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Abstract

Poor context integration, the process of incorporating both previous and current information

in decision making, is a cognitive symptom of schizophrenia. The maintenance of the con-

textual information has been shown to be sensitive to changes in excitation-inhibition (EI)

balance. Many regions of the brain are sensitive to EI imbalances, however, so it is unknown

how systemic manipulations affect the specific regions that are important to context integra-

tion. We constructed a multi-structure, biophysically-realistic agent that could perform con-

text-integration as is assessed by the dot pattern expectancy task. The agent included a

perceptual network, a memory network, and a decision making system and was capable of

successfully performing the dot pattern expectancy task. Systemic manipulation of the

agent’s EI balance produced localized dysfunction of the memory structure, which resulted

in schizophrenia-like deficits at context integration. When the agent’s pyramidal cells were

less excitatory, the agent fixated upon the cue and initiated responding later than the default

agent, which were like the deficits one would predict that individuals on the autistic spectrum

would make. This modelling suggests that it may be possible to parse between different

types of context integration deficits by adding distractors to context integration tasks and by

closely examining a participant’s reaction times.

Author summary

Schizophrenia is a debilitating mental health disorder and its underlying etiology is cur-

rently unknown. Neural imbalances in the neural excitation and inhibition of specific

regions of the brain have been hypothesized to cause symptoms of schizophrenia. Most

regions of the brain have specific excitation-inhibition balances that permit their func-

tioning in the processing of information. How systemic changes in the excitation-inhibi-

tion balance cause specific deficits and dysfunction within neural circuits is unknown. A

common cognitive deficit in schizophrenia is difficulty with context integration, which is
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the ability to successfully use previous and current information when making decisions.

We assessed how this symptom could be caused by an imbalance in neural excitation and

inhibition by simulating the effects of potential imbalances in a model agent. Global

imbalances in the agent’s neural excitation and inhibition led to impairment of specific

circuits. These dysfunctional circuits produced behavioral deficits that were like those

observed in individuals with schizophrenia. These simulations suggested how specific

neural circuits may be disrupted by global changes in excitation or inhibition, ways to

improve the assessment of context integration, new approaches to analyzing behavior,

and why it may be beneficial to assess context integration in autism spectrum disorder.

Introduction

Schizophrenia is a debilitating psychiatric disorder that can be devastating to the individuals

who suffer from it, to their families, and to society. While psychiatric treatments have been

developed that alleviate symptoms of schizophrenia, its etiology is currently unknown [1]. A

recent hypothesis is that an excitation-inhibition (EI) neural imbalance causes the symptoms

of schizophrenia [2–4]. Genetic and cellular differences between schizophrenic and neurotypi-

cal individuals implicate difference in glutamate and GABA neurotransmitter systems [2], but

it is unknown how cellular differences manifest as localized circuit dysfunction and how that

leads to behavioral deficits.

One common behavioral deficit among schizophrenic individuals is that they have diffi-

culty with context integration [3–9], which is the process of combining currently available and

previously observed information to determine an appropriate action [3,4,10,11]. The AX Con-

tinuous Performance Task (AX-CPT) [12] and its derivative the Dot Pattern Expectancy task

(DPX) [13] are frequently used to differentiate between various context integration deficits.

These tasks consist of a series of cue-probe pairings (Fig 1), with an interstimulus interval

between the cue and probe. The response that the participant should perform depends upon

the information provided by the cue and probe stimuli. The participant should only perform a

left response when the cue and probe are both ‘valid’, and should make a right response for all

other cases. There are a total of 6 cues and 6 probes, but only 1 cue and 1 probe are considered

valid. The valid cue and probe are more frequently presented during the task and are typically

referred to as the A cue and X probe. All other cues and probes, which are invalid, are referred

to as B cues and Y probes. The probe presentation is followed by a brief intertrial interval

(ITI). Participant errors on the various trial types indicate different deficits. Errors when an A

cue is followed by an X probe (AX) indicates general difficulty with the task, AY errors indicate

difficulty with inhibiting the prepotent response, and BX errors indicate working memory

deficits.

Individuals with schizophrenia often exhibit higher error rates on AX and BX trials and

longer reaction times when they engage with the AX-CPT and DPX tasks [4]. College students

exhibited a similar pattern of increased AX and BX errors when they were administered keta-

mine [14], which is a noncompetitive NMDA antagonist and suggests that changing the

underlying EI balance drives these behavioral changes. Rhesus macaques also exhibited more

errors on BX trials and greater reaction times under NMDA antagonists ketamine [15] or

phencyclidine [16]. This impairment of more frequent BX errors coincided with disruption of

neural populations within the macaque’s prefrontal cortex (PFC) [16], which had been seen to

maintain cue-information during the ISI [17]. Schizophrenic patients have exhibited reduced

activation of the PFC during the ISI of the DPX task [3,6,18]. These results suggest that an EI
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imbalance in the PFC may underlie these context integration deficits but leave open the ques-

tion of how systemic drugs [14–16] and global changes [2] specifically affect PFC function.

Glutamatergic and GABAergic neurotransmitter systems exist throughout the entire brain,

so it is unclear why a global EI imbalance would result in a localized PFC dysfunction. A classic

argument for the dynamics of working memory, a necessary component of context-integra-

tion, is that pyramidal cells and interneurons within the PFC create a persistent pattern of

activity that maintains the representation of information over brief time periods [19]. While

other models of memory maintenance exist [20,21], we chose to build on this classic model as

it is known to be sensitive to EI balance [22–25]. When EI balance favors excitation, these

models result in epileptic firing of pyramidal cells or are prone to representational drift, and

when it excessively favors inhibition, the models are incapable of maintaining representation

over time. This leaves a restricted parameter range in which working memory can function

[25] and, thus, suggests a mechanism by which a global shift in the EI balance could result in

the PFC becoming unable to maintain a representation of context over time. We suggest that

the reason these systemic drugs affect PFC functionality more than other systems is that the EI

balance in PFC is more sensitive to these global shifts than other networks that have different

EI balances due to its unique function [26].

Context integration requires that actions depend on both current and previous information,

and, thus, requires multiple interacting neural circuits to guide behavior. We hypothesized that

some of the changes to EI balance would only result in dysfunction to our PFC analogue, and that

this dysfunction would result in context integration deficits that were similar to the performance

of schizophrenic participants on context-integration tasks. To test the viability of this hypothesis,

we explored EI balances in a multi-structure agent attempting the AX-CPT/DPX task. One com-

ponent of the agent had an EI balance that acted as a perceptual system, representing the current

Fig 1. DPX task trials. Example of the DPX task as experienced by a participant. The participant observes various dot

patterns during the cue and probe periods for 1 and 0.5 seconds, respectively. Between the cue and probe there is an

interstimulus interval (ISI) of 4 seconds and after the probe an intertrial interval (ITI) of 1.1 seconds. The dot patterns

can be grouped into A or B cues and X and Y probes. The A and X stimuli are considered ‘valid’ and, when observed

sequentially (AX), the participant should make a left response; in all other cases the participant should makes a right

response (i.e., for AY, BX, and BY combinations). There are a multiple B cues and Y probes, which can be used to

assess the participants’ ability to differentiate them from the valid stimuli. Participants typically engage with 150 cue-

probe trials that are 64% AX, 16% AY, 16% BX, and 4% BY. These are unevenly distributed to create a prepotent

response towards the left (AX) option.

https://doi.org/10.1371/journal.pcbi.1008985.g001
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cue/probe input, while another component had an EI balance that acted as a memory system,

maintaining the cue even when the probe was provided. Global manipulations affect these systems

differently, reproducing the errors seen in global NMDA manipulations and in schizophrenic

patients. A thorough exploration of the parameters of these networks revealed new insights into

their interaction and suggest testable predictions for future experiments.

Results

Differentiating perceptual and memory networks

Perception and memory fulfill different roles in information processing and require different

characteristics that make them differentially affected by EI balance. To explore what character-

istics were required for these networks, we constructed a ring attractor (Fig 2B) that had a sim-

ilar design to previous spiking neuron models of spatial working memory [23,24]. This ring

attractor was stimulated at π/2 at 500 ms (cue) and at 3π/2 at 3000 ms (probe) (Fig 2A) and we

observed how the network’s neural activity responded to these stimuli. We are not arguing

that a ring attractor is necessary for simulating working memory, but we simply used this

structure to craft balanced networks that were, essentially, categorical due to heavily localized

intra-excitatory connections (Fig 2C). Individual neurons were affected by glutamate and

GABA (Fig 2D), and the EI balance of this network was controlled by separately modifying the

NMDA receptor conductances of excitatory and inhibitory cells.

We explored how the NMDA parameter space affected the ability to maintain activity

bumps and how those activity bumps responded to afferent stimulation. We systematically

varied the pyramidal cell NMDA receptor conductance, NMDAg,pyr, between 0.30 and 0.40 μS

and the interneuron NMDA receptor conductance, NMDAg,int, between 0.25 and 0.35 μS by

steps of 0.01 μS. These networks were then subjected to varying amplitudes of afferent signal

by systematically assigning the afferent AMPA conductance, AMPAg,Aff, parameter between

0.5 and 1.5 μS in steps of 0.1 μS. The behavior of the networks could be classified into three

meaningful categories: 1) the activity bump was formed and did not change with the probe

(Fig 2E), 2) the activity bump tracked new stimuli (Fig 2F), or 3) the activity bump collapsed

between the cue and probe stimuli (Fig 2G). The parameter combinations that gave rise to the

displayed outcomes are shown in Fig 3‘s 0.9 μS AMPA g panel.

Networks with greater NMDA receptor conductances had greater inertia (Fig 3). The

majority of networks in the explored parameter range were incapable of sustaining an activity

bump because either the activity bump failed to form or quickly collapsed (black) or an activity

bump could not be maintained because the network was epileptically firing (white). Between

these two regions the network functionally tracked stimuli (red), like perception, or retained the

original stimulus (blue), like working memory. As the interneuron and pyramidal cell NMDA

receptor conductances simultaneously increased, the network’s inertia increased. High-inertia

working-memory ring attractors are those that have similar NMDA receptor conductances for

interneurons and pyramidal cells and both are relatively high. Low-inertia perception-like net-

works have relatively greater pyramidal NMDA conductance, but not to the point that these net-

works are incapable of representing the stimuli due to epileptic firing. These simulations show

that the EI imbalances seen in more abstract population firing-rate models [25,27] also appear in

biophysically-realistic models that take NMDA, GABA, and AMPA dynamics into account,

which allowed us to explore the consequences of NMDA manipulations on these networks.

A Context-integration agent

In order to examine how systemic NMDA changes on these different networks could affect

behavior, we constructed an agent (Fig 4A) with perception and memory networks (P and M
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in Fig 3, respectively) such that the interaction of these networks was capable of solving the

DPX task. These networks filled roles within the agent that are analogous to that of the poste-

rior parietal cortex (PPC) and prefrontal cortex (PFC), respectively [25]. The agent was com-

prised of two ring attractors in a feed-forward architecture and the activity of each ring

attractor informed a Softmax decision-making process. This agent was designed to engage

with the DPX, which we slightly modified by adding a distractor at 3500 ms to ensure that

activity in the perception module was not maintaining the memory module’s activity during

the ISI. The network showed similar properties in the absence of a distractor, but was less sen-

sitive to NMDA conductance changes (S1 Fig), so we included a distractor in the simulations

Fig 2. Simple cue-probe experiment and model design with example raster plots. A. Temporal structure of cue-probe trials. During

each trial, the cue and probe were both presented for 500 ms at 500 and 3000 ms, respectively. B. Design of the ring attractor and

important receptor subtypes for excitatory and inhibitory connections. The ring attractor consisted of 1024 pyramidal cells and 256

interneurons. The pyramidal cells were assigned radial directions and those near π/2 and 3π/2 were associated with the cue and probe

stimuli, respectively. Connections indicated with a dashed line were spatially localized whereas those indicated with a solid line were not.

C. Plot of the weight distributions of localized and global connections. Localized weights were more strongly connected to pyramidal

neurons with a similar radial direction. The difference between global inhibitory and localized excitatory connections resulted in the

creation of activity bump [23]. D. An example of AMPA, NMDA, and GABA receptor currents and how those manifested as spiking

activity. In this example, EPSPs were induced at a rate of 20 hertz for the entire duration and IPSPs were induced at a rate of 20 hertz

starting at 250 ms. The introduction of the IPSPs reduced the spiking rate (red diamonds) shown in the top panel as the excitatory and

inhibitory currents interacted. Leak and noise currents are omitted. E-G. Example raster plots that show how activity bumps are induced

and represent the cue and probe. E. With activity bump maintenance, the neural representation of the cue stayed at π/2 despite afferent

signal at 3π/2 during the probe (NMDAg,pyr = 0.37 μS, NMDAg,int = 0.33 μS, AMPAg,Aff = 0.9 μS). F. In the case of activity bump jumps,

the neural representation switched from the cue to the probe (NMDAg,pyr = 0.37 μS, NMDAg,int = 0.30 μS, AMPAg,Aff = 0.9 μS). G. The

activity bump can also collapse prior to probe presentation (NMDAg,pyr = 0.33 μS, NMDAg,int = 0.30 μS, AMPAg,Aff = 0.9 μS).

https://doi.org/10.1371/journal.pcbi.1008985.g002
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to provide a more thorough exploration of the perceptual and memory networks. The percep-

tion and memory ring attractors each had 5 competitive memory states (A, B, X, Y, and other),

and these states determined whether the agent was more likely to make a left or right response.

When the agent’s perception network began representing the probe, it cued a decision making

process (Fig 4B) that determined the agent’s action and reaction time. Briefly, this decision

making system was analogous to a drift-diffusion model (DDM) [28,29] and used the agent’s

determination of the likely correct response to create features akin to a DDM’s response bias

(z), drift rate (v), and starting time (t) parameters. Decision making components that were not

determined by the agent, the decision boundary (a) and noise, were used to create independent

collapsing response thresholds. The agent’s reaction time was determined from when the

response probability crossed one of the collapsing thresholds. Full details on the model can be

found in the Methods. The neurotypical (default) agent properly represented information

about the cue and probe in its memory and perception networks (Fig 5A) and appropriately

used that information to determine its actions. The agent was designed to have a slight propen-

sity to make errors on AY trials, because this is commonly observed when neurotypical

humans engage with the AX-CPT and DPX tasks [4]. The distributions of the neurotypical

agent’s reaction times (Fig 6A) showed a similar pattern to that seen in a neurotypical human’s

performance, including that the median reaction time on AY trials tended to be longer than

Fig 3. Activity bump response to the probe as a function of excitation, inhibition, and afferent signal. The afferent AMPA conductance (g) is indicated in

the top left of each panel. The degree of blueness indicates the percentage of trials in which the activity bump maintained the cue representation, and redness

indicates the percentage of trials in which the activity bump jumped to the probe representation. The black and white regions indicate excitation-inhibition

balances that were incapable of maintaining representation of the cue, albeit for different reasons. The degree of blackness indicates the percentage of trials in

which the activity bump collapsed prior to the probe or that the cue representation was never initiated, and white indicates the parameter region in which the

pyramidal cell firing was epileptic (i.e., showed an extremely high firing rate across the entire population that does not represent information). The P and M in

the 1.0 AMPA conductance panel are the locations of the context-integration agent’s perception and memory networks (Fig 4A) within NMDA conductance

parameter space. The arrows coming from these indicate various manipulations that were performed to these networks. The solid line is pyramidal cell NMDA

conductance manipulation, the dashed line is interneuron NMDA conductance manipulation, and the dotted line is manipulation of both.

https://doi.org/10.1371/journal.pcbi.1008985.g003
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Fig 4. DPX task and agent design. A. Design of the DPX agent. The agent was comprised of perception and memory ring

attractors that represented the current stimuli and the context, respectively (due to their underlying EI balances). Both ring

attractors were structurally identical to the one specified in Fig 2B. The perceptual network’s pyramidal outputs projected

weakly to the memory ring, providing its representational inputs. As with the ring attractor in Fig 2B, certain areas of the ring

represented the cue and probe stimuli. How well the cue and probes were represented in the networks was used to inform the

agent’s decision making process. Pyramidal cell activity in the ring attractors projected to leaky left and right response

accumulators that utilized a softmax decision making algorithm to determine the agent’s likely response to the probe.

Connection weights to the left accumulator (i.e., A from the memory ring and X from the perception ring) are weaker than

those to the right accumulator (i.e., B from the memory and Y from the perception ring), because the representations of B and

Y needed to override the A and X representations during decision making. B. Temporal structure of an AY DPX trial and

how the agent’s decision making process changed in response to task events. The gray regions indicate when the cue and

probe were presented (not to temporal scale). As the agent represented information about the cue and probe, its likelihood of

engaging in a left or right response changed. For example, representation of the A cue caused the agent to be much more

likely to engage in a left action, but as the Y probe information was represented, the agent became unlikely to engage in a left

action. A drift-diffusion-like decision process was used to determine the timing and choice of the agent’s actions. As soon as

the agent’s perception network represented the probe (X or Y), it initiated its decision making process. When a collapsing left

or right response boundary crossed the left action probability, the agent engaged in the associated action at that time. This

decision making process did not formally specify drift-diffusion-model-like dynamics, with the exception of the decision

boundaries (a). However, the decision making process’ created similar constructs. How the components of this process are

akin to an evidence accumulation process are identified with the terms and parameters (indicated a, t, v, and z) that are

commonly used in the DDM literature.

https://doi.org/10.1371/journal.pcbi.1008985.g004
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on other trials. The reaction times only included the decision-making process and did not

include perceptual processing prior to the perceptual network, nor did it include motor action

processes.

Adjusting the agent’s NMDA conductance parameters produced schizophrenic-like context

integration deficit errors. We systematically and simultaneously varied the NMDA receptor

conductances of pyramidal cells, interneurons, or both in the perception and memory net-

works (Fig 5D, 5E, and 5F). There were multiple causes of increased AX and BX error rates

(Fig 5D, 5E, and 5F), which are similar to those exhibited by schizophrenic patients on the

Fig 5. DPX task performance of neurotypical and divergent agents. A. Raster plots of a neurotypical agent’s pyramidal cell firing, which successfully

maintained representations of the ‘B’ cue and ‘X’ probe (Perception: NMDAg,pyr = 0.37 μS, NMDAg,int = 0.30 μS; Memory: NMDAg,pyr = 0.37 μS, NMDAg,int =

0.35 μS). B. Raster plots of a trial in which the activity bump representation in the memory network collapsed during the ISI (-8%—Perception: NMDAg,pyr =

0.3404 μS, NMDAg,int = 0.30 μS; Memory: NMDAg,pyr = 0.3404 μS, NMDAg,int = 0.35 μS). C. Raster plot of a trial in which the activity bump representation in

the perception network fails to track current stimuli (+8%—Perception: NMDAg,pyr = 0.37 μS, NMDAg,int = 0.324 μS; Memory: NMDAg,pyr = 0.37 μS, NMDAg,

int = 0.378 μS). D. How an exogenous NMDA antagonist, like ketamine, may affect the rate of DPX task errors. E. Increasing error rates of the different trial

types as the pyramidal NMDA g was systematically changed. F. Increasing error rates of the different trial types as the interneuron NMDA g was systematically

altered.

https://doi.org/10.1371/journal.pcbi.1008985.g005
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DPX task [4,5]. Increased AX and BX error rates were produced by the reduction of NMDA

receptor conductances of pyramidal cells (Fig 5E), interneurons (Fig 5F), or both (Fig 5D) or

by the increase in pyramidal cell NMDA receptor conductance (Fig 5E). AX and BX errors

were caused when the activity bump collapsed wihin the memory ring attractor during the ISI

(e.g., Fig 5B). When information about the cue was lost during the ISI, the agent lacked that

information when responding to the probe and, thus, based its actions solely upon the avail-

able probe information.

The increase in AX and BX error rates coincided with changes in the agent’s reaction times,

and these changes could be separated into two patterns. As the global or pyramidal cell

NMDA conductances were reduced (Fig 5D and 5E) reaction times bifurcated by the probe

that was presented (Fig 6B and 6C). In contrast, as the pyramidal cell NMDA receptor conduc-

tance was increased (Fig 5E) or the interneuron NMDA receptor conductance was reduced

(Fig 5F) there was a more general increase in the reaction times (Fig 6C and 6D). These two

patterns, respectively, coincided with whether the network’s EI ratio became more inhibitory

(downward right of Fig 3) or more excitatory (upper left section of Fig 3). Individuals with

schizophrenia tend to have delayed reaction times, relative to neurotypical individuals, that are

similar across all trial types [4,5]; the agents with more excitatory EI ratios tended to produce

this pattern of behavior and were most like that of individuals with schizophrenia. That a

bifurcation reaction-time pattern is produced when global NMDA conductance is reduced–

like an NMDA antagonist drug manipulation–is interesting because a similar pattern has been

observed when a pair of macaques were administered an NMDA antagonist [15].

Context integration has not been studied in individuals with autism spectrum disorder,

but one pattern of errors that our agent produced suggested some potential utility for that

Fig 6. EI balance affects the agent’s reaction times. A. Swarm plots of the neurotypical agent’s reaction times during the four trial types. As is in the DPX

task literature, there was a delayed response on AY trials. B. Reaction times bifurcated as the NMDA conductance of all cells was reduced. The reaction

times separated by the probe. C. Reaction times also bifurcated as the pyramidal cell NMDA conductance was reduced, but increased across all trial types as

it approached a 6% increase in pyramidal NMDA conductance. D. Reaction times of all trials increased as the NMDA conductance on interneurons

increased, and also increased as it reached a 6% reduction.

https://doi.org/10.1371/journal.pcbi.1008985.g006
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application because it created fixation and delayed responding. EI imbalances created more

AY errors when the interneuron NMDA conductance was increased (Fig 5F). This increase in

AY errors was due to the perception ring attractor’s activity bump fixating on the probe stimu-

lus (Fig 5C). This qualitative difference can also be seen when examining the corresponding

median reaction times (Fig 6D). The agent’s perception network begins to fixate as its NMDA

conductance makes it cross the perception-memory threshold (P in Fig 3 moving right).

EI Balance and tuning curves

The potential utility of viewing EI balance as an intertwined negative-feedback loop is under-

scored by how the balance affects the representation of information. As the EI balance was

altered, the tuning curve representation of information also changed (Fig 7). When the net-

work’s EI balance more strongly favored excitation (i.e., greater pyramidal cell NMDA con-

ductance or less interneuron NMDA conductance) the tuning curves became wider with a

higher base. The corollary of this was also true; the tuning curves became narrow when the EI

balance favored inhibition (i.e., reduced pyramidal cell NMDA conductance or greater inter-

neuron NMDA conductance). A global change in NMDA conductance, however, had no effect

upon the tuning curve shape because it proportionately affected all cells and thus failed to

change the EI balance. While changing the NMDA conductance of pyramidal cells and inter-

neurons separately affected the excitation and inhibition components of that balance, their net

effect on tuning curve shape was quite similar. Memory and perception networks differed in

their tuning curves due to their differences in EI balance, which were required for those net-

work’s to fulfill their function. This suggests EI balance changes could produce measurable dif-

ferences in the proportions of active neurons in different networks.

Fig 7. EI balance affects tuning curve shapes. As NMDA receptor conductance of the pyramidal cells and interneurons were systematically

manipulated, it resulted in the representational tuning curves changing in width. As the NMDA conductance manipulation approached the

epileptic corner of network firing (top left in Fig 3), the tuning curves became wider, and as the networks became unable to initiate or maintain a

representation (bottom right in Fig 3), the tuning curves became more narrow. Notably, as the NMDA conductance parameters were globally

changed (moving along the bottom left to top right diagonal in Fig 3), there was no change in the tuning curve’s shape.

https://doi.org/10.1371/journal.pcbi.1008985.g007
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Localizing the source of context-integration errors

Global changes in NMDA receptor conductances affected the entire agent, but created localized

dysfunction. Assuming that the agent’s perception and memory networks are truly analogous to

the PPC and PFC, we would expect that the source of BX errors in DPX decision making to lie

within the memory network because the PFC of schizophrenic participants is hypofunctional

during the ISI of the DPX task [3,6,18]. We assessed this hypothesis by systematically manipu-

lating either the memory or perception network’s NMDA receptor conductances (Fig 8).

This experiment confirmed that the memory component was the source of errors on the

AX and BX trials, but in a complicated fashion. Dysfunctional memory was the simple cause of

significant AX and BX errors when that network’s pyramidal cell NMDA conductance or

global NMDA conductance was reduced (Fig 8), but this also caused a bifurcation in reaction

times (Fig 9). Increasing excitation in the perception network caused greater AX and BX errors

(Fig 8), but did this indirectly by making the memory network lose representation of the cue

Fig 8. Specific network manipulations caused mistakes on various trial types. It is possible to determine whether

the perception or memory network caused the agent to make an error by systematically altering the NMDA

conductances of pyramidal cells and interneurons within either the perception or memory networks. Errors on AX

and BX trials were most easily caused by the memory network when it began to have difficulty maintaining the

representation of the cue during the ISI (middle and top right panels). Manipulations of the perception network also

caused AX and BX errors (middle left panel), but this was due to it causing consequential changes in the memory

network’s functioning (Fig 10). Errors on AY trials increased as the perception network became more inhibitory by

either reducing pyramidal cell NMDA conductance or increasing interneuron NMDA conductance (middle and

bottom left panels).

https://doi.org/10.1371/journal.pcbi.1008985.g008
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(Fig 10A). Increasing the perception network’s pyramidal cell NMDA conductance strongly

affected the memory network’s tuning curve (Fig 10B), but altering the memory network in

the same way had very little of an effect (Fig 10C). At high pyramidal cell NMDA conductances

the perception network was able to fulfill its function of representing current information, but

its noisiness and higher firing rate caused the memory network to no longer be able to fulfill

its function (Fig 10A). This suggests that there may be two sources of errors in patients who

are unable to solve the DPX task–memory deficit errors that produce a bifurcation in reaction

times, and perceptual deficits that cause memory deficits through a secondary consequence

that does not produce that bifurcation in reaction times. These different underlying deficits

may require different treatment paradigms.

Discussion

The alteration of EI balance within our agent resulted in many of the behavioral deficits that

are observed among individuals with schizophrenia on the DPX task. The agent’s behavioral

deficits arose from global changes in EI balances causing network-specific dysfunctions. The

agent produced high error rates on BX trials, like those exhibited by individuals with schizo-

phrenia [4,5], when the EI balance resulted in memory networks that were unable to

Fig 9. Specific network manipulation affected reaction times. The bifurcation of reaction times was specific to when

the memory network was the direct cause of errors on AX and BX trials (top and middle left panels). Overall changes

in reaction times were primarily caused by the perception network (middle and bottom left panels). This was due to

the perception network becoming noisy (right and left of the middle and bottom left panels, respectively) or beginning

to fixate (left and right of the middle and bottom left panels, respectively).

https://doi.org/10.1371/journal.pcbi.1008985.g009
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consistently maintain representation of cue information over time. Similarly, the agent pro-

duced more errors on AY trials when the perception network’s inertia increased to the extent

that it was resistant to changing its representation when exposed to new stimuli.

High rates of BX errors on the DPX was a common result of manipulating our agent’s EI

balance, and that increase in errors was due to memory networks failing to maintain a represen-

tation of the cue. However, the reaction time data produced by the model helped identify which

EI balance changes were most similar to those exhibited by individuals with schizophrenia. The

higher error rates and slower reaction times on the DPX task exhibited by schizophrenic indi-

viduals seem to be most similar to when our agent’s EI ratio favored excitation (Figs 5E, 5F, 6C,

and 6D). As the EI balance favors excitation, the tuning curves of the memory network become

wider and elevated (Fig 7 memory network panels). This change in the tuning curves is a prod-

uct of the EI balance and indicates how interneurons are only weakly constraining a wide

recruitment of pyramidal cells. That weak constraint causes more noise in the representation of

information. This noise reduced the rate of evidence accumulation in our model and, thus, slo-

wed the reaction times. BX errors that were produced via other mechanisms tended to have

clear representations of memory and, thus, still had relatively quick reaction times.

Cohen and colleagues have emphasized the potential role of dopamine within their model

as a cause for context errors [6,19]. Our model produced similar effects to what they assumed

would be due to dopamine, which suggests a conceptual degree of similarity between our

modelling and theirs. Other models have suggested a role for dopamine changing EI balance

dynamically [30,31]. Cohen and Servan-Schreiber put forward the argument that reducing the

gain parameter of the neurons within a connectionist network was analogous to the effects of

reduced dopamine and that it caused context loss [11]. Our manipulation of EI balance pro-

duced a similar effect via the increase in excitation through an emergent property of the net-

work dynamics (Fig 7) despite no change in the network’s underlying structure. Conceptually,

our model and theirs both increased noise within the memory networks despite utilizing

entirely different mechanisms. In a later model, Braver, Barch, and Cohen made the argument

that dopamine modulated the gating mechanism of afferent stimulation [19]. Our global

NMDA conductance manipulation resulted in a similar reduction in the memory network’s

inertia to change. Interestingly, it did not produce a similar effect in the perceptual network.

In both models, these manipulations make the memory network more likely to track new sti-

muli, producing the observed behavioral deficits.

A computational interpretation of our model is that anything that disrupts the maintenance

of cue representation during the ISI results in BX errors on the DPX task. Longer reaction

times are produced when there is greater noise in the representation of information. The cur-

rent behavioral data of schizophrenic individuals on context-integration tasks suggests that

both of these are occurring and that there are multiple mechanisms that can produce this pat-

tern. In our simulations we found that local consequences on EI imbalances via global NMDA

conductance manipulations can produce this result. Besides NMDA conductance, EI imbal-

ances can potentially be produced by numerous mechanisms. While it is possible to experi-

ment with all of these mechanisms, the context-integration deficits seen in schizophrenia can

be most clearly summarized and understood at the computational level as a poor ability to rep-

resent information over time due to noise causing instability.

Fig 10. Changing the perception network’s pyramidal cell NMDA conductance caused memory malfunction. A.

As the perception network was altered it caused the memory network to lose its representation of the cue, but had little

effect on the perception network representing the probe. B. As the perception network’s pyramidal cell NMDA

conductance increased, it caused the memory network’s tuning curve to become wider. C. The memory network’s

tuning curve was barely affected by its own pyramidal cell NMDA conductance being changed.

https://doi.org/10.1371/journal.pcbi.1008985.g010
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Model predictions

A frequent discussion within the clinical AX-CPT and DPX literature is how long the inter-

stimulus interval needs to be in order to best assess context integration [4,9]. This debate has

largely been a matter of balancing accuracy and specificity against the duration of testing. The

underlying assumption of this debate is that a longer ISI permits the representation to decay to

a larger degree that in turn leads to behavioral deficits. A different understanding of working

memory is how well it can maintain a representation despite distractors, and that may prove to

be a better approach to balancing these competing concerns. Within our model, changing the

EI balance strongly affected the network’s inertia to change which made it more likely to track

irrelevant stimuli. Our model suggests that a quicker test of an individual’s working memory

would, thus, be the addition of distractors during the ISI and systematically changing them

over the course of the experiment. This would permit a researcher to better assess the stability

and excitability of an individual’s perception and working-memory circuits.

Macaques who have been administered NMDA antagonists while engaging with the DPX

task [15,16] may utilize a different decision making strategy than humans. In studies with

humans with schizophrenia, the higher error rates on BX trials coincides with a minor increase

in errors on AX trials [4]; in contrast, macaques that were administered NMDA antagonists

showed increased BX error rates, but no observable changes on AX error rates [15,16]. Due to

the joint higher incidence rates of AX and BX errors in humans, we designed our agent to

respond stochastically during a memory failure with a preference for target responses. A

byproduct of this process is that when the representation lacked noise but still failed to maintain

a memory representation, our agent tended to show a bifurcation in the reaction times with

Y-probe trial responses being faster than X-probe trial responses. Blackman et al also observed a

bifurcation in the reaction times of both macaques as the dose of ketamine increased but trials

with X-probes were slower than those with Y-probes [15], which was opposite to the reaction

times our agent produced. Rather than the stochastic process that we built our agent to use, the

macaque’s decision making process could be heavily biased towards a left response which was

only overridden when it was countermanded by B-cue or Y-probe information. Evidence sup-

porting this hypothesis is that the macaques showed no change in AX error rates when the

number of BX errors increased with ketamine administration [15], reaction times on X probe

trials were faster than on Y probe trials when ketamine was administered [15], and more neu-

rons were dedicated to maintaining a steady representation of the B cues than A cues [17].

When college students were administered ketamine while performing the AX-CPT task it

resulted in simultaneous increases of AX and BX errors [14], unlike the macaques. Our agent

was designed to engage in more stochastic responding to when it lacked cue information

because that was a better description of human behavior, which caused increases in AX and BX

trial errors. A strong bias towards the target response could explain why our stochastic model

produced a similar bifurcation in response times to the macaques, but with slower reaction

times on trials with X probes than on Y probes. This potential difference in decision making on

similar context-integration tasks could be due to the training differences; the macaques were

extensively trained on the DPX task [15,16] unlike the college students [14].

Our modelling indicates that it may be possible to parse two separate causes of BX errors

on the DPX task by analyzing the reaction times and that important information can be

gleaned via a drift diffusion model analysis of that data. If the reaction times of the trials with

X probes are differentiable from trials with Y probes (the bifurcations in Fig 7B and 7C), then

this suggests that the underlying process is losing information about the cue during the ISI,

but that the representation of information is not particularly noisy. A drift diffusion model

applied to participant reaction time data on the DPX task in this case should reveal lower
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decision boundaries (a) relative to controls. In contrast, if there are relatively longer delays in

the reaction time across all trial types then it is likely that the memory representation is being

lost during the ISI and that the representation of information is noisy. A drift diffusion model

analysis of reaction times in this situation should have greater decision boundaries than con-

trols. In both of the previous two cases, if the evidence accumulation rates caused by the X and

Y probes are the same (unlikely since the X probe only provides useful information given a

complete absence of cue information), then there would be no bias (z) towards left or right

responses. Whether there is a difference in the evidence accumulation rates could be assessed

by performing separate analyses of the X and Y probe trials and seeing if there is a difference

in the accumulation rate parameter v. Examining the response initiation (t) parameter is also

informative. Relatively smaller t parameter values indicate that the underlying circuits favor

excitation or that afferent stimulation to the perception network is particularly strong. These

hypotheses suggest that a drift diffusion model analysis of reaction times on the DPX could

inform our knowledge of the underlying circuits that influence decision making and that there

should be caution when grouping individuals with elevated BX errors since there can be differ-

ent underlying processes that give rise to errors on those trials.

Our model suggests that context-integration tasks may also be usefully applied to autism

spectrum disorders. It has been previously suggested that EI imbalances may have a role in

autism spectrum disorder [2]. Perseveration on ideas and hyporeactivity to stimuli are symp-

toms of autism spectrum disorder and within the context of the DPX task these symptoms

could result in errors on AY trials. Our model produced AY errors when the perception net-

work began to function more like a memory network. Within our model, perception networks

lost their tracking function when their EI balance became more inhibitory. This increased

inhibition also had a profound effect on the agent’s reaction time, because the perception net-

work required more stimulation before it would track new stimuli. This would manifest as

later start times for an evidence integration process (t) in a drift diffusion model. This later ini-

tiation of evidence-integration has been observed in individuals with autism spectrum disor-

der when they engaged with a perception task [32] but not with a more socially relevant task

[33]. These results suggest that it may be beneficial to investigate context integration among

individuals with autism spectrum disorder.

Summary

Alteration in EI balance resulted in our context-integration agent producing numerous behav-

ioral deficits in line with some mental health disorders. Global shifts in the EI balance did not

create overall problems, but rather regionally specific ones. This regional specificity was a

result of increased susceptibility to EI manipulations, because our networks filled specific roles

in information processing engendered by local neural characteristics. The regional dysfunc-

tions in our model also created specific patterns of behavioral deficits that were consistent with

those observed in schizophrenic individuals, autistic individuals, as well as humans and

macaques receiving NMDA antagonists.

Methods

Leaky integrate and fire neurons

Pyramidal cells and interneurons were modeled as leaky integrate and fire neurons [34]. The

change in their voltage potentials, Vm, over time, t, were modeled as

Cm
dVm
dt
¼ � INMDA � IGABA � ILeak � INoise � IAff
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where Cm is the membrane capacitance, INMDA is the current from NMDA receptors, IGABA is

the current from GABA receptors, ILeak is the leaky membrane current, INoise is current from

task-irrelevant excitation, and IAff is the current from afferent signal. All cellular parameter val-

ues are listed in Table 1. If the membrane potential, Vm, exceeds a voltage threshold, Vth, then

the neuron generates an action potential and releases neurotransmitter into the synaptic cleft.

After generating an action potential, the pyramidal cell or interneuron enters an absolute

refractory period, τref, which ends with the neuron returning to its resting potential, Vrest. The

leaky current was voltage-dependent is given by

ILeak ¼ gLðVm � VLÞ

where gL is the membrane conductance and VL is the leak reversal potential.

Table 1. Neuron Model Parameters.

Parameter Value Unit

All Cells

Vth -50 mV

Vrest -60 mV

τref 2 mS

VL -70 mV

NMDA Receptors
VE 0 mV

[Mg] 1 mM

αX 1 ms-1

τX 2 ms

αS 1 dimensionless

τS 80 ms

GABA Receptors
VI -70 mV

τS 10 ms

AMPA Receptors
VE 0 mV

τS 2 ms

Noise Firing Rate 1.80 kHz

Pyramidal Cells

Cm 0.50 nF

gL 25 nS

gNMDA
� μS

gGABA 1.25 μS

Noise gAMPA 3.10 μS

Signal FMax 1.25 kHz

Signal gAMPAμS
� μS

Interneurons

Cm 0.20 nF

gL 20 nS

gNMDA
� μS

gGABA 1 μS

Noise gAMPA 2.38 μS

� = Experimentally varied

https://doi.org/10.1371/journal.pcbi.1008985.t001
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The current from NMDA receptors were modeled with the equation [35]

INMDA ¼
gNMDAsðVm � VEÞ

1þ ½Mg�e� 0:062Vm=3:57

where gNMDA is the receptor conductance when in the open state, s is the fraction of receptors

in the open state, VE is the synaptic reversal potential, and [Mg] is the concentration of Mg2+

ions in the extracellular fluid. The proportion of receptors in the open state, s, was controlled

by a second-order kinetic, which is described by the equations

dx
dt
¼ ax

X

i

d t � tið Þ � x=tx

ds
dt
¼ asx 1 � sð Þ � s=ts

where i is the number of spikes, x is an intermediate gating variable, τx and τs are the mean life-

times of the receptors changing from the closed-to-open and open-to-closed states, respec-

tively, αx is how much the x kinetic’s value changes with each received spike, and αs controls

the saturation of the receptor [35,36].

The currents from GABA receptors were simulated as having first-order kinetics. The cur-

rent from GABA receptors was given by

IGABA ¼ gGABAsðVm � VIÞ

with s being the synaptic gating variable, gNMDA being the receptor conductance, and VI being

the synaptic reversal potential. The parameter s was modeled as a first-order kinetic that

increases by the weight of the connection with each presynaptic action potential and exponen-

tially decreasing over time [23].

The afferent signal, IAff, and current caused by noisy cell firing, INoise, were modelled as

AMPA-mediated Poisson processes [23]. The currents from AMPA receptors were controlled

by the equation

IAMPA ¼ gAMPAsðVm � VEÞ

with s being the synaptic gating variable, gAMPA being the receptor conductance, and VE the

synaptic reversal potential. The s kinetic was modeled as a first-order kinetic that increased by

the weight of the connection from each spiking presynaptic pyramidal cell and exponentially

decreasing. Excitatory postsynaptic potentials (EPSPs) caused by noisy firing were assumed to

be uncorrelated with each other and occurred at a rate of 1.8 kHz. The afferent currents were

also modeled as an uncorrelated Poisson process, but the strength of these currents were

unevenly distributed. Afferent signals were localized by setting the afferent firing rate based on

a neuron’s radial direction. The afferent firing rates were set according to

FðYi � YAff Þ ¼ FMaxe
2pðcosðYi � YAff Þ� 1Þ=s

with Θi being the neuron’s radial direction, ΘAff being the radial direction associated with the

stimulus, FMax being the maximum firing rate, and σ as the width of the Gaussian-like distribu-

tion. The weight of each afferent and noise connection was 0.001. For all simulations, σ was set

to 0.4 and FMax was set to 1.25 kHz. AMPA receptor conductances from intracircuit connec-

tions were not modeled, because previous studies had found that activity-bumps could be

maintained without them [23] and because they would entail unnecessary complications to

the modeling of EI balance.
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Changes in receptor kinetics and membrane voltages were integrated using the second-

order Runge-Kutta method. Integrations were computed over intervals (dt) of 0.05 ms. Firing

times were linearly interpolated [37]. All simulations and analyses were written in Python (v.

3.7.6) using the NumPy (v. 1.18.1), SKLearn (v. 0.22.1), MatPlotLib (v. 3.1.3), and SciPy (v.

1.4.1) modules.

Ring attractors

Pyramidal cell and interneuron populations were paired and interconnected to create repre-

sentational modules. Pyramidal cells were assigned radial directions that were evenly distrib-

uted between 0 and 2π radians. The weights from one neural population to another (or itself)

were normalized such that the sum of connection weights to any given neuron from a popula-

tion was 1. Connections from pyramidal cells to interneurons, interneurons to pyramidal cells,

and interneurons to interneurons were non-localized (i.e., global) and had identical weights to

all target neurons (solid line in Fig 2C). The excitatory connections between pyramidal cells

were localized such that connections were stronger when two cells had a similar direction

(dashed line in Fig 2C). The weights of pyramidal cell excitatory connections are given by

WðYi � YjÞ ¼ Pe
2pðcosðYi � YjÞ� 1Þ=s þ ð1 � PÞ

where Θ is the radial direction of a pyramidal cell, i is the presynaptic neuron, j is the postsyn-

aptic neuron, P is the proportion of the connection weight that is controlled by a Gaussian-like

distribution, and σ controls the width of the Gaussian-like distribution. The parameter values

for all localized connections were P = 0.7 and σ = 0.05, which produces highly localized activity

that is resistant to activity bump drift. This localization effectively discretizes the ring attractor

into regions that can be associated with cues and probes. The authors do not believe that a ring

attractor is necessary for this modeling, but we utilized it due to its benefits in finding network

parameters.

Representational modes of ring attractor firing

Ring attractors maintain representational information via activity bumps [38]. Each network

was assumed to be in one of multiple states, which correspond with what information is repre-

sented within that network. During the cue-probe experiment, the network could be in one of

three states, which were cue, probe, and no representation. During the DPX experiments, the

memory and perception networks could be in one of five states, which were A-cue, B-cue, X-

probe, Y-probe, and no representation. Which information is represented within a network

can be determined by examining how similar the network’s current spiking activity is to the

expected activity when it is representing specific-stimulus information [38,39]. The expected

activity can be determined by creating tuning curves of when information is represented and

aligning these to the vectors associated with each stimuli (e.g., π/2 for the cue and 3π/2 for the

probe).

Tuning curves for each ring attractor were calculated from the network’s spiking activity

during the last 100 ms of the cue presentation of all trials, which is when representation of the

stimuli is most likely to exist in all networks given the constant external stimulation. A sliding

25-ms time window was taken over this period to determine the vector of the network’s spik-

ing over that window, and the center of population activity was used to align network activity

to the same direction. The vector of the population’s spiking activity was calculated by taking

the arctangent of the mean y- and x-position, which were determined by taking the sine and

cosine, respectively, of each spiking neuron’s associated direction and multiplying it by their

firing rate during the interval. Since all of the simulated neurons are identical, the tuning curve
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was thus defined as

T ¼
FkðφÞ
maxFkðφÞ

where Fk is the firing rate in the population vector aligned direction φ. The resulting tuning

curve was then smoothed with an 11-neuron-width boxcar filter.

How consistent the current spiking activity is with the expected activity can be determined

by comparing the current activity bump with an expected activity bump [38]. The current

activity bump was calculated at each ms via

A x; tð Þ ¼

P
k½TkðxÞFkðtÞ�P

kTkðxÞ

in which k is a neuron, Fk is the firing rate of neuron k divided by the maximum firing rate,

and x is the radial orientation of neuron k. The time, t, was a 25-ms time window. The activity

bump thus becomes normalized between 0 and 1, and is a smoothed representation of the

spiking activity that can be compared to the expected activity. The expected activity for when a

stimulus is being represented is similarly described by

Â xð Þ ¼
P
k½TkðxÞTkðx̂Þ�P

kTkðxÞ
:

A measure of the distance from the actual and expected activity bump can be calculated by

taking their sum of squares differences.

A representational similarity index was used to determine which stimulus was best repre-

sented in the network and how different it was from other potential representations. The dis-

tance of the current activity bump from the expected activity bumps of each stimulus were

calculated. Dividing the distance from each stimulus distance by the mean of the other stimuli

distances provides an index of which stimulus best represents the network. When the index is

less than 1, then the distance of the current activity bump from that stimulus’ expected activity

bump is better than other stimuli (i.e., the best description). We used an index cutoff of 0.75

for when information was represented to permit for noise around an index of 1.0, which

would indicate no difference between that stimuli and other stimuli. The initiation time of

representation was defined as when the the network was best and continuously described by a

single stimuli’s expected activity bump representation for 50 ms.

Cue-Probe experiment

Cue-probe stimulus pairings were used in a series of experiments to assess changes in activity-

bump representation during the first two experiments (Fig 2A). Each network experienced

100 cue-probe trials, and the network was simply reset at the end of each trial because previous

experiments have shown that it is relatively easy to eliminate persistent neural activity [22,23].

After an initial 500 ms delay, a cue was presented for 500 ms. A 2000 ms interstimulus interval

was followed by 500 ms of probe presentation and a 500 ms intertrial interval. The cue stimu-

lus was associated with the radial direction of π/2 and the probe with 3π/2. During stimuli pre-

sentations, the afferent current to the pyramidal cells was turned on. ΘAff of the cue stimulus

was π/2 and the probe stimulus was 3π/2.
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Dot pattern expectancy (DPX) task

The DPX task assesses context integration by presenting participants with a series of cue-

probe pairings (with an interval between them) that require different actions depending upon

the pairing. The DPX task [13] was simplified to its core components for this simulation. Each

trial consisted of a cue presentation, followed by a delay, and a probe presentation (Fig 1). Typ-

ically, the cues and probes can be one of any six stimuli but the participant is meant to identify

a specific pair of these, which are typically referred to as the A cue and the X probe. If both the

A cue and X probe are presented then the participant is instructed to perform the ‘target’

response, which is a joystick pull to the left. For all other cue and probe combinations, the par-

ticipant is instructed to perform the ‘non-target’ response, which is a joystick pull to the right.

For the sake of simplicity, the 5 distractor cues were consolidated into a single B cue and the 5

probe distractors were consolidated into a single Y probe. The radial directions associated with

each stimulus were: A = 0.3π, B = 0.7π, X = 1.3π, and Y = 1.7π. The differences with this task

and the simple cue-probe experiments was that there are two cue stimuli, two probe stimuli,

the interstimulus interval was longer, and correct actions depended upon the specific cue-

probe pair.

The trial structure was minimally altered for our experiments (Fig 5B shows an example of

an AY trial). The typical duration of the ITI is 1100 ms, which we split between the beginning

and end of each trial. For the first 500 ms of each trial the network did not receive any afferent

stimulation. At 500 ms, the network received afferent stimulation that corresponded with

either the A or B cue for 1000 ms. A 4000-ms ISI followed the cue before the probe presenta-

tion. A brief 250-ms distractor was presented in the middle of the ISI to ensure that the percep-

tion network was not maintaining the memory network. Without the addition of a distractor

some effects of the NMDA conductance manipulation were difficult to observe (compare Figs

5D, 5E, and 5F to S1). The distractor was randomly presented at either 0 or π, which were not

associated with the experimental stimuli. At 5500 ms into the trial, the network receives affer-

ent stimulation that corresponds with either the X or Y cue for 500 ms. Once the probe was

presented the agent made either a ‘left’ or ‘right’ action, and the probe was followed by the first

half of the ITI (600 ms). The network was simply reset at the end of each trial, because no

learning capacity was built into the model and previous simulations have indicated methods

for resetting activity bumps [22,23].

The DPX agent

The DPX agent coordinated perception and memory of stimuli, via ring attractors, to deter-

mine its actions. The parameters for the perception and memory rings were selected based

upon their inertia to activity bump jumping (P & M in Fig 3). The NMDA receptor conduc-

tance parameter values for the pyramidal cells and interneurons of the perception network

were 0.37 μS and 0.30 μS, respectively. Similarly, the memory network’s NMDA receptor con-

ductance parameter values were 0.37 μS and 0.35 μS for the pyramidal cells and interneurons,

respectively. This set of parameter values for the DPX agent will henceforth be referred to as

the neurotypical agent. The transition from maintaining the current activity bump to switch-

ing to the probe activity-bump representation, inertia, were at afferent conductances of 0.8 μS

for the perception network and 1.1 μS for the memory network.

Stimulus information was fed forward through the agent’s architecture (Fig 4A). Stimulus

information entered the agent via an afferent current to the pyramidal neurons of the percep-

tion ring attractor. The AMPA-mediated receptor conductance of this afferent current was set

to 1.0 μS, which was above the perception network’s inertia to change. Firing of pyramidal

cells in the perception network fed stimulus information forward to the pyramidal cells of the
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memory network. These weights were localized, but relatively weak; the sum of connection

weights to any given pyramidal cell of the memory network from the perception network was

0.05. This was substantially less than the normalization to 1 for the ring-attractor intraconnec-

tions, and was weak enough to ensure that the neurotypical agent’s memory network would

not easily jump from the cue representation to the probe representation.

The information that was represented within the perception and memory networks was

used to determine the agent’s actions. If the similarity index of the network’s current activity

to a stimulus was less than 0.75, then it’s degree of similarity was constantly fed forward to the

two response accumulators. We used the representational similarity index as a proxy for the

relative strength of the current stimulus against other possible stimuli representations. The

current similarity index value was subtracted from 1, then multiplied by a weight parameter,

and finally added to one of two response accumulators. The response accumulators were used

to determine the likelihood of the agent making a left or right action. These response accumu-

lators were assumed to be activated through an NMDA-mediated process, which was simu-

lated as a simple first-order kinetic that increased by the connection weight from the

perception or memory network when a EPSP was produced and exponentially decayed with a

mean lifetime of 80 ms. The connections from perception and memory (Fig 4A) were weighted

to favor the ‘right’ (i.e., not-target) response with weights of 1.25 from the memory circuit

while it represented the B cue (activity bump at 0.7π) and 2.00 from the perception circuit

while it represented the Y probe (activity bump at 1.7π). The connections to the ‘left’ (i.e., tar-

get) response accumulator had weaker weights of 1.00 from the memory circuit while it repre-

sented the A cue (activity bump at 0.3π) and 0.25 from the perception circuit while it

represented the X cue (activity bump at 1.3π). These weights were smaller than from the non-

target response because B and Y stimuli require that the agent override the action suggested by

A and X stimuli. These weights were chosen to reflect the pattern of deficits observed in

humans when they do not perform well on the DPX task (see S2 Fig for the rationale and sup-

porting information).

To translate the response accumulation into action, softmax [40] was combined with a

drift-diffusion-esque model (DDM) that was used to create the probabilities of engaging in a

left or right response from two response accumulators. At every time step, softmax set the

agent’s action probabilities via

P að Þ ¼
esa=t
P
iesi=t

where a is the action, s is the first-order kinetic’s value, i is all possible actions, and τ controls

how strongly the larger kinetic determines the action. The parameter τ was set to 15, which

created a strong preference for the response accumulator with the greater value. This softmax

step was necessary, because there is no linear combination of weights that generates correct

responding. This step can be thought of as creating two attractor states for each potential

action.

The response accumulation and softmax steps created a number of features that would be

expected in a DDM (Fig 4B) [28,29]. When reaching the probe period the response process

was initiated when the perception network represented either an X or Y probe, which is differ-

ent from the probe’s starting time, and is analogous to the start-time (t) parameter when fitting

a DDM. The agent’s response could be biased (z parameter in a DDM) towards either a left or

right action due to the influence of the cue on decision making. The representational informa-

tion from the perception network altered the agent’s likelihood of engaging in a left response

over time, which is similar to the drift-rate parameter (v) in a DDM. We utilized noisy left and
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right collapsing decision-boundaries due to the network probability of response being between

0 and 1, which were analogous to the a parameter in DDM models but included the noise that

is typically added to the accumulation process. The intercept and slope of the collapsing

boundaries were independently randomized, which resulted in faster collapsing thresholds for

either the left or right response on any given trial. Once either decision-boundary crossed the

response probability, which was evaluated at every ms, the agent engaged in the crossed deci-

sion-boundary’s associated action at that time. The left decision boundary’s starting threshold

was selected from a Gaussian distribution with a mean of 1.15 and standard deviation of 0.075.

The default slope was set to reach a response probability of 0 at 500 ms after probe representa-

tion, but was multiplied by a random Gaussian with a mean of 1.0 and a standard deviation of

0.45. Since the probability of a right response was one minus the probability of a left action,

the right decision boundary was a mirror of this process and started at threshold less then 0

(Fig 4B). If a response was not chosen by the end of the trial, the thresholds and slopes were

resampled. The overall decision making process is most akin to a leaky integration model

[41,42] as the accumulators are primarily influenced by recent information and compete with

another to determine the action, which has been argued to be similar to how the attractor

dynamics of a LIF based agent stochastically selects responses [41].

Supporting information

S1 Fig. Task Error Rates Without ISI Distractors.

(TIF)

S2 Fig. Across Study Metaanalysis of the Relationships Between the Error Rates on Differ-

ent Trial Types.

(TIF)
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