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p ¼ 0.015). Patients with baseline [LVGLS] <6.5% had
significantly lower survival rates compared with
those with baseline [LVGLS] $6.5% (p ¼ 0.017 by
log-rank test) (Figure 1D). From multivariable
analysis, baseline [LVGLS] also showed significant
additive predictive values for all-cause mortality in
addition to the current staging system and response
to chemotherapy (Figure 1E).

In conclusion, LVGLS showed a modest but sig-
nificant correlation with amyloid load and log NT-
proBNP. However, despite a modest relationship,
LVGLS showed a significant additive prognostic
value. This finding suggested that impaired LV strain
could be a prognostic factor reflecting more than a
simple amyloid load, encompassing overall impact
from structural damage due to amyloid protein
deposition, cardiotoxicity, and fibrosis. With intro-
duction of new therapeutic options for patients with
AL amyloid, LVGLS could be used as an imaging
biomarker to improve risk stratification.
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Proof-of-Principle Demonstration of Direct

Metabolic Imaging Following Myocardial

Infarction Using Hyperpolarized 13C CMR
Although ischemic heart disease is a major contrib-
utor to global disease burden, there remains scope to
improve diagnosis, risk stratification, and manage-
ment of myocardial ischemia. The recent ISCHEMIA
(International Study of Comparative Health Effec-
tiveness With Medical and Invasive Approaches) trial
showed that after an average follow-up of 3.2 years,
invasive therapy did not reduce major adverse car-
diac events compared with optimal medical therapy
in patients with stable ischemic heart disease (1). The
presence of ischemia invariably leads to alterations in
the balance between aerobic and anaerobic
metabolism, and therefore, noninvasive detection of
these metabolic alterations may lead to
improvements in patient care pathways. Although
current cardiac magnetic resonance (CMR)
techniques are able to assess altered perfusion and
scar burden, they cannot directly measure metabolic
alterations. In addition, whereas positron emission
tomography with 18F-fluorodeoxyglucose allows
assessment of glucose uptake, it is unable to report
on the metabolic fate of glucose beyond its initial
phosphorylation by hexokinase, and so a new
approach is required.

The fate of glucose metabolism after glycolysis
depends on the prevailing metabolic conditions and
thus has the potential to be used diagnostically, with
the equilibrium between pyruvate dehydrogenase
(PDH) activity and lactate dehydrogenase (LDH) ac-
tivity indicating the balance between aerobic and
anaerobic metabolism (2). The recently demonstrated
technique of hyperpolarized cardiac magnetic
resonance (hp-CMR) offers the ability to
noninvasively monitor PDH and LDH activity (3),
and may provide the potential for direct imaging of
metabolism in the ischemic heart (Figure 1A).
Whereas this potential has been established in
animal models (4,5), we present here the first hp-
CMR images of pathological human myocardial
metabolism in ischemic heart disease.
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Studies were approved by the National Research
Ethics Committee (17/WM/0200). Hyperpolarized
[1-13C]pyruvate was prepared in a GE SPINlab hyper-
polarizer (GE Healthcare, Chicago, Illinois) and
administered intravenously (0.1 mmol/kg) (3).
Hyperpolarized 13C images were acquired on a
Siemens 3T Tim Trio scanner (Siemens Healthineers,
Erlangen, Germany) using a cardiac-gated sequence
consisting of interleaved spectral-spatial excitations
of pyruvate, lactate, and bicarbonate resonances
followed by a hybrid-shot spiral (HSS) readout (6).
A 2-dimensional implementation of HSS was used in
case 1 and encoded 3 short-axis slices (basal, mid,
apical) of 20-mm thickness per heartbeat with
nominal 10-mm in-plane resolution (flip angles:
pyruvate 12�; lactate/bicarbonate 60�). Imaging was
performed over an end-expiration breath-hold
started 22 s after injection; all 3 slices were encoded
each heartbeat for 1 metabolite, and the 3
metabolites were acquired over 3 subsequent
heartbeats in the order pyruvate, bicarbonate, and
lactate. Three interleaves were used to acquire the
presented data, requiring 9 heartbeats in total. For
case 2, a 3-dimensional implementation of HSS was
used and encoded a 384 � 384 � 120 mm3 volume
with nominal 6-mm in-plane resolution and 3
excitations per heartbeat (flip angles: pyruvate 6�;
lactate/bicarbonate 30�) and 12 excitations per
volume. As for the 2-dimensional case, 3 interleaves
were used to acquire the presented data, requiring
36 heartbeats in total.

Case 1: A 67-year-old man with type 2 diabetes
presented with chest pain, non–ST-segment elevation
myocardial infarction (cardiac troponin I 44 ng/l), and
electrocardiographic evidence of anterolateral terri-
tory ischemia. Coronary angiography revealed dis-
ease of the distal left main and proximal left anterior
descending coronary arteries with angiographic
appearances consistent with a chronic total occlusion
of the right coronary artery, which was dominant.
CMR and late gadolinium enhancement imaging were
undertaken to assess viability and inform revascu-
larization. This demonstrated 2 separate areas of
infarction: subendocardial infarction (25% to 50%,
intermediate viability, presumed acute) of the mid-
and apical anterior and anterolateral walls (4 of 17
segments), and transmural (75% to 100%, nonviable,
presumed old) infarction of the inferior septum (2
of 17 segments) (Figure 1B). Hyperpolarized [1-13C]
pyruvate imaging (Figure 1C) was undertaken 5 days
following the onset of chest pain and showed an
absence of 13C-bicarbonate and [1-13C]lactate signals
in the nonviable inferior septum, but 13C-
bicarbonate and [1-13C]lactate signals were seen in
the anterior wall in the region of the subendocardial
infarction, demonstrating ongoing oxidative
metabolism in the recently infarcted anterior wall.

Case 2: A 76-year-old woman presented 24 h after a
severe episode of chest pain to a regional hospital on
the island of Jersey. By this time, anterior Q waves
were seen on the electrocardiogram; however, pain
persisted and ST-segment elevationwas still apparent,
so the patient was treated with intravenous thrombo-
lytic therapy and flown to our center with the capa-
bility for primary coronary intervention for ongoing
management. On arrival, the patient was stable
without symptoms; echocardiography revealed an
akinetic anterior wall. On day 4 following the first
onset of pain, CMR was undertaken to assess anterior
wall viability before invasive angiography. Hyper-
polarized [1-13C]pyruvate imaging was also under-
taken at this time. Late gadolinium enhancement
imaging revealed transmural (75% to 100%, nonviable)
infarction in the mid- and apical anterior walls,
alongside the mid-anterolateral and mid-apical lateral
walls (5 of 17 segments), with significant microvascular
obstruction typical of acute infarction (Figure 1D).
Hyperpolarized [1-13C]pyruvate imaging (Figure 1E)
showed absent 13C-bicarbonate and [1-13C]lactate
signals in the transmural infarction, but both 13C-
bicarbonate and [1-13C]lactate signals were observed
in the inferior lateral walls. Management options
were discussed with the patient, and a conservative
course of action was pursued in the first instance,
with invasive angiography reserved for any
recurrence of symptoms.

This is the first report to our knowledge of in vivo
imaging of pathological metabolism in the human
heart using hp-MRI. These 2 cases show that, whereas
nonviable segments with transmural infarction show
reduced PDH-mediated aerobic conversion to 13C-bi-
carbonate, viable segments following subendocardial
infarction have preserved 13C-bicarbonate signal. This
shows the difference in ongoing oxidative meta-
bolism (the hallmark of viability) that exists between
viable (hibernating) and nonviable myocardium.
Further studies are now needed to investigate
whether such a biomarker could be useful in strati-
fying those that would benefit from revasculariza-
tion. Despite the presence of reduced PDH flux in the
diabetic heart, previous work has demonstrated the
potential for this technique to be applied in the dia-
betic heart (7). Because the subject in case 1 also had
type 2 diabetes, this work further emphasizes the
ability of hp-MRI to image metabolism in the
diabetic heart.

In addition, we have shown that following hyper-
polarized [1-13C]pyruvate injection, [1-13C]lactate



FIGURE 1 Proof-of-Principle Metabolic Images Acquired From the Ischemic Heart Using Hyperpolarized 13C CMR
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(A) Schematic representation of metabolic pathways observable following injection of hyperpolarized [1-13C]pyruvate. (B and C) Represen-

tative late gadolinium/metabolic images acquired from Subject #1. (D and E) Representative late gadolinium/metabolic images acquired from

Subject #2. CMR ¼ cardiac magnetic resonance; HSS ¼ hybrid-shot spiral; LDH ¼ lactate dehydrogenase; PDH ¼ pyruvate dehydrogenase.
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signals were absent in the nonviable sections, but
were seen in the viable recently infarcted segment in
case 1 and in the remote myocardium in case 2.
Although this possibly represents residual ischemia
in the infarcted segment in case 1, this may also be
explained by inflammatory changes. The origin of
these [1-13C]lactate signals requires further
clarification.

These results demonstrate the emerging potential
for hyperpolarized imaging in ischemic heart disease.
The detection of downstream conversion to either
bicarbonate or lactate after hyperpolarized [1-13C]py-
ruvate injection has the potential to characterize
the metabolic state of viable myocardium non-
invasively. Because this can be achieved in a single
90-s scan, and in the absence of ionizing radiation,
this is an exciting prospect for future cardiovascular
research.
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LETTERS TO THE EDITOR
Hemodynamic Assessment in the

Cardiac Intensive Care Unit
May Echocardiography Solve the Conundrum?
Jentzer et al. (1) performed a retrospective study to
investigate the association among bidimensional (2D)
echocardiography-derived hemodynamic
parameters, Society for Cardiovascular Angiography
and Interventions shock stages, and in-hospital
mortality in patients admitted to the cardiac
intensive care unit (CICU). Interestingly, a 2D-
echocardiographic assessment of the hemodynamic
status at admission showed to be significantly
predictive of in-hospital outcomes. Specifically, after
correcting for potential confounders, a reduced
stroke volume index (<35 ml/m2) and increased left
ventricular filling pressures (mitral E/e0 ratio >15)
were independently associated with 2-fold and 50%
increased risk of in-hospital mortality, respectively (1).

Hemodynamic data can be determinant in char-
acterizing the type of shock and guiding patient
management in critically ill patients (2). On the
contrary, previous observational studies and
randomized controlled trials in shock patients did
not only fail to show any benefit of invasive
hemodynamic assessment, but found in most cases
an increased risk of in-hospital mortality. This
finding was likely related to the complications of
an invasive hemodynamic assessment, which
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