins that includes the Ndc80 complex, making this a likely possibility [21••]. In budding 

yeast, mutational inactivation of Ndc80 complex subunits results in an inability of 

microtubule-binding proteins, such as the Dam1 complex and Stu2, to localize to 

kinetochores as judged by chromatin immunoprecipitations [28,29•,32,33]; however, neither 

the Dam1 complex nor Stu2 can associate with centromeric DNA in the absence of 

microtubules [34,35•] (Table 1). Thus, the apparent assembly defects following inhibition of 

Ndc80 complex function are more likely to be a consequence of defects in forming stable 

microtubule attachments.

Several lines of evidence indicate that microtubule attachments can form when Ndc80 

complex proteins are depleted, but these attachments are unstable and cannot support 

chromosome congression and segregation. In vertebrate cells depleted of Nuf2 or 

Ndc80Hec1, stable fibers of kinetochore microtubules fail to form, but kinetochore 

checkpoint proteins, such as Mad1 and Mad2, are still significantly depleted from 

kinetochores [15,19, 20••,22•,23•,25••,27,30••] (Table 1). Interestingly, drug-induced 

depolymerization of microtubules restores Mad1 and Mad2 targeting to normal levels, 

indicating that kinetochores assembled in Nuf2- or Ndc80Hec1-depleted cells are fully 

capable of binding checkpoint proteins [22•,30••]. However, a recent study claims that with 

more penetrant depletions of Nuf2 and Ndc80Hec1, checkpoint proteins fail to target even 

after microtubule depolymerization [36•] (Table 1). Although the current data exclude a 

stoichiometric role for the Ndc80 complex in the targeting of checkpoint proteins, the 

discrepancy between the different mammalian cell RNAi studies remains to be resolved.
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The microtubule-dependent reduction of checkpoint proteins at kinetochores depleted of 

Ndc80 complex proteins suggests that these kinetochores can form transient, albeit unstable, 

microtubule attachments (Figure 1). In support of this idea, an electron microscopic analysis 

of Nuf2-depleted cells indicates that the outer kinetochore morphology is severely perturbed 

and the number of embedded microtubule plus ends dramatically decreased in these cells 

[25••]. Furthermore, analyses of C. elegans embryos have demonstrated that partial 

chromosome alignment and segregation still occur in embryos depleted of Ndc80, 

Nuf2HIM−10 or Spc25KBP−3, although attachments between chromosomes and the spindle 

are mechanically unstable [18•,21••] (Table 1). In contrast, a complete failure of 

chromosome segregation occurs in embryos depleted of the more chromatin-proximal 

kinetochore components, CENP-AHCP−3 and CENP-CHCP−4 [18•,37].

Cumulatively, these results suggest that the Ndc80 complex does not act as a targeting 

scaffold for kinetochore proteins, but rather plays a crucial role in stabilizing microtubule 

attachments by maintaining the structural integrity of binding sites for microtubule plus ends 

at the outer kinetochore [25••]. Determining how the Ndc80 complex interacts with other 

components at the kinetochore should provide a more detailed understanding of how 

mechanically stable microtubule attachments are formed and maintained. For example, 

recent studies in C. elegans have identified two novel kinetochore components, KNL-1 and 

KNL-3, which are required to target the Ndc80 complex to kinetochores [18•,21••]. In 

addition, both proteins biochemically associate with components of the Ndc80 complex, and 

this interaction is conserved in human cells [18•,21••]. Coupled in vivo and in vitro analyses 

of the Ndc80 complex and the larger KNL-1/3 interacting protein network should help 

decipher how stable kinetochore-microtubule attachments are formed.

Growth of kinetochore-attached microtubules

Growth of kinetochore microtubules by the addition of tubulin at the kinetochore is 

important for chromosome movements prior to anaphase. An example of this type of growth 

is seen during chromosome congression to the metaphase plate, when microtubule 

depolymerization at the leading kinetochore is coupled to microtubule polymerization at the 

lagging kinetochore [1,38]. Kinetochores contain multiple proteins that can promote 

microtubule growth (for example, see [39–48]), although the physiological contributions of 

these proteins to kinetochore-microtubule dynamics have not been defined. Recent data have 

identified the CLASP family of microtubule-associated proteins (MAPs), which includes 

CLASP1 in humans [49,50•] and MAST/Orbit in Drosophila [51,52], as potential regulators 

of kinetochore-microtubule dynamics. CLASPs localize near microtubule plus ends and 

stabilize microtubules when overexpressed as GFP-fusion proteins in interphase cells 

[49,50•]. CLASPs also localize to kinetochores in a microtubule-independent manner and 

are the outermost kinetochore proteins identified to date [50•,52]. Inhibition of CLASP 

activity by antibody microinjection or RNAi does not prevent the formation of kinetochore-

microtubule attachments, but rather leads to shortened kinetochore microtubules and 

suppressed chromosome oscillations [50•,52]. Although exactly how the dynamics of 

kinetochore fibers are perturbed in these cells remains unclear, current data suggest that 

CLASPs stimulate the growth of kinetochore-attached microtubules (Figure 2a). This idea is 
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supported by the ability of microtubule-growth-promoting drugs to rescue the short 

kinetochore microtubule defect in CLASP-inhibited cells [50•,52].

Dissecting how kinetochore-bound CLASP regulates microtubule dynamics may provide 

molecular clues about the mechanism of chromosome alignment, and perhaps about other 

occurrences of microtubule growth at kinetochores, such as during microtubule flux [53••]. 

Addition of tubulin at kinetochore-attached microtubule ends may also prove to be an 

integral part of mitotic spindle assembly. This idea has arisen from recent observations of 

outward growth of kinetochore microtubules on unattached kinetochores facing away from 

the spindle. Kinetochore fibers formed in this manner are translocated poleward, connecting 

the chromosome to the spindle pole [54••]. This phenomenon occurs both in somatic cells 

recovering from treatment with a drug that prevents separation of spindle poles and in 

untreated cells, suggesting that cells possess a kinetochore-based pathway for the formation 

of kinetochore microtubules that is independent of the capture of centrosome-nucleated 

microtubules [54••]. In addition, laser cutting experiments performed in grasshopper 

spermatocytes indicate that kinetochore fibers can grow outward from the kinetochore, and 

must reach the spindle pole before chromosome segregation can occur [55••]. Overall, these 

studies suggest that kinetochore-mediated growth of microtubules is an intrinsic activity of 

kinetochores in multiple systems, where it may play a role in attaching chromosomes to the 

spindle and/or in chromosome movement on the spindle.

Depolymerization of kinetochore-attached microtubules

Depolymerization of microtubules at the kinetochore is thought to drive poleward 

movements during the alignment and segregation of chromosomes [1,38]. The most logical 

candidates for this activity are the kinesin-13 family members (formerly called Kin I 

kinesins) [56], which display microtubule-end-stimulated ATPase activity to induce 

depolymerization from either end of the microtubule [57–59,60••]. During mitosis, 

kinesin-13 proteins are localized to kinetochores and to the centromeric region between 

sister kinetochores [61,62•]. Kinesin-13 proteins are clearly required for proper positioning 

of chromosomes on the spindle in both vertebrate and invertebrate species 

[61,62•,63,64••,65], although their precise role at kinetochores remains controversial. 

Analysis in Drosophila embryos suggests that Klp59C, one of two kinesin-13 proteins in this 

organism, remains associated with anaphase kinetochores where it may play a role in 

depolymerizing kinetochore-associated microtubules [64••] (Figure 2b). However, inhibition 

of MCAK, a kinetochore-localized kinesin-13 in vertebrate cells, does not perturb the rate of 

poleward chromatid movement during anaphase [62•]. Future work analyzing all kinesin-13 

family proteins in vertebrates is necessary to reconcile these observations and to understand 

how kinesin-13 proteins contribute to poleward chromosome movement.

During mitosis in budding yeast, depletion of the microtubule-binding protein Stu2 

suppresses the dynamics of spindle microtubules, including kinetochore microtubules, and 

results in non-motile centromeres [66•,67]. Kinetochores are not required for the 

stabilization of spindle microtubules observed in Stu2-depleted cells, suggesting that Stu2 

affects microtubule dynamics through a kinetochore-independent mechanism [66•]. These 

findings imply that Stu2 can destabilize microtubules in vivo, an idea which is supported by 
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in vitro studies demonstrating that recombinant Stu2 can promote microtubule 

depolymerization [68•] despite its similarity to the XMAP215/TOG family of proteins, 

which strongly promote microtubule growth in vivo and in vitro [69]. Surprisingly, 

XMAP215 has also been shown to destabilize microtubules under specific in vitro 
conditions [70•], highlighting the diversity of the potential interactions between 

microtubules and members of this MAP family [71]. Whether vertebrate orthologs of Stu2 

affect kinetochore-microtubule dynamics is an important question to address in the future. It 

is also important to note that proteins such as kinesin-13 depolymerases and 

XMAP215/TOG are prominent global regulators of microtubule dynamics and spindle 

bipolarity [65,72–79]. Consequently, potential indirect effects of their inhibition must be 

taken into consideration during phenotypic analysis, and may underlie superficially 

contradictory results from studies in different systems or studies using different methods of 

inhibition.

Ensuring proper chromosome orientation through regulation of kinetochore-microtubule 
attachments

Throughout mitosis, there exists the potential for improper kinetochore-microtubule 

attachments, which must be resolved to prevent missegregation and aneuploidy [80•]. Proper 

attachments result in a bi-oriented chromosome, wherein one kinetochore is connected 

exclusively to microtubules emanating from one spindle pole, while its sister kinetochore is 

connected to the opposite spindle pole. Such bi-oriented attachments result in tension 

between the two sister kinetochores [81]. The Aurora B kinase (Ipl1 in budding yeast) has 

emerged from recent work as a major regulator involved in correcting inappropriate 

kinetochore-microtubule attachments. Aurora BIpl1 is thought to promote bi-orientation by 

selectively detaching kinetochore-microtubule attachments that are not under tension 

[82,83••,84•,85]. Antibody inhibition and small molecule inhibition studies have suggested 

that this role for Aurora B is conserved in vertebrate cells [86•,87•,88,89,90•]. It is less clear 

how Aurora BIpl1 recognizes the tension created when proper bi-orientation is achieved, 

although micromanipulation of spermatocyte kinetochores support the idea that chemical 

properties of kinetochores, such as phosphorylation, can change in response to tension 

[91,92]. Biochemical and genetic analyses indicate that the multi-protein Dam1 complex, 

which is conserved within fungi but not identified elsewhere to date, is the key target of 

Aurora BIpl1 [93]. Precisely how Aurora BIpl1-mediated phosphorylation of the Daml 

complex affects kinetochore-microtubule attachments and how this regulation is selectively 

targeted to attachments that are not under tension remain important future questions.

Chromosome bi-orientation is also promoted by the cohesin protein complex, which 

connects sister chromatids and sustains inter-kinetochore tension [94,95]. Surprisingly, in 

budding yeast any type of connection between sister chromatids that is capable of resisting 

tension can promote bi-orientation [83••]. Similarly, in vertebrate cells, chromosome 

alignment defects caused by depletion of cohesin are rescued by concomitant inhibition of 

topoisomerase II to generate a distinct type of physical linkage by catenation of sister DNA 

strands [96•]. These findings indicate a direct link between the mechanics and biochemistry 

of the kinetochore-microtubule interface, an idea further strengthened by recent data 

identifying the kinetochore protein Sgo as a microtubule-stabilizing protein and a protector 
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of the cohesive forces between sister centromeres [97•]. Understanding how centromeric 

tension is generated and detected will be key to defining how Aurora BIpl1p acts at the 

kinetochore-microtubule interface to promote detachment (in budding yeast, [83••]) or 

kinetochore fiber depolymerization (in vertebrate cells, [90•]) as a mechanism to resolve 

incorrect microtubule attachments.

In all eukaryotes, Aurora B is found in a complex with INCENP and Survivin [98]. This 

highly conserved chromosomal passenger complex exhibits a dynamic localization at the 

inner centromere early in mitosis and at the spindle midzone following the metaphase-

anaphase transition. New components of this complex have been identified in metazoans, 

termed CSC-1 in C. elegans [99] and Dasra A and Dasra B/Borealin in vertebrates 

[100•,101•]. Interestingly, recent work suggests that, in addition to its role in promoting bi-

orientation, the chromosomal passenger complex also contributes to spindle assembly 

[89,100•,101•]. In vertebrates, a potential link between Aurora B and both correction of 

aberrant kinetochore-microtubule attachments and regulation of spindle morphology may be 

via regulation of the microtubule-depolymerizing kinesin MCAK, a member of the 

kinesin-13 family. Inactivation of MCAK leads to highly aberrant kinetochore-microtubule 

attachments [62•] and spindle morphology defects [102]. Aurora B phosphorylates MCAK, 

promoting its localization to the centromere and inhibiting its microtubule depolymerizing 

activity (Figure 3) [103••,104••,105••]. In addition to being negatively regulated by Aurora 

B, MCAK activity is positively regulated in vitro by ICIS, which may work in combination 

with MCAK to depolymerize microtubules contacting the centromeric domain between 

sister kinetochores [106•]. Taken together, these recent discoveries indicate that the 

depolymerizing activity of MCAK is subject to a high degree of local regulation in the 

vicinity of the kinetochore-microtubule interface (Figure 3). An exciting direction for further 

research will be to investigate how inactivation of MCAK by Aurora B and stimulation of 

MCAK by ICIS are dynamically used to stabilize or destabilize kinetochore microtubules 

during chromosome positioning and attachment correction.

Ironically, the mechanism of attachment regulation by Aurora B could be one reason why it 

is difficult to elucidate exactly how stable kinetochore-microtubule attachments are formed 

and maintained. This possibility is illustrated in budding yeast mutants of the conserved 

kinetochore protein Mis12Mtw1, which contain unattached chromosomes [84•]. This defect is 

abolished if Aurora BIpl1 is concomitantly inhibited, indicating that active Aurora BIpl1 is 

detaching defective kinetochore-microtubule attachments in Mis12Mtw1 mutants [84•]. This 

finding suggests that Aurora BIpl1 inhibition may help to decipher the molecular basis for 

kinetochore-microtubule attachments. It also highlights the complexity of the regulatory 

processes at the kinetochore that must be taken into account when analyzing various 

chromosome segregation defects.

Conclusions and future directions

Dissecting the mechanisms that regulate kinetochore assembly and modulate kinetochore-

microtubule attachments is essential to understand chromosome segregation. This will 

require the combination of precise molecular perturbations with high-resolution assays in 

living cells. Such efforts will probably be facilitated by recent advances in microscopy [107] 
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and by the emergence of RNA interference and chemical inhibition as new specific methods 

for disrupting the functions of essential proteins in metazoans. Together, advances in 

molecular perturbation techniques and the development of increasingly sophisticated assays 

are gradually bringing the complexities of kinetochore structure and function into focus.

Update

Recent analyses in S.pombe and human cells [108] support work in C. elegans and human 

cells [21••] indicating the existence of a complex of Mis12Mtw1-interacting proteins required 

for chromosome segregation. In humans, a complex isolated from interphase nuclear extracts 

included the heterochromatic proteins HP1a and HP1g, suggesting a molecular link between 

kinetochore proteins and centromeric heterochromatin [108].

Two recent papers extend analyses of kinetochore-driven kinetochore fiber assembly. 

Photobleaching and lasermediated kinetochore fiber cutting experiments in Drosophila 
tissue culture cells indicate that fiber growth can initiate from ‘naked’ kinetochores and 

connect the kinetochore to the spindle pole via kinetochore-proximal tubulin addition [109]. 

Interestingly, the microtubule-associated protein CLASP is not required for the initial 

formation or elongation of kinetochore fibers but is required for polymerization at 

kinetochores once the fibers reach the pole and initiate flux [110]. This finding indicates the 

existence of distinct mechanisms that contribute to tubulin addition at kinetochores, and 

establish CLASPs as integral players in kinetochore fiber dynamics [110].
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Figure 1. 
Formation of stable kinetochore–microtubule attachments. Microtubules are in red and 

centromeric chromatin is in gray. Kinetochores are indicated by ovals in various shades of 

green corresponding to the level of kinetochore-localized spindle checkpoint proteins, which 

are progressively depleted as microtubules attach to kinetochores. With 95% depletion of 

Ndc80 complex subunits, significant depletion of checkpoint proteins still occurs, suggesting 

the existence of some type of attachment between kinetochores and spindle microtubules. 

However, stable kinetochore fibers do not form, and chromosome alignment and segregation 

is severely perturbed. Thus, the Ndc80 complex plays a critical role in stabilization of 

microtubule attachments, allowing the formation of mature kinetochore fibers capable of 

aligning and segregating chromosomes properly.
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Figure 2. 
Regulation of kinetochore–microtubule dynamics. The assembly dynamics of kinetochore-

attached microtubules is coupled to chromosome movement on the spindle. Regulators of 

microtubule dynamics localized to kinetochores, such as the CLASP family of MAPs and 

the kinesin-13 family of microtubule depolymerases, are likely to play important roles in this 

process. Kinetochore-localized CLASPs (in green) may stimulate the growth of kinetochore-

attached microtubules during anti-poleward movements that align chromosomes at the 

metaphase plate. Polymerization of kinetochore microtubule plus ends is also necessary for 

poleward microtubule flux during metaphase. In contrast, the microtubule depolymerase 

activity of kinesin-13 proteins (in blue) may contribute to poleward chromosome movement, 

although discrepancies between studies in different systems concerning this putative role 

need to be resolved. Arrows indicate the predicted direction of chromosome movement. MT, 

microtubule.
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Figure 3. 
Error correction mechanisms ensure chromosome bi-orientation on the spindle. Attachment 

of sister kinetochores to microtubules emanating from opposing spindle poles, a 

configuration referred to as bi-orientation, is critical to ensure chromosome alignment and 

segregation. This cartoon depicts how errors in microtubule attachments may be resolved in 

vertebrate cells by Aurora B kinase and the kinesin-13 protein MCAK, a newly identified 

substrate of Aurora B. Kinetochores and centromeric heterochromatin are in gray, 

unphosphorylated MCAK (active microtubule depolymerase) is in green, and MCAK 

phosphorylated in the neck region (inactive depolymerase) is in black. Throughout mitosis, 

populations of both phosphorylated and unphosphorylated MCAK exist at the centromere, 

although the precise localization of active versus inactive MCAK is controversial. One 

interpretation is that active MCAK is more prevalent when incorrect attachments are present 

and tension is low. MCAK can then depolymerize inappropriately attached microtubules. 

Upon attachment of sister kinetochores to opposite spindle poles, the resulting increase in 

tension prevents Aurora-B-mediated re-orientation, perhaps by affecting local regulation of 

MCAK activity. In fungi, the Dam1 complex is the key target of Aurora BIpl1 implicated in 

this error correction process. Such a complex has not been identified in metazoans.
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