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Abstract

Background: Many microRNAs (miRNAs) have been associated with asthma and chronic 

obstructive pulmonary disease (COPD). Longitudinal lung function growth trajectories of children 

with asthma—normal growth, reduced growth (RG), early decline (ED), and RG with an ED 

(RGED)—have been observed, with RG and RGED associated with adverse outcomes, including 

COPD.

Objective: Our aim was to determine whether circulating miRNAs from an early age in children 

with asthma would be prognostic of reduced lung function growth patterns over the next 16 years.

Methods: We performed small RNA sequencing on sera from 492 children aged 5 to 12 years 

with mild-to-moderate asthma from the CAMP clinical trial, who were subsequently followed for 

12 to 16 years. miRNAs were assessed for differential expression between previously assigned 

lung function growth patterns.

Results: We had 448 samples and 259 miRNAs for differential analysis. In a comparison of the 

normal and the most severe group (ie, normal growth compared with RGED), we found 1 strongly 

dysregulated miRNA, hsa-miR-145-5p (P < 8.01E–05). This miR was downregulated in both ED 

groups (ie, ED and RGED). We verified that miR-145-5p was strongly associated with airway 

smooth muscle cell growth in vitro.

Conclusion: Our results showed that miR-145-5p is associated with the ED patterns of lung 

function growth leading to COPD in children with asthma and additionally increases airway 

smooth muscle cell proliferation. This represents a significant extension of our understanding of 

the role of miR-145-5p in COPD and suggests that reduced expression of miR-145-5p is a risk 

factor for ED of long-term lung function.
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GRAPHICAL ABSTRACT
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MicroRNAs (miRNAs) are small noncoding RNAs that regulate their target mRNAs 

posttranscriptionally through degradation or translational repression.1 miRNAs have 

emerged as vital molecules in asthma and chronic obstructive pulmonary disease (COPD).2 

Approximately 60% of mRNAs may be the targets of miRNAs. They have a potential role in 

regulating the signaling pathways in different types of cells, including cells of the immune 

system, as well as in controlling the inflammatory response in various tissues.3,4

Determining the FEV1 value is a way of measuring lung function: in normal persons, it is 

characterized by rapid growth in childhood and adolescence, with a leveling off or 

plateauing in early adulthood and a gradual decline into middle and old age. In individuals 

with lung disease, including asthma, deviations from the canonic normal growth (NG) 

pattern can appear as reduced growth (RG), early decline (ED), or a combination of RG and 

ED. A pattern of FEV1 value increase and decline characterized by ED has been linked with 

smoking and respiratory symptoms, and reduced childhood lung function has been 

associated with an increased incidence of later-life COPD.5 Even apart from the association 

with later COPD, a reduced FEV1 value is clinically significant, occurring with increased 

asthma symptoms and exacerbations, as well as with increased mortality.6 Reduced lung 

function is associated with asthma incidence, asthma recurrence, and recurrent wheeze.7–11

We have previously characterized the serial lung function trajectories of children with 

asthma over the course of 16 years, from childhood into early adulthood, into 4 patterns: 

NG, RG, ED, and RG with an ED (RGED). We have shown that RG patterns can lead to 

fixed obstruction consistent with COPD before the age of 30 years. The purpose of this 

study was to determine whether circulating miRNAs from serum12 taken from children with 

asthma at an early age would be prognostic of those children at greatest risk of chronically 

low lung function.
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METHODS

CAMP

The Childhood Asthma Management Program (CAMP) was a randomized, placebo-

controlled trial of inhaled anti-inflammatory treatments for mild-to-moderate childhood 

asthma followed by 3 phases of observational follow-up; the trial and all follow-up phases 

included at least annual spirometry. A total of 1,041 participants enrolled in the trial between 

1993 and 1995 (when they were 5 to 12 years old); follow-up continued to 2012, when the 

participants were 22 to 30 years old.13 We previously categorized CAMP participants into 4 

patterns of lung function growth and decline based on prebronchodilator FEV1 value over 

the course of observation: NG, NG with an ED, RG, and RG with an ED (RGED). NG was 

defined as an FEV1 growth curve predominantly above the 25th percentile of the normal 

FEV1 value, whereas RG was defined as an FEV1 growth curve below the 25th percentile. 

The presence of ED was indicated by a decrease from the maximal level earlier than 

expected and before age 23. For further details, see McGeachie et al.9,10

To identify subjects in CAMP with spirometry consistent with COPD at the end of 

observation, we considered the FEV1 and forced vital capacity (FVC) values of participants 

who were at least 23 years of age at their final visit, following previous work.9,10 We used a 

robust locally weighted scatterplot, smoothing, regression method to smooth the FEV1 value 

and FEV1/FVC ratio for each participant across all time points.14 To obtain the most robust 

estimates of final-visit spirometry, we used the smoothed values at the final time point. 

COPD was indicated with an FEV1/FVC ratio less than the lower limit of normal, defined as 

the 5th percentile of FEV1/FVC ratio for a person of the same age, sex, height, and race, 

according to Hankinson et al,15 and an FEV1 value less than the 70% of predicted FEV1 

value for a person with the same characteristics.

Data collection, QC, filtering, and normalization

We performed small RNA sequencing (RNA-seq) on baseline serum samples from 492 

children from CAMP. Serum samples were stored in freezers at −80°C at the Channing 

Division of Network Medicine. Recent work has shown that serum miRNAs are extremely 

stable over many years.16,17 Small RNA-seq libraries were prepared by using the Norgen 

Biotek Small RNA Library Prep Kit and sequenced on the Illumina NextSeq 500 platform. 

The ExceRpt pipeline18 was used for quality control (QC) of the RNA-seq data. Mapped 

read counts less than 5 were filtered, and miRNAs with coverage of less than 50% of all 

subjects were removed. All samples passed QC for the number of mapped reads and total 

reads, indicating that satisfactory miRNA concentration was available. Using the DESeq2 R 

package,19 we normalized reads by relative log2 expression. We used a guided principal 

component analysis algorithm for identification of batch effects in our data.20 These miRNA 

data have previously been deposited into the Gene Expression Omnibus under the accession 

number GSE134897.

Statistical analysis

Our primary outcome was the pattern assignment (RG, NG, ED, and/or RGED), which was 

treated as a categoric variable, and pairs of patterns were compared. Differentially expressed 
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miRs (upregulated and downregulated miRs) between lung function patterns were identified 

by using the DESeq2 package19 in R with a Benjamini-Hochberg false discovery rate (FDR) 

multiple testing correction.21 A significance threshold of 10% FDR was used. The analysis 

was performed without adjustment for age, sex, height, and race because these 

characteristics are the basis of the lung function pattern phenotypes: patterns were assigned 

on the basis of FEV1 value adjusted for age, sex, height, and race following Hankinson et al.
15

DESeq2 was also used for checking the differential association of our top differentially 

expressed miRNA with COPD status. A clustered heatmap of differentially expessed miRs 

was computed by using the complex heatmap R package.22 Unsupervised hierarchic 

clustering was used to generate the heatmap, and Pearson correlation was used as the 

distance metric.

Predictive models of miR-145-5p and all differentially expressed miRs were obtained by 

using linear regression. The model parameters were fit from the entire CAMP cohort. 

Predictive performance was assessed by using the convex hull23 of the area under the 

receiver operating characteristic curve (AUC) with CIs estimated according to DeLong et al.
24 Next, 5-fold cross-validation (CV) of model parameters (β-values) was performed by 

using MATLAB R2020a (Natick, Mass) with 100 repeats for assessing the distribution of 

CV performance.

miRNA target identification and functional analysis

We used Dianna micro T-CDS25,26 for putative mRNA target identification for differentially 

expressed miRNAs, with a 0.9 micro T-CDS (miTG) score as a threshold. We subsequently 

used DAVID 6.827 for functional enrichment analysis of the putative targets. For each of the 

Gene Ontology (GO) functional groups,28 Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways,29 and InterPro functional30 terms returned from DAVID functional 

analysis, we considered a P value threshold of .05 or lower and a minimum gene count of 3 

to be required. DAVID clusters with annotation cluster score (negative log10 P value) of at 

least 1.3 were considered significant. For comparison, pathway enrichment of putative 

targets of miR-145-5p was also investigated by using TargetScan,31 Tarbase,32 and 

miRWalk.33

Target genes of miR-145-5p were assessed for overlap with genes identified as being 

associated with pulmonary conditions from genome-wide association study (GWAS) results 

by using the National Human Genome Research Institute–European Bioinformatics Institute 

catalog (https://www.ebi.ac.uk/gwas/). Associations were assessed by using chi-square tests.

In vitro analysis—The top miRNA was then assessed in vitro for effect on human airway 

smooth muscle (HASM) cell proliferation and hypertrophy. HASM cells were transfected 

with 10 nM of either scramble control (All-Stars Negative Control siRNA, Qiagen, Venlo, 

The Netherlands) or miR mimic (Qiagen) by using RNAiMax (ThermoFisher Scientific, 

Waltham, Mass) according to the manufacturer’s protocol. This design should control for the 

effect of transfection on cell death. Then, 72 hours after transfection, the cells were 

trypsinized and measured for both cell number and cell size by using the Moxi Z Cell 
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Analyzer (Orflo Technologies, Ketchum, Idaho). Cell growth was presented as the 

percentage of cell numbers relative to scramble control. Average cell diameter (µm) was 

compared in mimic-transfected versus scramble-transfected HASM cells. Data (means ± 

SEs) were obtained from 3 independent experiments using the same cell line. MiRNAs in 

airway smooth muscle (ASM) cells were sequenced by small RNA-seq, as previously 

described.34

RESULTS

Cohort characteristics

Of 1,041 children with asthma from the CAMP cohort, 492 (47%) had small RNA-seq data 

on baseline serum level available. Of these 492 CAMP participants, 448 (91%) had 

sufficient longitudinal FEV1 data to be classified into 1 of 4 lung growth patterns (NG [n = 

137], RG [n = 120], ED [n = 102], and RGED [n = 89]) (Table I). At baseline, subjects in the 

RG group were more likely than participants with other patterns to be male and have a lower 

BMI. Subjects with either ED pattern (ED or RGED) were more likely to be slightly older 

and taller (8.4 and 8.5 years vs 9.1 and 9.5 years [P < .001]). Subjects with either RG pattern 

(RG or RGED) had worse lung function at baseline, as measured by FEV1 (88% and 85% vs 

100% and 101% of predicted [P < .001]), and FVC (101% and 99% vs 108% and 109% of 

predicted [P < .001]), as well as more reactive airways (log PC20 [provocative concentration 

of methacholine causing a 20% drop in FEV1 from baseline] values of −.08 and −.23 vs .28 

and .29 [P = .001]). The patterns did not differ significantly by race. The results were 

consistent with previous observations about these lung function patterns.10

The subjects included in the analysis were reflective of the total CAMP population (see 

Table E1 in this article’s Online Repository at www.jacionline.org). Subjects were excluded 

only if they lacked miRNA sequencing data or a classifiable lung function pattern.

Identification of differentially expressed miRNAs

After QC, filtering, and normalization, we had a total of 259 unique miRNAs from 448 

subjects for differential analysis between the 4 growth patterns. DESeq2 was used to 

perform normalization before differential expression (DE) analysis. Sequencing was 

performed in 22 batches, which may have introduced technical causes of discrepancy during 

preparation and handling, affecting the outcomes. Therefore, generalized principal 

component analysis was used to check for batch effects on mapped read counts per sample; 

the analysis showed that there was not a significant batch effect in normalized data (P = .931 

[see Fig E1 in this article’s Online Repository at www.jacionline.org]). A total of 6 pairwise 

pattern conditions (NG to ED, NG to RG, NG to RGED, ED to RG, ED to RGED, and RG 

to RGED) were analyzed for differential miRNA expression. The complete results are listed 

in Table E2 (available in this article’s Online Repository at www.jacionline.org), in which 

the first condition is the reference group, the second condition is the comparison group, and 

upregulated or downregulated refers to the direction of change in the comparison group. In 

the ED to RG comparison, 10 miRNAs were upregulated and 10 miRNAs were 

downregulated; in the ED to RGED comparison, 9 miRNAs were upregulated, and 13 

miRNAs were downregulated; and in the RG to RGED comparison, 2 miRNAs were 
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upregulated and 3 miRNAs were downregulated. In the comparison of the normal group 

with the most severe group (ie, NG to RGED), we found only 1 (strongly) downregulated 

miR, namely, hsa-miR-145-5p (log2 fold change = −0.828; P < 8.01E–5; FDR = 0.021) (Fig 

1). miR-145-5p was also among the upregulated miRNAs in the ED to RG condition (log2 

fold change = 0.621; P = .003, FDR P = .045) and downregulated in the RG to RGED 

condition (log2 fold change = −0.854 [P value = .0001]; FDR P = .010). No miRNAs were 

differentially expressed in the comparisons of the NG to ED condition or NG to RG 

condition. A clustered heat map of the 20 unique differentially expressed miRs is shown in 

Fig 2. This indicates that miR-145-5p has expression generally orthogonal to the other 

differentially expressed miRs and suggests it for closer follow-up.

Association of miR-145-5p with COPD

We then prioritized miR-145-5p for deeper analysis. miR-145-5p is the mature cleaved miR 

of 22 nucleotides coming from the 5′ arm of the primary, hairpin, mir-145 (lowercase r). 
miR-145-5p and miR-145–3p were detected in the CAMP sera in similar amounts, with 

miR-145-5p being lower on average and with mean normalized counts of 7.52 versus 8.14 

for miR-145–3p and some moderate correlation between them (r2 = 0.33).

Because miR-145-5p was associated with longitudinal patterns of lung function that have 

been shown to lead to COPD,10,35,36 we also checked the association of miR-145-5p with 

COPD at the end of follow-up (when the subjects were aged 23–30 years). There were 321 

subjects (65%) with at least 1 FEV1 assessment at or beyond 23 years of age (full 

characterization shown in Table E3), after normalization and filtering as already described. 

A total of 5 miRNAs were upregulated and 25 miRNAs were downregulated between the 

subjects without COPD and those with COPD. We found that miRNA hsa-miR-145-5p (n = 

71 with COPD and 250 without COPD; log2 fold change = −0.969; P < 5.13E–06; FDR P 
= .0013) was strongly underexpressed in subjects with COPD (Tables E3 and E4).

To check the ability of miR-145-5p to predict COPD at the end of follow-up, we used a 

linear regression model and obtained an AUC of 61% (95% CI = 56%−66%), indicating a 

predictive performance statistically better than random guessing. For comparison purposes, 

we also used all 21 differentially expressed miRs in a regression model, obtaining an AUC 

of 73% (95% CI = 69%−78%) (see Fig E3 in this article’s Online Repository at 

www.jacionline.org). However, 5-fold cross-validation indicated some overfitting and much-

reduced performance of this model on a hypothetical independent validation cohort, with an 

AUC of 55% (95% CI = 49%−61%). In comparison, the CV of just miR-145-5p indicated 

performance significantly better than random (AUC = 61% [95% CI = 57%−64%]) on a 

hypothetical validation cohort. Accordingly, we focused much of our further analysis 

specifically on miR-145-5p.

Stratified analyses

CAMP was a clinical trial of 4 years of daily administration of budesonide (an inhaled 

corticosteroid), nedocramil, or placebo.13 Although the treatment group did not have a 

significant effect on the longitudinal lung function patterns,10 to assess whether the 

treatment group had any effect on our results we performed DE analysis by using the 
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treatment group as a covariate, with 169 of our subjects randomized to receive budesonide, 

251 randomized to receive placebo, and 28 randomized to receive nedocromil (this group 

was excluded from further analysis). We found that miR-145-5p was still significantly 

downregulated in the NG to RGED and RG to RGED pattern conditions and upregulated in 

the ED to RG pattern condition, as before. To assess whether miR-145-5p was more 

effective in particular treatments, we performed a stratified analysis by treatment group 

(budesonide vs placebo), finding that miR-145-5p was no longer significantly differentially 

expressed, although these comparisons had much-reduced sample sizes (the ED to RG 

comparison had 38 vs 47 samples, with the results of the other comparisons similarly 

reduced), and therefore reduced power. The full DE results are in Table E6, A and B (in this 

article’s Online Repository at www.jacionline.org).

In previous work, Howrylak et al37 identified 5 asthma subtypes within CAMP, ranging 

roughly from least severe (cluster 1) to most severe (cluster 5) on the basis of clinical 

observations. We performed a stratified analysis based on these clusters for miR-145-5p, 

finding that cluster 4 (moderately atopic asthma with high levels of obstruction and high 

exacerbation rates) retained 2 of the miR-145-5p DE results, for the NG to RGED and RG to 

RGED pattern conditions, while adding another for the ED to RGED pattern condition. 

Cluster 5 (highly atopic asthma with high levels of obstruction and high exacerbation rates) 

retained the result for upregulation of miR-145-5p in the ED to RG pattern condition. Other 

clusters did not show significant DE. The full results are in Table E6, C–G.

Putative target identification and functional enrichment analysis of differentially expressed 
miRNA

We retrieved a total of 80 putative gene targets for miR-145-5p from the DIANA miTG 

score of 0.9 or higher (see Table E5 in this article’s Online Repository at 

www.jacionline.org). Subsequently, these putative target genes were analyzed for the 

enrichment of the KEGG and GO pathways by using DAVID. The most enriched pathway 

cluster was characterized by the Pleckstrin homology (PH) domain (IPR001849) InterPro 

protein functional group (Table II), and the second most enriched cluster was characterized 

by the Wnt signaling pathway (KEGG hsa04310 and GO: 0016055). For comparison, we 

also used other providers of putative miRNA target genes. These were TargetScan, Tarbase, 

and miR-Walk. Fig E2 shows the overlap of these predicted targets; micro T-CDS was the 

most conservative and was thus likely to include the fewest false positives. PH domains were 

also highly enriched among TargetScan- and miRWalk-predicted targets of miR-145-5p. 

Cadherins were the most enriched cluster among miRWalk-predicted targets and second 

among Tarbase targets. Complete enrichment results are presented in Table E7, A–D (in this 

article’s Online Repository at www.jacionline.org).

DIANA micro T-CDS Targets of miR-145-5p were assessed for the enrichment of GWAS-

identified genes for asthma, COPD, and pulmonary function by using the National Human 

Genome Research Institute–European Bioinformatics Institute database of GWAS results. 

There was significant enrichment for COPD genes (P = .018) and pulmonary function genes 

(P = 8.3 × 104) among the targets of miR-145-5p, whereas enrichment for asthma genes was 

close but nonsignificant (P = .067).
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We additionally performed a pathway enrichment analysis of the target genes of all 30 

differentially expressed miRNAs across all lung function patterns. Putative target genes were 

retrieved (764 in total; miTG score ≥ 0.99) from micro T-CDS for these 30 differentially 

expressed miRNAs. The top 2 clusters were characterized by transcription regulation (GO: 

0006355), and by cadherins and cell adhesion (GO: 0007155), respectively (see Table E6).

In vitro validation analysis

HASM cells are an important cell type for asthma and COPD because they are in part 

responsible for airway remodeling, in turn leading to reduced lung function.38 Previous work 

by Liu et al39 showed that miR-145 had effects on HASM cells stimulated with cytokines, 

which could lead to airway remodeling in asthma. To test the effect of miR-145-5p on 

unstimulated HASM cells, we dosed cells with miR-145-5p mimics.38 We transfected 

mimics of the miRs in HASM cells and examined their effects on HASM growth and 

hypertrophy in vitro. There was no significant effect by any of the miRs on HASM 

hypertrophy (data not shown). However, miR-145-5p significantly increased the number of 

HASM cells (P < .01 [Fig 3]), indicating potential roles for miR-145-5p in HASM cell 

proliferation in those with asthma.

DISCUSSION

We have shown that circulating miR-145-5p from baseline samples in CAMP is associated 

with lung function trajectories over the subsequent 16 years and COPD diagnosis at that 

follow-up time. This represents a particularly long-term prediction. We have previously 

shown that miRNAs can predict long-term asthma remission40 and also predict relatively 

short-term asthma exacerbation rates over the following year.41

Specifically, our study demonstrated that in the comparison of the normal with the most 

severe group, NG to RGED, miR-145-5p was strongly downregulated, indicating less 

circulating miR-145-5p in the serum of participants with asthma who went on to develop 

very poor lung function. miR-145-5p was also upregulated in the ED to RG pattern 

condition and downregulated in the RG to RGED pattern condition. These comparisons 

overlap; together, they indicate that miR-145-5p is lower in the ED and RGED pattern 

condition, but higher in NG and RG pattern condition, suggesting reduced miR-145-5p as an 

indicator of earlier decline of lung function. The comparison of the NG and RG groups did 

not show significant results for miR-145-5p, but the lower expression also occurred with 

COPD onset before age 30 years. The effects of miR-145-5p did not seem to be related to 

steroid treatment but did show some increased effect in more severe asthma clusters from 

Howrylak et al,37 although the sample sizes in these stratified analyses were much reduced. 

We also observed an association of miR-145-5p with increased ASM cell proliferation. 

Together, these findings make a strong case for miR-145-5p as an indicator and possible 

cause of airway dysregulation leading to ED of lung function.

Although reduced miR-145-5p was strongly associated with declining lung function and 

COPD at the end of follow-up, it was not by itself a strong predictor of early COPD. It was 

however a robust predictor, as demonstrated by cross-validation, indicating that it should 
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play an important part in future prognostic models of COPD and lung function in 

conjunction with other miRs or other genomic variants and clinical indicators.

We chose to target ASM cells because their dysregulation can lead to airway remodeling and 

obstructive lung disease, making them a primary tissue of interest for the transition from 

asthma to COPD.38 miR-145-5p is also expressed in the lung according to 2 prominent 

“atlases” of miRNA expression (Ludwig et al42 and McCall et al43). Indeed, according to 

such atlases, miR-145-5p is expressed in most, although not all, tissues. Of particular 

importance, in earlier cancer studies, miR-145-5p (then referred to as just miR-145) was 

shown to reduce cell proliferation by increasing apoptosis in a variety of tumor tissues. This 

occurs through a regulatory network featuring the p53 transcription factor.44–46 miR-145-5p 

seems to play an important role in the cell cycle and cell fate in mesenchymal stem cells as 

well. Preliminary work has shown that miR-145-5p and p53 work together to affect cell 

senescence in bone marrow,47 and to affect the transition from stem cell to ASM under 

certain morphologic circumstances.48 Indeed, miR-145-5p is involved in the transition of 

cells both to and from smooth muscle cells in other tissues. miR-145 is involved in the 

generation of intestinal smooth muscle cells from the mesoderm,49 and miR-145 

dysregulation can also convert aortic smooth muscle cells to an aberrant form that 

contributes to atherosclerosis.50 These findings augment our results showing that 

miR-145-5p increased cell proliferation in HASM cells, as well as other results in ASM 

cells,39 to demonstrate the importance of miR-145-5p in a cell transition in a variety of cell 

types. These differences may be due to additional cell cycle dysregulation in tumor cells, or 

to differences in cell types, of which miRs have been shown to have different effects in 

different cells.51,52

Gene targets of miR-145-5p were enriched for Wnt signaling pathways. They are 

developmental signaling pathways that play a significant role in cell fate design, cell 

assimilation, and polarization. Sharma et al53 reported that Wnt signaling genes are 

associated with impaired lung function in childhood asthma. Another study, by Zhang et al,
54 implicated Wnt/β-catenin signaling pathways in mouse models of airway remodeling in 

asthma. Further studies have indicated the roles of Wnt signaling in COPD pathogenesis.
55,56

PH domains were enriched among miR-145-5p gene targets. PH domains are small modular 

domains spotted in a wide range of proteins. The domains may bind phosphatidylinositol 

inside biologic membranes and proteins, including the βγ-subunits of heterotrimeric G 

proteins and protein kinase C.57 Although some kinases have been associated with asthma, 

our result represents novel evidence that PH domains may play a role in ED of lung function 

in childhood asthma.58,59

Cadherins were enriched among gene targets of differentially expressed miRNAs across all 

lung growth pattern comparisons and were the most enriched cluster among miRWalk-

predicted targets of miR-145-5p and second among Tarbase targets of miR-145-5p. 

Cadherins are transmembrane proteins that mediate cell-cell adhesion and have previously 

been implicated in the pathogenesis of asthma and lung disease.60,61 Cadherins have been 

specifically associated with the transition from airway epithelial cells to mesenchymal cells,
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62 resulting in airway re-modeling and reduced lung function.63,64 This provides an 

important link between the in silico and in vivo analyses, pointing at mechanisms of the role 

of miR-145-5p in the aberrant development of human ASM cells.

miR-145-5p has previously been associated with asthma, COPD, and biologic facets of both 

conditions. A recent study by Xiong et al demonstrated that miR-145-5p exacerbated the 

TH2-type immune response in mice.65 Liu et al39 investigated the effect of miR-145 on 

ASM function. They reported that miR-145 was highly expressed in ASM cells exposed to 

cytokine stimulation that mimic the airway conditions of patients with asthma. Suppression 

of miR-145 caused reduced ASM cell proliferation and migration in a dose-dependent 

manner. Consistent with our own in vitro result, Liu et al reported miR-145 overexpression 

in ASM cells, eventually leading to increased proliferation and migration of ASM cells in 
vitro.39

Childhood circulating miR-145-5p was also associated with the very early classification of 

COPD among CAMP participants aged 23 to 30 years at the end of follow-up. Yang et al66 

found that miR-145 expression is upregulated in TGF-β1–treated lung fibroblasts and that its 

expression is also higher in the lungs of patients with idiopathic pulmonary fibrosis than in 

normal human lungs. Overexpression of miR-145 in lung fibroblasts increased α-SMA 

expression, enhanced contractility, and promoted the formation of focal and fibrillar 

adhesions. One of the most interesting results of this study is the protection of miR-145−/− 

mice against idiopathic pulmonary fibrosis, suggesting that miR-145-5p may be a potential 

target in the development of novel therapies to treat pathologic fibrotic processes that occur 

in the airway wall in COPD.66 Our results show that miR-145-5p level is decreased in 

children with asthma and ED of lung function, which may indicate a changing or complex 

role for miR-145-5p in determination of lung function.

Other studies have associated miR-145-5p with COPD. Wang et al demonstrated that 

changes in expression of miR-145-5p were associated with COPD.67 In another study, 

O’Leary et al reported that ASM inflammation is regulated by miR-145-5p in COPD.68 A 

bioinformatics-based study by Liu et al reported that miR-145 was associated with the 

development of COPD.69 Our results extend these findings by implicating miR-145-5p in 

the lung function trajectory from childhood.

Our study has several strengths. This is the first study of DE of circulating miRNA of 

longitudinal lung function phenotypes. Other strengths include the use of next-generation 

small RNA-seq to comprehensively identify miRNAs in an unbiased way. Finally, our use of 

an asthma cohort with at least annual spirometry allowed very accurate phenotyping of lung 

function trajectories.

Our study also has limitations. Primarily, we have no replication cohort for the association of 

miR-145-5p with longitudinal lung function patterns, owing to the difficulty in identifying 

detailed longitudinal FEV1 trajectories over long follow-up times. However, surveys of 

previous literature and functional studies provide additional evidence of the role of this miR 

in COPD pathogenesis. In future work, it would also be interesting to combine the short 

RNA-seq presented herein with (typical) long RNA-Seq to assay for mRNA transcripts, 
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which would make it possible to obtain additional evidence of mRNA regulation by miRs. 

Other experiments that measure the expression of target mRNAs in vitro, as well as EdU (5-

ethynyl-2′-deoxyuridine) and flow cytometry, could be performed to more accurately assess 

HASM cell proliferation.

Conclusion

We have shown that decreased miR-145-5p, which has previously been associated with 

COPD in adults, is associated with an ED of lung growth in a population of children with 

asthma of aged 5 to 12 years. Furthermore, a decreased baseline miR-145-5p level was also 

associated with COPD at the end of follow-up (at ages 23–30 years). That this miR is 

associated with future COPD outcomes in young children represents a significant extension 

of our understanding of the role of miR-145-5p in COPD. miR-145-5p was also shown to 

increase ASM cell proliferation. These results demonstrate that miR-145-5p and mi-RNAs 

in general have the potential to be powerful prognostic biomarkers for future chronic 

obstruction; however, additional profiling of miR-145-5p alongside longitudinal spirometry 

will be required.
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Abbreviations used

ASM Airway smooth muscle

AUC Area under the receiver-operator characteristic curve

CAMP Childhood Asthma Management Program

COPD Chronic obstructive pulmonary disease

CV Cross-validation

DE Differential expression

ED Early decline

FDR False discovery rate

FVC Forced vital capacity

GO Gene Ontology

GWAS Genome-wide association study

HASM Human airway smooth muscle cell
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KEGG Kyoto Encyclopedia of Genes and Genomes

miRNA MicroRNA

NG Normal growth

PH Pleckstrin homology

QC Quality control

RG Reduced growth

RGED Reduced growth with an early decline

RNA-seq RNA sequencing
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Key messages

• Decreased miR-145-5p expression in serum is associated with early-decline 

longitudinal lung function from childhood to early adulthood.

• miR-145-5p has previously been associated with COPD in adult populations 

and now seems to regulate lung function throughout the life course.
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FIG 1. 
miR-145-5p is significantly differentially expressed. MD plot of ED to RG (log fold change 

= 0.621; P =.003, FDR P =.045) (A), RG to RGED (log fold change = −0.854; P = .0001; 

FDR P = .010) (B), and NG to RGED (log fold change = −0.828; P < 8.01E–05; FDR P 
=.021) (C).
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FIG 2. 
Clustered heat map of all 21 differentially expressed miRs across conditions in CAMP. 

Unsupervised hierarchic clustering was used to generate the heatmap, and Pearson 

correlation was used as the distance metric.
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FIG 3. 
Average cell growth of HASM cells transfected with a miR-145-5p mimic versus scramble 

control. There were significantly more HASM cells after transfection with miR-145-5p 

mimic (P < .01). The SE is shown with error bars from 3 biologic replicates of each 

condition. SCR, Scramble control miRNA.
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