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ABSTRACT

Background. Despite surgical resection, early lung ade-

nocarcinoma has a recurrence rate of 20–50%. No clear

predictive markers for recurrence of early lung adenocar-

cinoma are available. Targeted next-generation sequencing

(NGS) is rarely used to identify recurrence-related genes.

We aimed to identify genetic alterations that can predict

recurrence, by comparing the molecular profiles of patient

groups with and without recurrence.

Methods. Tissues from 230 patients with resected stage I–

II lung adenocarcinoma (median follow-up: 49 months)

were analyzed via targeted NGS for 207 cancer-related

genes. The recurrence-free survival according to the

number and type of mutation was estimated using the

Kaplan–Meier method. Independent predictive biomarkers

related to recurrence were identified using the Cox pro-

portional hazards model.

Results. Recurrence was observed in 64 patients (27.8%).

In multivariate analysis adjusted for age, sex, smoking

history, stage, surgical mode, and visceral pleural invasion,

the CTNNB1 mutation and fusion genes (ALK, ROS1,

RET) were negative prognostic factors for recurrence in

early-stage lung adenocarcinoma (HR 4.47, p = 0.001; HR

2.73, p = 0.009). EGFR mutation was a favorable factor

(HR 0.51, p = 0.016), but the CTNNB1/EGFR co-muta-

tions were negative predictors (HR 19.2, p\ 0.001). TP53

mutation was a negative predictor compared with EGFR

mutation for recurrence (HR 5.24, p = 0.02). Conclusions:

Targeted NGS can provide valuable information to predict

recurrence and identify patients at high recurrence risk,

facilitating selection of the treatment strategy among close

monitoring and adjuvant-targeted therapy. Larger datasets

are required to validate these findings.

Complete surgical resection with mediastinal lymph

node dissection is the curative treatment for patients with

early-stage lung cancer.1 However, 20–50% of these

patients experience recurrence and eventually die of

recurrent lung cancer (5-year overall survival, 58–73%).2,3

Thus, recurrence hampers the chances of complete cure

after early resection of lung cancer. To prevent relapse,

adjuvant chemotherapy is recommended for patients with

stage II–III lung cancer. However, the benefit for stage IB

patients is controversial, and it is not recommended for

stage IA patients despite the high relapse risk. Adjuvant

chemotherapy for stage IB is optional and recommended

for patients according to pathologic risk factors such as

visceral pleural invasion, poor differentiation, and size of
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the tumor without considering genetic mutations. Guideli-

nes are needed for genetic risk stratification for stage I

patients with worse than expected prognosis.

Genetic alterations are emerging as biomarkers with

increasing importance for treatment selection and outcome

of patients with non-small-cell lung cancer (NSCLC).

Numerous biomarker studies have been conducted to pre-

dict recurrence after early resection using various

platforms, such as gene expression profiling, quantitative

reverse transcriptase-polymerase chain reaction (PCR),

microRNA assays, mass spectroscopy, and next-generation

sequencing (NGS).4 However, the genetic biomarkers for

recurrence remain undetermined, and the molecular

mechanism of tumor recurrence 1–2 years after complete

resection is unknown.3 Mutations in KRAS,5 TP53,6 and

EGFR7 have been evaluated as genetic biomarkers for

recurrence in early-stage lung cancer. However, the results

have been inconsistent.8

The development of NGS has enabled the detection of

multiple genetic alterations in a single assay. By using this

approach, several co-occurring mutations in addition to

driver mutations, which influence clinical outcomes, can be

identified simultaneously. NGS studies have been per-

formed to find the correlation between genetic alterations

and clinical outcomes such as drug response, progression-

free survival (PFS), and overall survival (OS) at advanced

stages.9,10 However, only a few studies have attempted to

describe recurrence-associated genomic alterations in

early-stage NSCLC.11,12 In this study, we hypothesized

that specific genetic alterations might affect recurrence. To

identify genetic risk factors for recurrence, we compared

the molecular profiles of patient groups with and without

recurrence and attempted to reveal what genetic alterations

are related to recurrence of resected early lung adenocar-

cinoma through targeted NGS analysis.

METHODS

Patients and Sample Collection

The study cohort consisted of 230 patients who under-

went surgery from September 2005 to May 2017 and were

histologically confirmed with stage I–II lung adenocarci-

noma according to the 8th American Joint Committee on

Cancer (AJCC) criteria.13 The records were retrospectively

reviewed. In addition to pathologic data, age, sex, smoking

history, stage, surgical information (surgery date, methods

and extent of resection, lymphatic and blood vessel inva-

sion, and visceral-pleural invasion), and the dates of

recurrence and death were collected. We excluded patients

who concomitantly had another cancer and received any

neoadjuvant treatment or radiotherapy. Patients underwent

preoperative staging with CT, PET scans, and brain MRI.

The clinical outcome data were collected until November

2018. The study protocol was approved by the Konkuk

University Medical Center Institutional Review Board

(approval number: KUH 1210049), and the need for writ-

ten informed consent from the participants was waived due

to the retrospective nature of this study and the lack of

harm to patients.

Next-Generation Sequencing Processing

DNA was extracted from formalin-fixed, paraffin-em-

bedded tissues of 201 patients with pulmonary

adenocarcinoma using the QIAamp DNA kit (Qiagen)

according to the manufacturer’s protocol, and targeted

NGS for 170 cancer-related genes and 37 fusion-related

genes (KF1 panel, Supplementary Table S1) was per-

formed using the Custom Cancer Panel v2.1 (Agilent

Technologies, Inc., Santa Clara, CA, USA). Genomic DNA

(200 ng) was fragmented using a Covaris E220 instrument

(Covaris, Woburn, MA, USA), and subsequently subjected

to end repair, tailing, and adapter ligation. Unligated

adapters were removed with Agencourt AMPure XP beads

(Beckman Coulter, Beverly, MA, USA). The resulting

libraries were PCR-amplified and purified with Agencourt

AMPure XP beads. Libraries were sequenced on an Illu-

mina HiSgeq 2500 platform with an average sequencing

depth of 1000 9 . Unfortunately, matched germline DNA

of patients as a normal control for mutation analysis was

not available for this retrospective study.

NGS Data Analysis

Raw sequencing data were processed, and variants were

called using the Macrogen Inc. bioinformatics pipeline.

The detailed process is described in Supplementary

Method 1. Somatic mutations, including single nucleotide

variants (SNVs), small insertions and deletions (Indels),

and gene rearrangements and copy number variations

(CNVs) were identified. Pathogenic somatic mutations

whose variant allele frequencies (VAFs) were greater than

2% were regarded as significant actionable mutations and

were used for analyses. Fusion genes were determined

using the Ventana (D5F3) CDx assay or fluorescent in situ

hybridization (FISH) for anaplastic lymphoma kinase

(ALK), quantitative RT-PCR (Amoy) for ROS1, and FISH

for RET rearrangement. Detailed FISH or RT-PCR meth-

ods are provided in Supplementary Method 2.
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Patient Follow-Up

We examined patients at 2-month intervals on an out-

patient basis. The follow-up evaluation included physical

examination, chest radiography, and blood examination,

including chest CT scans. Whenever any symptoms or

signs of tumor recurrence were detected, CT scans of the

chest and abdomen, PET-CT, and brain MRI evaluations

were performed. We diagnosed tumor recurrence based on

physical examination and diagnostic imaging findings,

which was confirmed histologically when feasible. Sec-

ondary primary lung cancer was differentiated from

recurrent NSCLC according to the criteria proposed by

Martini and Melamed.14 Date of recurrence was defined as

the date of histologic proof or, in patients whose diagnoses

were based on clinicopathological findings, the date of

identification by the physician.

Statistical Analysis

Clinical and pathological parameters of the patients

were investigated by v2 analysis or Fisher’s exact test

(when appropriate) for categorical variables. Prognostic

values were assessed by survival analysis. Recurrence-free

survival (RFS) was defined as the time from surgery to

recurrence or last follow-up in surviving patients. RFS

percentages were calculated using the Kaplan–Meier

method based on the genetic alteration subgroup, and the

differences were tested by the log-rank test. The Cox

proportional hazards model was used to test the effect of a

mutation subtype adjusted for multiple clinical/pathologi-

cal factors (sex, age, smoking status, stage, and surgical

method). For all calculations, the tests were two-sided, and

significance was set at 5%. Analyses were performed using

the Statistical Package for the Social Sciences (SPSS) for

Windows version 25 (SPSS, Inc., Chicago, IL, USA).

RESULTS

Clinicopathological Characteristics of the Patients

The study included 230 patients with resected stage I–II

lung adenocarcinoma at our institution from 2005 to 2017.

Recurrence was observed in 64 of the 230 patients included

in the study (27.8%). The median follow-up time was

approximately 49 months. All patient characteristics are

summarized in Table 1. Briefly, 48.3% of the patients were

older than 65 years, 53.9% were male, and 49% were

smokers. Most patients (82.2%) underwent radical lobec-

tomies and 21% had visceral pleural invasion tumors.

Patients with visceral-pleural invasion showed a signifi-

cantly higher recurrence rate than patients without invasion

(48.3% vs 20.5%, p\ 0.001).

EGFR mutations were the most frequently observed

alteration (52.2%), followed by mutations in TP53 (18.3%)

and KRAS (14.3%) (Supplementary Fig. 1). Next, we

compared the frequency of genetic alterations according to

recurrence status. Patients with no recurrence had more

frequent EGFR mutations than patients with recurrence

(58.4% vs 35.9%, p = 0.002), whereas patients with

recurrence had a higher frequency of CTNNB1 mutation

[12.5% (8/64) vs 0.6% (1/166), p\ 0.001] and fusion

genes [14.0% (9/64) vs 1.8% (3/166), p = 0.002] (Fig. 1a).

Eight of 9 patients with CTNNB1 mutations and 9 of 12

patients with fusion genes experienced recurrence. Indi-

vidual genetic alterations in the 230 patients with early-

stage I–II lung adenocarcinoma are shown in Fig. 1b.

Association Between the Number of Genetic Alterations

and Clinical Factors for Recurrence

We investigated how the number of genetic alterations

was distributed by performing targeted NGS. We observed

that most patients (88.3%) had at least one pathogenic

mutation. However, RFS showed no significant difference

by the number of pathogenic alterations (Fig. 2, p = 0.13).

Interestingly, patients without driver mutations (n = 23,

11.4%) showed short RFS similar to that of patients with

multiple mutations (Supplementary Fig. 2). The number of

genetic alterations did not correlate with age or smoking

history either, unlike previous research results (data not

shown). This difference might be due to the use of targeted

NGS, rather than whole gene or whole exome sequencing,

which might have revealed the association detected in

previous research.

Effect of Actionable Genetic Alterations

and Clinicopathologic Factors on Recurrence in Early-

Stage Lung Adenocarcinoma

We compared the RFS for all 230 patients according to

clinical or pathological factors. Stage at diagnosis was

significantly associated with RFS (Fig. 3a, HR 2.73,

p = 0.001). Patients with poorly differentiated tumors also

showed shorter RFS than patients with well or moderately

differentiated tumors (HR 2.0, p = 0.03; Fig. 3b).

We compared RFS according to individual genetic

alterations. Notably, CTNNB1 mutations were a significant

poor prognostic marker for recurrence in univariate anal-

ysis (p\ 0.001) (Fig. 3c). In multivariate analysis adjusted

by age, sex, smoking history, stage, and surgery modality,

the presence of CTNNB1 mutations was significantly

associated with poor RFS (HR 4.47, CI 2.06–9.71,

p = 0.001; Table 2). Patients with ALK, ROS1, or RET

rearrangements were categorized as one group because the

frequency of fusion genes was very low. The fusion genes
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(ALK, ROS1, and RET) were also independent prognostic

genetic markers for recurrence in multivariate analysis (HR

2.73, 95% CI 1.28–5.86, p = 0.009; Fig. 3d, Table 2).

EGFR mutations were good prognostic factors for

recurrence (HR 0.51, 95% CI 0.29–0.88, p = 0.016), and

tumors with EGFR/TP53 dual mutations showed similar

RFS to single EGFR mutations (HR 1.89, p = 0.36). In

contrast, the EGFR/CTNNB1 double mutation showed a

significantly shorter RFS in multivariate analysis. (HR

19.2, p\ 0.001) (Fig. 3e, Table 2). Patients with a single

TP53 alteration had shorter RFS than patients with a single

EGFR mutation (HR 5.24, p = 0.02). Patients with KRAS/

TP53 dual-mutation also experienced significantly shorter

RFS than those with an EGFR mutation (HR 11.5, CI

2.0–66.2, p = 0.006) (Fig. 3e, Table 2).

Individual Characteristics of Patients with CTNNB1

Mutations or Fusions

We investigated the clinical characteristics and patterns

of recurrence in patients harboring CTNNB1 mutations or

fusion genes. The prevalence of CTNNB1 mutations was

low (3.9%, 9/230), but most of them (88.8%, 8/9) with

these mutations experienced recurrence. All patients who

experienced recurrence had a missense mutation of

CTNNB1 in exon 3. The patient without recurrence despite

the CTNNB1 mutation had a stop gain mutation in exon 4.

Most cases with recurrence were distant metastasis (6/8; 2

cases in brain, 3 cases of multiple lung metastases, and 1

case of Lt adrenal). Therefore, the CTNNB1 mutations

seem to be associated with distant metastases rather than

TABLE 1 Patients’

clinicopathological

characteristics

Characteristics All patients Recurrence (%) No recurrence (%) p value

The number of patients 230 64 (27.8) 166 (72.2) \ 0.001

Age 64.3 ± 11.5 62.3 ± 12.6 64.9 ± 10.9 0.12

\ 65 years 119 (51.7) 38 (31.9) 81 (68.1) 0.22

C 65 years 111 (48.3) 26 (23.4) 85 (76.6)

Sex 0.54

Male 124 (53.9) 34 (27.4) 90 (72.6)

Female 106 (46.1) 30 (28.3) 76 (71.7)

Smoking history 0.83

Non-smoker 116 (51.0) 33 (28.4) 83 (71.6)

Ever-smoker 114 (49.0) 31 (27.2) 83 (72.8)

Smoking dose 15.4 ± 20.2 17.0 ± 21.8 15.7 ± 19.5 0.67

Stagea \ 0.001

IA(IA1 ? IA2 ? IA3) 141 (61.3) 27 (19.1) 114 (80.9)

IB 61 (26.5) 23 (37.7) 38 (62.3)

IIA 8 (3.5) 2 (25) 6 (75)

IIB 20 (8.7) 12 (60) 8 (40)

Surgical procedure 0.17

Sublobar resection 41 (17.8) 15(36.6) 26 (63.4)

Lobectomy 189 (82.2) 49 (25.9) 140 (74.1)

Tumor differential grade (n = 183)b 0.16

WDc 47 (25.7) 8 (17.0) 39 (83.0)

MDd 115 (62.8) 31(27.0) 84 (73.0)

PDe 21 (11.5) 8 (38.1) 13 (61.9)

Pathologic invasion

Visceral-pleural invasion 60 (21.0) 29 (48.3) 31 (51.7) \ 0.001

Lympho-vascular invasion 14 (4.9) 9 (64.3) 5 (35.7) 0.002

Adjuvant chemotherapy 61 (26.5) 28 (45.9) 33 (54.1) \ 0.001

Death 26 (11.3) 24 (92.3) 2 (7.7) \ 0.001

Bold values denote statistical significance at the p\ 0.05 level
aPathologic stage was determined according to the American Joint Committee on Cancer (8th edition)
bHistologic differentiations were available for 183 of 230 patients
cLepidic type adenocarcinoma was classified as well differentiated (WD) tumor
dAcinar and papillary type adenocarcinomas were classified as moderately differentiated (MD) tumor
eMicropapillary and solid type adenocarcinomas were classified as poorly differentiated (PD) tumor
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local recurrence, and similar results have been reported in

previous research15,16 (Table 3). Patients with CTNNB1/

EGFR co-mutations showed a significantly shorter RFS

than patients with a single EGFR mutation (Fig. 3c,

p\ 0.001). A single EGFR mutation is a good prognostic

factor, but we should carefully examine the co-existence of

CTNNB1 mutations with an EGFR mutation to predict

recurrence. We also compared the RFS between the adju-

vant therapy group and observation group in patients with

the CTNNB1 mutation. There was no significant difference

in RFS (p = 0.51, Supplementary Fig. 3). Fusion genes

such as ALK, ROS1, or RET were rare mutations with a

frequency of less than 5%, but most patients experienced

recurrence. The recurrence pattern associated with fusion

mutations was also distant metastases, for example, in the

brain (Table 3).

The CTNNB1 and fusion mutations are the genetic

biomarkers to predict recurrence, allowing patients with the

mutation to treat Tyrosine Kinase Inhibitor (TKI) in time.

Therefore, overall survival data and treatment outcomes of

TKI after recurrence are necessary to measure the benefit

of genetic information by NGS. However, most patients in

our study refused further treatment due to old age or high

TKI cost, and only 4 patients received TKI treatment after

recurrence. The data to analyze the benefit are insufficient

in our study, so larger studies will be required.

DISCUSSION

Mutation profiles of stage I–II lung adenocarcinoma

were analyzed using targeted NGS with panels of 170

cancer-related genes and 37 fusion-related genes. To
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identify the most potent genomic alterations contributing to

recurrence, we analyzed early-stage lung adenocarcinoma

with low tumor burden. As a result, the CTNNB1 muta-

tions or fusion genes were independent negative predictive

factors in multivariate analysis despite the resected small

size cancers. Relapse caused by CTNNB1 mutation or

fusion genes accounted for approximately 30% of all

recurrence cases of stage I lung adenocarcinoma.

In our study, EGFR mutations (52.2%) were the most

frequent genetic alterations because of the prevalence of

lung adenocarcinoma in Asia.17–19 Notably, the frequency

of TP53 mutations (18.3%) was lower than that reported in

previous studies (30–60%).19,20 The frequency of TP53

mutations increased as the stage increased.8 The reason for

the low frequency of TP53 can be explained by our cohort

of early-stage lung adenocarcinoma. The prevalence of

KRAS (14.3%) was similar to that in previous studies.19

RFS was not significantly affected by the number of

pathogenic mutations. Interestingly, patients without driver

mutations (n = 23, 11.4%) showed as short RFS as those

patients with multiple mutations (Supplement Fig. 2). The

unknown genetic alterations, RNA editing factors muta-

tions, transcription factor mutations, or epigenetic

alterations, except known driver mutations, might cause

recurrence in the tumors without alteration.11 The number

of mutations in the targeted NGS did not seem to be

affected by clinical factors such as age or smoking history.

However, previous whole gene or whole exon sequencing

studies showed an association with the number of muta-

tions and clinical factors. This may be because the number

of mutations may vary depending on the number of cancer-

related genes in the NGS panel, the sequencing depth, or

cutoff levels called actionable mutations. In our targeted

NGS, the number of cancer-related genes in the NGS panel

(200 genes) was fewer than that in previous studies in

whole exon sequencing (more than 300 genes).

We analyzed the RFS of subgroups classified according

to the patient groups with multiple pathogenic mutations

(Fig. 3e). EGFR mutations have been shown to be good

prognostic markers.7,18,21 KRAS or TP53 mutations have

been reported as poor prognosis markers.20,22 In our study,

the RFS of an EGFR mutation and EGFR/TP53 co-muta-

tions did not show any difference in recurrence. Our results

were in accordance with the LACE (Lung Adjuvant Cis-

platin Evaluation)-Bio study.23 There was no significant

difference in RFS among patients with KRAS mutations

and KRAS wild-type tumors (Supplementary Fig. S4).

However, RFS in patients with KRAS/TP53 co-mutation

was shorter than that in patients with a single KRAS

mutation. These observations were consistent with previ-

ous studies.15,24 We need to consider the combined effects

of TP53 and KRAS mutations on recurrence when evalu-

ating the outcome.

Mutations in the gene encoding b-catenin, CTNNB1

mutations, were related to recurrence of early-stage lung

adenocarcinoma in our study. We examined the reasons

why most of the patients with CTNNB1 mutations had

recurrence despite complete tumor resection. Accumulat-

ing data suggest that the Wnt/b-catenin pathway is

involved in tumorigenesis and metastasis of lung cancer. In

the normal state, b-catenin is degraded by the destruction

complex consisting of adenomatous polyposis coli (APC),

axin, and glycogen synthase kinase 3b (GSK3b). If it is not

degraded by the aberration of Wnt/b-catenin signaling, it

remains in the cytoplasm.25 The increased b-catenin in the

cytoplasm moves to the nucleus, acts as a transcription

factor to activate cell cycles continuously, and induces

tumor formation.15,16,26,27 In our study, relapses of resected

tumors with CTNNB1 mutations usually occur in distant

organs. Considering the reports that CTNNB1 mutations

were related to metastasis, they were thought to be related

to micrometastasis undetected on radiologic or pathologic

examination at the time of surgery. Furthermore, CTNNB1

mutations were more frequently detected in EGFR mutant

tumors than in EGFR wild-type tumors. In a previous

study, Nakayama et al. reported that b-catenin contributed

to EGFR mutant-tumor development.16

We analyzed the effect of adjuvant chemotherapy in

patients with CTNNB1 mutations. Unfortunately, the

patients with CTNNB1 mutations experienced recurrence

irrespective of adjuvant chemotherapy (p = 0.51). Adju-

vant chemotherapy for CTNNB1 mutation is not effective

in preventing recurrence. CTNNB1s have been reported to

be resistant to chemotherapy in previous research.25 Thus,
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patients with CTNNB1 mutations need intensive surveil-

lance for the early detection of recurrence and targeted b-

catenin pathway therapy in clinical trials should be the

treatment for them.28

We also observed that fusion genes (ALK, ROS1, or

RET) were related to shorter RFS. In previous reports,

early ALK positivity of the tumor was associated with a

poor outcome in lung adenocarcinoma.29–31 Therefore, it is

important to treat with adjuvant-targeted therapy or

pemetrexed-based adjuvant chemotherapy for resected

early stage lung cancer with ALK or fusion mutation.32

Targeted NGS has many benefits for early lung adeno-

carcinoma. It provides rich genetic information with

reduced cost and time compared with whole exome

sequencing. It can detect not only targetable driver muta-

tions but also rare or non-hotspot mutations to predict

prognosis, such as CTNNB1 mutations and fusion genes.

NGS information enables the enrollment of relapsed

patients in ongoing clinical trials for new targeted therapy.

Recently, there have been many targeted therapies based

on NGS information. For example, MRTX849 and

AMG51033 are approved by the FDA as KRAS G12C

inhibitors; RET inhibitor, BLU-667, LOXO-292, and

RXDX-105 are in clinical trials;34 and crizotinib and cer-

itinib are available as ALK/ROS inhibitors.35 In addition,

NGS studies help to assess recurrence risk and to select

treatment strategies accordingly. For example, a short-term

follow-up and adjuvant-targeted therapy could be per-

formed for patients in the high-risk group with CTNNB1

mutation or fusion genes.36,37

One of the strengths of our research is that our cohort is

homogeneous and consisted of early-stage lung adenocar-

cinoma only, not including squamous cell carcinoma or

advanced stage, which is optimal for identifying the most

potent recurrence-related oncogenes. Second, our study has

no physician selection bias because most of the early-stage

lung adenocarcinomas at our institution during the past

12 years were included, and NGS sequencing was per-

formed by an outside company (Macrogen Inc.), which has

a well-established and validated NGS pipeline. Third, our

patients had a long-term follow-up period of more than

4 years. Lastly, the NGS results are accurate because all

samples are from surgical resection, not from small per-

cutaneous needle biopsy.

Our study has some limitations. First, germline muta-

tions were not excluded because we did not collect blood or

normal tissue because of the retrospective nature of the

study. To prevent reporting germline false positives, data

were filtered using a large human database and the house

database of Macrogen Inc. Second, we did not perform

TABLE 2 Univariate and multivariate analysis of RFS in early stage lung adenocarcinoma according to genetic alterations

Category Variables Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value

Age C 65 versus\ 65 0.79 0.48–1.31 0.36 0.93 0.55–1.57 0.81

Sex Male versus female 0.95 0.58–1.55 0.84 0.57 0.24–1.36 0.2

Smoking history Ever-smoker versus non-smoker 0.99 0.61–1.62 0.98 1.53 0.64–3.67 0.33

Pathologic stagea II versus I 2.73 1.51–4.95 0.003 1.69 0.85–3.37 0.13

Grade of differentiation PD versus WD/MD 2.02 0.94–4.33 0.03 2.9 1.24–6.90 0.01

Extension of surgery Sublobar resection or lobectomy 1.4 0.71–2.78 0.32 1.44 0.74–2.80 0.27

Pathologic invasion VPI versus none 2.99 1.83–4.90 \ 0.001 2.63 1.44–7.81 0.018

Adjuvant chemotherapy Adjuvant chemotherapy 2.55 1.55–4.19 \ 0.001 2.21 1.14–4.24 0.017

EGFR mutation All EGFR versus wild 0.46 0.28–0.47 0.004 0.51 0.29–0.88 0.016

EGFR/TP53 versus EGFR 1.68 0.51–5.59 0.39 1.89 0.47–7.58 0.36

CTNNB1 CTNNB1 versus wild 4.45 2.12–9.36 \ 0.001 4.47 2.06–9.71 0.001

EGFR/CTNNB1 versus EGFR 6.61 2.60–16.8 \ 0.001 19.2 4.74–78.1 \ 0.001

TP53 mutation TP53 versus wild 1.92 1.1–3.35 0.02 1.94 1.10–3.44 0.02

TP53 only versus EGFR only 4.69 1.75–12.5 0.002 5.24 1.32–20.76 0.02

KRAS mutation KRAS versus wild 1.17 0.59–2.23 0.65 0.93 0.44–1.93 0.84

KRAS only versus EGFR only 2.21 0.66–7.37 0.19 2.22 0.48–10.2 0.3

KRAS/TP53 versus EGFR only 5.68 1.84–17.5 0.002 11.5 2.00–66.2 0.006

Fusion genes ALK, ROS1, RET versus wild 3.02 1.48–6.11 0.002 2.73 1.28–5.86 0.009

CI Confidence intervals, HR Hazard ratio, EGFR Epidermal growth factor receptor, VPI Visceral-pleural invasion, PD Poor differentiation, MD
Moderate differentiation, WD Well differentiated, p values were calculated using multivariate Cox proportional hazard models, adjusted for age,

sex, smoking status, stage, and extension of surgery
aPathologic stage was determined according to the American Joint Committee on Cancer (8th edition)
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RNA-NGS sequencing to identify the fusion genes; how-

ever, the gene rearrangement results of DNA were

confirmed by FISH, RT-PCR, or D5F3 IHC. Third, our

results are not confirmed by using a large database such as

TCGA, which includes other ethnicities, because TCGA

contains data on survival but not recurrence. Fourth, the

number of patients in the study was not large. However,

230 patients is not a small number for an NGS study

focused only on early lung adenocarcinoma, compared

with previous NGS studies.11,27 The CTNNB1 and fusion

genes were rare, and the recurrence rate of early lung

cancer was low, so the number of patients with recurrence-

related specific genes was inevitably small. However, these

genes showed strong correlations with recurrence. The aim

of this research was to determine whether targeted NGS

can identify recurrence-related genes and to identify

molecular biomarkers for ambiguous stage IB risk strati-

fication. The number of patients was sufficient to achieve

this goal.

A finding in this NGS study was that CTNNB1 muta-

tions or fusion genes were independent negative prognostic

factors for recurrence in early-stage lung adenocarcinoma.

A single EGFR mutation was a good prognostic marker,

but EGFR/CTNNB1 co-mutations showed a significantly

shorter RFS even for stage I adenocarcinoma, most of

which were cured. We should consider the impact of

concomitant mutations with a conventional driver mutation

to predict recurrence risk. This study suggests that targeted

NGS provides valuable information to predict recurrence

and identify patients at high recurrence risk. In addition,

targeted NGS helps to select the optimal treatment strategy

among intensive surveillance and adjuvant-targeted

therapy.
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