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Abstract

The structure-function coupling in brain networks has emerged as an important research topic in 

modern neuroscience. The structural network could provide the backbone of the functional 

network. The integration of the functional network with structural information can help us better 

understand functional communication in the brain. This paper proposed a method to accurately 

estimate the brain functional network enriched by the structural network from diffusion magnetic 

resonance imaging. First, we adopted a simplex regression model with graph-constrained Elastic 

Net to construct the functional networks enriched by the structural network. Then, we compared 

the constructed network characteristics of this approach with several state-of-the-art competing 

functional network models. Furthermore, we evaluated whether the structural enriched functional 

network model improves the performance for predicting the cognitive-behavioral outcomes. The 

experiments have been performed on 218 participants from the Human Connectome Project 
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database. The results demonstrated that our network model improves network consistency and its 

predictive performance compared with several state-of-the-art competing functional network 

models.

Graphical Abstract
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1. Introduction

Brain network analysis is a powerful technique for investigating a hard-wired brain 

architecture and its functions (Rubinov and Sporns, 2010). Typically, the functional network, 

reflecting brain activation patterns, is defined as the temporal coherence of resting-state 

functional magnetic resonance imaging (rs-fMRI) between different brain regions (Rubinov 

and Sporns, 2010). Structural network is defined as structural wiring in the white matter, 

approximated by tractography algorithm using diffusion-weighted magnetic resonance 

imaging (dMRI) between the brain regions (Hagmann et al., 2008). Other studies have 

explored covariance patterns of morphometry, such as volume and cortical thickness, 

between different brain regions (He et al., 2007; Mechelli et al., 2005) as a surrogate of the 

structural network.

The rapid growth of the public database on neuroimaging allowed the researcher 

investigating the relationship between an individual’s brain network properties and behavior 

differences. For example, many researchers demonstrated that functional network property 

was related to cognition and behavior. Finn et al. proposed a unique connectome 

fingerprinting used to predict an individual’s human intelligence (Finn et al., 2015; Miranda-

Dominguez et al., 2014). Baum et al. demonstrated that the structural-functional network 

coupling was associated with higher-order cognitive processes during youth (Baum et al., 

2020). Some studies demonstrated that functional network patterns could predict cognitive 

abilities, behavior outcomes, and personality traits, as well as could distinguish healthy and 
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diseased brains (Beaty et al., 2018; Damaraju et al., 2014; Hsu et al., 2018; Nostro et al., 

2018; Park et al., 2016; Rosenberg et al., 2016; Stam et al., 2007).

Recently, identifying structure-function coupling in brain network has been an important 

research topic in modern neuroscience. The structural network could provide the backbone 

of the functional network. The integration of the functional network with structural 

information can help us better understand functional communication in the brain. For 

example, the researchers demonstrated that the structural network provides cortico-cortical 

and cortico-subcortical connectivity information that reflects spatial proximity and long-

range structural wiring and governs ongoing repertoire of cognitive function (Batista-Garc\’

\ia-Ramó and Fernández-Verdecia, 2018; Baum et al., 2020; Mišić and Sporns, 2016; Park 

and Friston, 2013; Rubinov and Sporns, 2010; Snyder and Bauer, 2019). However, most of 

the functional network studies did not consider structural information; the functional 

network based on the statistical association, such as Pearson’s correlation, partial 

correlation, and sparse inverse covariance (Friedman et al., 2008). Hence, the integration of 

multi-modal brain networks (i.e., coupling structural network with the functional network) 

may lead to the construction of more sensitive brain network than using a single modality.

In this sense, we proposed a method to estimate the brain functional network enriched by 

structural network accurately. A simplex regression model with graph-constrained Elastic 

Net (GraphNet) was adopted to estimate the functional networks enriched by the structural 

network (Grosenick et al., 2013; Kim et al., 2020). Our main scientific contributions were 

described as follows. First, we incorporated GraphNet and simplex constraints to estimate 

the interpretable functional network enriched by the structural network. Second, we 

proposed an efficient optimization algorithm using the projected gradient descent method. 

Third, we applied and compared several state-of-the-art network models with our method to 

provide insights into the clinical benefits of our model.

The rest of the study is organized as follows: In Section 2, we briefly described the data, the 

related pre-processing procedure, and how we estimated the SFN. In Section 3, we 

described the experimental setups and results. We evaluated our network approach and 

compared it with the competing network models. In Section 4, a summary of this study and 

discussion for potential implications were included.

2. Material and Methods

2.1. Data collection and pre-processing

2.1.1. Datasets—In this study, we collected neuroimaging data (i.e., rs-fMRI and dMRI) 

for 218 participants from the Human Connectome Project (HCP) database (Van Essen et al., 

2013). The participants who are genetically unrelated, non-twins, non-Hispanic with full 

demographic information were considered. The average age was 29.11 years (standard 

deviation = 3.74 years, range 22–36 years). Further details were shown in Table 1.

2.1.2. fMRI pre-processing—The HCP database provided the pre-processed rs-fMRI 

data following “minimal preprocessing pipeline” (Glasser et al., 2013). The rs-fMRI data 

were provided as the Connectivity Informatics Technology Initiative (CIFTI) dense time-
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series format which was defined in standard grayordinate space. The pre-processing 

procedures included skull removal, intensity normalization, distortion correction, and head 

motion correction, and registration to the Montreal Neurological Institute’s standard space. 

The artifacts (e.g., head movement, cardiac pulsation, arterial, and large vein related noise) 

were removed using FMRIB’s ICA-based X-noisifier (FIX) (Salimi-Khorshidi et al., 2014). 

Finally, we computed the functional network using the averaged vertex-wise time courses 

(filename “dt-series”) for brain regions. We concatenated the time series of each left-to-

right/right-to-left phase-encoded data into form a single time series data.

The Human Connectome Project multi-modal parcellation atlas (HCP-MMP) was used to 

determine the nodes of the network (Glasser et al., 2016). The HCP-MMP atlas is one of the 

most detailed cortical in-vivo parcellations, which divided the cortical area into 360 regions 

considering cortical architecture, function, connectivity, and topography in a precisely 

aligned group average of 210 healthy young adults. To compute edges of the functional 

network, we adopted different similarity measurements, as described in Section 2.2 and 3.1., 

between each pair of the brain regions.

2.1.3. dMRI pre-processing—For dMRI data, HCP released the estimated fiber 

orientation data processed with FSL’s multishell spherical deconvolution toolbox (bedpostx) 

(Jbabdi et al., 2012). In detail, the following steps were performed; intensity normalization, 

distortion correction, eddy current correction, head motion correction, and gradient 

nonlinearity correction (Andersson et al., 2012). Then, fiber orientation for each voxel was 

estimated from dMRI. We then added tractography steps to construct the structural network 

(SN). In detail, the probabilistic tractography algorithm, implemented in FSL (probtrackX), 

was performed to estimate fiber streamlines for every voxel (Behrens et al., 2003). Output 

streamlines of the probtrackX were mapped onto the 360 brain regions of HCP-MMP to 

build the structural connectivity matrix. Finally, the constructed matrix was used as the SN 
that was used as the constraint in our proposed approach described later.

2.2. Estimation of structural enriched functional network

Herein, we used the boldface lowercase letter to denote a vector, and the boldface uppercase 

letter to denote a matrix. Specifically, given the datasets X ∈ ℝn × p, where X corresponded 

to the rs-fMRI data as described in Section 2.1.2., n denoted the number of time-points of 

the rs-fMRI, and p denoted the number of brain regions.

2.2.1. Functional network based on simplex regression framework—In this 

section, we calculated the functional network based on the simplex regression framework 

(FNsimplex). The simplex regression framework has advantages for interpretation and low 

model complexity due to simplex constraint (Huang et al., 2013, 2015). The model is 

defined as follows.

βı = minβi X(: , i) − X(: , ≠ i)βi 2
2 s . t . βi ≥ 0, βi

T1 = 1, (1)

where, X(:,≠i) is the matrix X with the i-th column (i.e., region) removed, X(:,i) is the i-th 

column vector from matrix X, and βı ∈ ℝp − 1 is the estimated coefficient vector for the i-th 
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brain region. We constructed the functional network S = β1, β2, …, βp  by solving the Eq. (1) 

p times for every brain region. The βı is a p-dimensional vector, where zero value is inserted 

for the i-th coefficient of estimated coefficients vector βı. The symmetric functional network 

based on the simplex regression framework (FNsimplex) was computed by the elementwise 

average between S and its transpose.

2.2.2. Structural enriched functional network based on simplex regression 
with GraphNet penalization—In this section, we expanded the FNsimplex by adding the 

GraphNet constraint for integrating the functional network with the structural network. This 

approach has the advantage of integrating prior information of structural network into the 

functional network (Du et al., 2016; Grosenick et al., 2013; Kim et al., 2020). The model is 

defined as follows:

βı = minβi X(: , i) − X(: , ≠ i)βi 2
2 + λGβi

TLsnβi s . t . βi ≥ 0, βi
T1 = 1, (2)

where, Lsn is the Laplacian matrix of the SN, and λG is the regularization parameter. The 

Laplacian matrix is defined as Lsn = D − A, where D is the degree of structural network 

matrix A. Eq. (2) was optimized using the accelerated projected gradient method (Huang et 

al., 2015).

The enriched functional network S = β1, β2, …, βp  was constructed by repeating the Eq. (2) 

p times for every brain region. The βı denoted a p-dimensional vector and zero was inserted 

for the i-th element of estimated coefficients vector βı. Finally, we obtained the symmetric 

SFN based on the simplex regression with GraphNet (SFNsimplex) by the elementwise 

average between S and its transpose. Detailed description for constructing the SFNsimplex is 

described in the next section and open-source implementation of the model including 

documentation and examples is publicly available on GitHub (https://github.com/lshen/sfn).

The regularization parameter λG of SFNsimplex was tuned using the nested 5-fold cross-

validation strategy. Blind grid search of the parameters is very time-consuming and thus we 

tuned the parameter from the following finite set: [10−3, 10−2, 10−1, 100, 101, 102, 103]. The 

optimized ‘s varied across different nodes and different subjects; see Figure S1 in 

Supplementary Material for their distributions.

2.2.3. Efficient optimization algorithm for constructing SFNsimplex—In this 

section, we describe how to efficiently optimize Eq. (2) using the accelerated projected 

gradient descent method and construct the SFNsimplex. Let βi
(k − 1) be the estimate of βi at 

the previous iteration k − 1, the update rules for estimating βi at the current iteration k is 

defined as follows:

βi
(k) = minβi

1
2 βi − αi

(k − 1)
2
2 s . t . βi ≥ 0, βi

T1 = 1 (3)
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αi
(k) = zi

(k) − t∇f zi
(k) (4)

zi
(k) = βi

(k) + c(k) − 1
c(k + 1) (βi

(k) − βi
(k − 1)), (5)

where t is the step size, ∇f βi
(k)  is the derivative of the Eq. (2) with respect to βi, and C(k) is 

the acceleration coefficient as follows:

∇f βi
(k) = X(: , ≠ i)

T X(: , ≠ i)βi
(k) + λGLsnβi

(k) − X(: , ≠ i)X(: , i) . (6)

c(k + 1) = 1 + 1 + 4c(k)2

2 . (7)

Algorithm 1.

Efficient algorithm for constructing SFNsimplex

Input: Normalized data X ∈ ℝn × p, and parameter λG.

Output : S ∈ ℝp × p

1: Initialize c(0), αi
(0)

2: for each region i (i = 1, ..., p) do

3:  Set k = 0

4:  While no convergence do

5:   k = k + 1

6:
  βi

(k) = minβi
1
2 βi − αi

(k − 1)
2
2 s . t . βi ≥ 0, βi

T1 = 1,

7:   αi
(k) = zi

(k) − t∇f zi
(k)

, 

where∇f βi
(k) = X(: , ≠ i)

T X(: , ≠ i)βi
(k) + λGLsnβi

(k) − X(: , ≠ i)X(: , i)

8:
  zi

(k) = βi
(k) + c(k) − 1

c(k + 1) (βi
(k) − βi

(k − 1))

9:

  c(k) = 1 + 1 + 4c(k − 1)2

2
10:  end

11:  βı = β1, …, βi − 1, 0, βi + 1, …, βp
12: end for

13: S = [β1, …, βp]
14:

SFNsimplex = S + ST
2
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The unconstrained formulation of the Eq. (3) can be written as

1
2 βi − αi

(k − 1)
2
2 − γ βi

T1 − 1 − λTβi, (8)

where γ and λ are a Lagrangian multiplier and Lagrangian multiplier vector, respectively 

and both of them are to be determined. Since the problem of Eq. (3) is a convex optimization 

problem with differentiable objective and constraint functions and is strictly feasible 

(Slater’s condition holds), the Karush–Kuhn–Tucker conditions provide necessary and 

sufficient conditions for optimality (Boyd et al., 2004). The detailed optimization procedure 

for Eq. (8) is described in Supplementary Section 1.

The pseudocode of algorithm was described in Algorithm 1.

2.3. Model evaluation using prediction task

2.3.1. Behavioral outcome prediction—The constructed networks were used to 

predict two different behavioral outcomes (i.e., fluid intelligence [gF] and working memory 

2-back recall accuracy [WM-2bk-acc]) to assess the association between higher-order 

cognitive ability and network measures. We chose seven different functional network models 

(as described in Section 3.1) and compared their predictive performances. In the prediction 

model, we used the degree centrality of the constructed networks as predictors and each 

behavior outcome as the response variable. The elastic-net regression model was adopted to 

build the prediction model for predicting the behavioral outcome. The model was trained on 

90% of data and tested on the remaining 10% of data, which was repeated 1,000 times to 

evaluate the stability of the model in a bootstrapping framework. The performance of the 

prediction model was measured using correlation coefficient and root-mean-square-error 

(RMSE) between the actual and predicted behavior scores.

2.3.2. Neurosynth meta-analysis—To interpret prediction results from a biological 

perspective, we adopted the Neurosynth meta-analysis platform (Gorgolewski et al., 2015; 

Yarkoni et al., 2011) (http://neurosynth.org, http://neurovault.org). Neurosynth is a platform 

to characterize the neural systems associated with the topics (e.g., cognitive, movement, or 

decision) by identifying the relationship and mapping between the brain activation map and 

the topic loading. We uploaded 14 sets of the averaged standardized regression coefficients 

(7 for gF prediction, and 7 for WM-2bk-acc prediction) to the Neurosynth and Neurovalt 

websites to decode our results. The cognition-related topics (78 topics) were selected by the 

intersection of the list of cognitive topics (250 topics) in Table S1 of (Poldrack et al., 2012) 

and the list of all topics (1,308 topics) provided by the Neurosynth website. The decoded 

topics were visualized in the word-cloud function in Matlab. The Neurosynth decoding 

results of our 14 sets of the averaged standardized regression coefficients are available on 

Neurovault at https://neurovault.org/collections/8470/.
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3. Experiments and Results

3.1. Experimental setups

The proposed network models based on the simplex framework (i.e., FNsimplex and 

SFNsimplex) were compared with other competing network models using the same dataset: 

Pearson’s correlation functional network (FNPearson), partial correlation functional network 

(FNPartial), graphical LASSO functional network (FNgl), structural network (SN), and 

adaptive graphical LASSO network (SFNagl). In detail, the FNPearson and FNPartial were 

calculated using MATLAB (i.e., command corr and parcorr, respectively), and the FNgl and 

SFNagl were computed using a library implemented Python (Hsieh et al., 2014).

We used graph theory for comparing networks and the comparison is heavily influenced by 

the number of nodes and the average degree of the network. Direct comparisons of graph 

measures between the networks with different numbers of nodes or average degree can yield 

spurious results (Drakesmith et al., 2015). To make fair comparison among various 

networks, we controlled all the networks to be at the same sparsity level (i.e., the ratio 

between the number of connected nodes and the number of all possible connections) 

according to the existing literature (Margulies et al., 2016; Toussaint et al., 2014; van Wijk et 

al., 2010; Wang et al., 2009). Specifically, we retained the top 10% connections in actual 

values of a given network for each subject.

3.2. Whole-brain network characteristics

The average connectivity matrices constructed with eight different network models (i.e., 

FNPearson, FNPartial, FNgl, SFNagl, SN, FNsimplex, and SFNsimplex) were shown in Figure 1. 

Before any thresholding, the average network density (the ratio of non-zero elements in the 

connectivity matrix) across subjects is shown in Figure 2. We found that FNPearson and 

FNPartial were almost fully connected, (mean density of 99.72%, SD of 0.007%, and mean 

density of 99.86%, SD of < 0.001% respectively), SN showed 52.04% of mean density, and 

FNgl, SFNagl, FNsimplex, and SFNsimplex showed 8.10% ~ 27.41% of mean density, as 

shown in Figure 2. The results were as expected because sparse models led to lowered mean 

density of connectivity.

3.3. Structural-functional correlation

To explore the network-level structural-functional relationship, we performed correlation 

analyses between proposed networks (i.e., FNsimplex, and SFNsimplex) and SN/FNPearson. 

Overall, the SFNsimplex showed a higher correlation coefficient with SN (0.401 for 

SFNsimplex and 0.390 for FNsimplex) and a lower correlation with FNPearson (0.394 for 

SFNsimplex and 0.400 for FNsimplex) compared with the FNsimplex. Specifically, we found 

that both FNsimplex and SFNsimplex showed a high correlation with FNPearson in the primary 

visual, dorsal attention, language, frontoparietal, and posterior multimodal networks. Both 

FNsimplex and SFNsimplex showed a high correlation with SN in the secondary visual, 

auditory, ventral multimodal, and orbito affective networks. The detailed network-level 

correlation results were shown in Table 2.
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3.4. Consistency of networks across subjects

We compared the consistency of the networks across subjects by calculating the proportion 

of the common edges across subjects (POC) and the coefficient of variation (COV). Given a 

specific edge (i, j), its POC(i, j) is the proportion of the subjects with nonzero edge weights, 

and is defined as follows: POC(i, j) = |x: x ≠ 0, x ∈ xε(i, j)|/N, where FN(i, j) denotes a set of 

all functional network edges between i-th and j-th regions across all samples, and N denotes 

the number of samples. The COV is the ratio of the standard deviation to the mean edge 

weight across subjects, and is defined as follows:

COV(i, j) = std(FN(i, j))/mean(FN(i, j))
= (1/N)∑n = 1

N FN(n)(i, j) − (1/N)∑n = 1
N FN(n)(i, j) 2/ (1/N)∑n = 1

N FN(n)(i, j)
, where FN(n)

(i, j) denotes network edge value between i-th and j-th regions for n-th sample. The COV 

and POC were computed before and after thresholding the networks to measure inter-subject 

variability.

We found that the FNPearson showed the lowest inter-subject variability (2.322 mean COV). 

The proposed networks (i.e., FNsimplex, and SFNsimplex) showed low inter-subject variability 

(5.423 and 6.111 mean COV, respectively). However, the FNPartial, FNgl, and SFNagl 

showed high inter-subject variability (mean COV > 10). The full details were shown in Table 

3.

Figure 3 showed the heatmap and the histograms of the POC for after thresholding the 

network. Specifically, we observed high POC within sub-network module and low POC 

between sub-network modules for all approaches, as shown the heatmap in Figure 3. 

Furthermore, we found that the distributions of POC in the FNPearson, SN, FNsimplex, and 

SFNsimplex approximately followed the power law. However, those of the FNPartial, FNgl, 

and SFNagl followed approximately normal distributions.

3.5. Model evaluation for prediction tasks

We compared the performance of prediction models based on an elastic-net regression 

framework using the degree centrality from the constructed networks including features 

from single-modality networks, either dMRI or rs-fMRI, (i.e., FNPearson, FNPartial, FNgl, 

FNsimplex, and SN), features from the network fusing dMRI and rs-fMRI (i.e., SFNagl, and 

SFNsimplex), and features from two different the single modality networks in a concatenated 

fashion (i.e., FNPearson + SN, FNPartial + SN, and FNgl + SN).

3.5.1. Predicting working memory 2-back recall accuracy—We compared the 

models to predict a working memory 2-back recall accuracy (WM-2bk-acc) in a format of 

mean ± SD over 1,000 bootstrap samples. The prediction model using features from 

SFNsimplex yielded the highest correlation coefficient of 0.304 ± 0.098 and a relatively low 

RMSE of 10.47 ± 1.39 between the actual and predicted WM-2bk-acc scores. The model of 

SFNagl yielded the second-highest correlation coefficient of 0.299 ± 0.114 with a low 

RMSE 10.60 ± 1.53, and model of SN was the third place (i.e., the correlation coefficient of 

0.281 ± 0.099, and RMSE of 10.60 ± 1.40). The full details were shown in Table 4.
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The averaged standardized regression coefficients of the prediction model over 1,000 

bootstrap samples for SFNsimplex and FNsimplex were shown in Figures 4-(a) and (d). The 

yellow or blue regions showed positive or negative contributions to predict the WM-2bk-acc, 

respectively. The selection probability values over 1,000 bootstrap samples for SFNsimplex 

and FNsimplex were shown in Figure 4-(b) and (e). The yellow regions were consistently 

selected regions over 1,000 bootstraps. We mapped the regression coefficients map with 78 

cognitive-related topics extracted from Poldrack et al. (Poldrack et al., 2012), as shown in 

Figure 4-(c) and (f). The detailed results for other networks were shown in Supplementary 

Figure S2.

For the SFNsimplex, we observed that the parietal lobe, prefrontal cortex, precuneus gyrus, 

and cingulum cortex contributed to predicting WM-2bk-acc scores. We found that listening, 
comprehension, attention, auditory, and perception were highly associated with the 

regression coefficients map, as shown in Figure 4-(c). For the FNsimplex, we observed that 

the somatosensory cortex, parietal lobe, prefrontal cortex, para-central lobe, and cingulum 

cortex contributed to predicting WM-2bk-acc scores. We found that comprehension, 
listening, perception, language, auditory, and attention, were highly associated with the 

regression coefficients map, as shown in Figure 4-(f). We found that twelve topics 

commonly contributed to the prediction for WM-2bk-acc between SFNsimplex and 

FNsimplex. The full details were shown in Table S1 and Figure S3 in Supplementary 

Material.

3.5.2. Predicting fluid intelligence—For gF score prediction, the prediction model 

using features from the SN yielded the highest correlation coefficient of 0.331 ± 0.109 and 

the lowest root-mean-square-error (RMSE) of 4.48 ± 0.38 between the actual and predicted 

gF scores. The models of SFNsimplex yielded the second-highest correlation coefficient of 

0.287 ± 0.090 with the RMSE of 4.54 ± 0.37, and model of the FNsimplex took the third 

place (the correlation coefficient of 0.271 ± 0.054, and RMSE of 4.53 ± 0.35). The full 

details were shown in Table 5.

The averaged standardized regression coefficients of the prediction model over 1,000 

bootstrap samples for SFNsimplex and FNsimplex were shown in Figures 5-(a) and (d). The 

yellow or blue regions showed positive or negative contributions to predict the gF score, 

respectively. The selection probability values over 1,000 bootstrap samples for SFNsimplex 

and FNsimplex were shown in Figures 5-(b) and (e). The yellow regions were consistently 

selected regions over 1,000 bootstraps. We mapped the regression coefficients map with 78 

cognitive-related topics extracted from Poldrack et al. (Poldrack et al., 2012), as shown in 

Figure 5-(c) and (f). The detailed results for competing networks were shown in 

Supplementary Figure S4.

For the SFNsimplex, we observed that the sensorimotor cortex, medial prefrontal cortex, 

ventrolateral prefrontal cortex, and precuneus gyrus were highly contributing to predicting 

gF score. We found movement, action, imagery, rhythm, and auditory were highly associated 

with the regression coefficients map, as shown in Figure 5-(c). For the FNsimplex, we 

observed that the somatosensory cortex, prefrontal cortex, mid temporal gyrus, and 

cingulum cortex contributed to predicting gF scores. We observed action, retrieval, imagery, 
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language, and multisensory were highly associated with the regression coefficient map, as 

shown in Figure 5-(f). We found that seven topics commonly contributed to the prediction 

for gF between SFNsimplex and FNsimplex. The full details were shown in Supplementary 

Table S1 and Figure S3.

4. Discussion

In this study, we used seven different techniques, including Pearson’s correlation, partial 

correlation, graphical LASSO, adaptive graphical LASSO, structural connectivity, simplex 

regression, and simplex regression with GraphNet, to model brain connectivity. We 

compared the network characteristics in terms of the network density, consistency, and 

network measurements and performances of the prediction task for cognitive-behavioral 

outcomes: working memory 2-back accuracy and fluid intelligence. We choose node-based 

degree centrality (DC) measures to predict the clinical outcomes due to its relative 

simplicity, neurobiological interpretability, and wide usage compared with four other 

regional measures, including betweenness centrality, eigenvector centrality, clustering 

coefficients, and local efficiency, as shown in Supplementary Section 2 and Table S2.

Many studies demonstrated that functional communication in the brain was highly 

associated with the structural connection (Baum et al., 2020; Greicius et al., 2009; 

Rykhlevskaia et al., 2008; Van Den Heuvel et al., 2009). We confirmed that the constructed 

networks showed similar functional-structural correlation patterns as shown in Section 3.3 

and Table 2. We found that SN outperformed all four kinds of FNs, including FNPearson, 

FNPartial, FNgl, and FNsimplex, in terms of correlation in Tables 4 and 5. A previous study 

reported that the correlation between FA values and working memory score was higher than 

that of blood-oxygen-level-dependent response (Olesen et al., 2003). Several studies showed 

that working memory score was associated with the white matter integrity in the parietal 

lobe and lateral prefrontal cortex, which supports our findings (Baddeley, 2003; Klingberg, 

2006; Takeuchi et al., 2010). Previous studies demonstrated that complex brain structure 

information, including brain network organization of white matter, total brain volume, and 

cortical thickness, was linked with human intelligence (Chiang et al., 2009; Choi et al., 

2008; Park et al., 2014; Thompson et al., 2001). These studies collectively supported and 

suggested that SN could have a stronger association with the working memory score than 

FNs.

We demonstrated that the multimodal integration network models (i.e., SFNsimplex and 

SFNagl) offer advantages over single modal network models (i.e., FNPearson, FNPartial, FNgl, 

FNsimplex, and SN). Specifically, we observed that only the proposed model (i.e., 

SFNsimplex) outperformed SN in the WM-2bk-acc prediction task and it was also ranked the 

second place in gF prediction task. Furthermore, the prediction performance using 

SFNsimplex was better than those of the FNsimplex: up to 15.58 % for predicting WM score, 

5.90% for predicting the gF score. Here, we identified several brain regions predictive of 

cognitive functions for working memory and fluid intelligence. These regions included 

frontoparietal and limbic regions, as well as somatosensory areas. The frontoparietal and 

limbic cortices are located at the higher end of the cortical hierarchy, which controls human 

cognition (Margulies et al., 2016; Mesulam, 1998). Our findings are supported by earlier 
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studies that associated connectomics in higher-order brain regions and an individual’s 

cognitive performance (Dryburgh et al., 2019; Greene et al., 2018; Jiang et al., 2020). 

Somatosensory regions are located at the other end of the cortical hierarchy from 

frontoparietal and limbic networks, which regulates an individual’s primary sensory 

processing such as motor, vision, and audition (Margulies et al., 2016; Mesulam, 1998). The 

development of sensory regions is highly associated with the development of executive 

controls. Indeed, the sensory-first theory supports that the abnormal maturation of sensory 

circuits during early age yield higher-order functions in adults, such as communication and 

social cognition (Hong et al., 2019; Robertson and Baron-Cohen, 2017). These studies 

collectively support our findings that the identified brain regions are associated with 

executive functions and further provide the rationale for constructing structural-enriched 

functional networks.

This study has several limitations. First, we performed the multimodal network integration 

by regularizing the regression model with the GraphNet penalty focusing on the squared loss 

between signals from one region and estimated signals from the other regions. This was 

equivalent to optimization at the column level of the raw data. Still, the same network can be 

generated by solving the simplex regression at the node level equivalent to the optimization 

of each element in the raw data (i.e., element level), which is left for future research. 

Another issue is that we employed the same parcellation to integrate functional and 

structural networks, where the performance could be suboptimal. The different imaging 

modalities (e.g., rs-fMRI and dMRI) require different parcellations (e.g., automated 

anatomical label and Power templates) optimized for the given modality. Applying different 

templates to the model may vary the performance for integrating functional and structural 

networks, which is an interesting future research topic. Another issue is sample size. We 

evaluated clinical benefits of networks by measuring predictive performance. We collected 

neuroimaging data from the HCP database with limited samples. The relatively small sample 

size might lead to an overfitting problem. Specifically, the predictive performances of three 

kinds of Structural+Functional methods (i.e., SN + FNPearson, SN + FNPartial, and SN + 
FNgl) were lower than that of SN. This could be partly attributed to the fact that the number 

of features (i.e., 720 features) was larger than the sample size (i.e., 218 samples), leading to 

an overfitting risk. Hence, our algorithm’s results should be further confirmed with 

independent replications and possibly with additional biological evidence.

5. Conclusion

In this study, we applied a simplex regression model with GraphNet to estimate SFN better. 

Specifically, the SFNsimplex approach improved the predictive performance for cognitive-

behavioral outcomes compared to seven different network models. Furthermore, the 

SFNsimplex showed robust performance in network consistency across subjects. We hope to 

apply our algorithm to disease cohorts to see if our algorithm generalizes to other cases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A new method incorporating GraphNet and simplex constraints is proposed to 

estimate interpretable and structural enriched functional brain networks.

• An efficient optimization algorithm using the projected gradient descent 

method is proposed for the construction of structural enriched functional brain 

networks.

• Extensive experiments demonstrate the promise of the proposed structural 

enriched functional brain networks on predicting interesting behavioral 

outcomes.
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Figure 1. Visualizing the average network pattern across subjects.
Sub-figures (a) and (b) visualized the average network pattern before thresholding and after 

thresholding, respectively. The brain regions were ordered according to the Cole-Anticevic 

Brain-side Network (Ji et al., 2019).
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Figure 2. Boxplots of density values for seven different brain network approaches.
Boxplots of density values for seven different brain network approaches.
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Figure 3. The comparison of proportion of common connection (POC) for seven different 
approaches for building the networks.
The POC was computed after thresholding the networks. Each subfigure has two rows, 

where the first row visualized the heatmap of the POC, and the second row visualized the 

histogram of the POC. The histogram distribution following the power law denoted lower 

inter-subject variability.
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Figure 4. The activation pattern maps and the related cognitive topics for predicting WM-2bk-
acc score.
Top row: the mean standardized regression coefficients from the prediction model and their 

decoding results using SFNsimplex. Bottom row: the mean standardized regression 

coefficients from the prediction model and their decoding results using FNsimplex. For each 

sub-figure, left column: mean standardized regression coefficients map. Center column: 

selection probability map. Right column: word clouds plot related to cognitive function in 

the Neurosynth database.
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Figure 5. The activation pattern maps and the related cognitive topics for predicting the gF 
score.
Top row: the mean standardized regression coefficients from the prediction model and their 

decoding results using SFNsimplex. Bottom row: the mean standardized regression 

coefficients from the prediction model and their decoding results using FNsimplex. For each 

sub-figure, left column: mean standardized regression coefficients map. Center column: 

selection probability map. Right column: word clouds plot related to cognitive function in 

the Neurosynth database.
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Table 1.
Demographic information.

Values are reported as mean ± standard deviation (SD) format.

Demographic information

Age 29.11 ± 3.74

Sex M: 118, F:100

Fluid intelligence 17.66 ± 4.58

Working memory 2-back accuracy [%] 84.44 ± 9.90
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Table 2.
Network-level structural-functional correlation for the simplex based networks.

The correlation coefficients were reported in terms of twelve subnetworks. The sub-network acronyms were 

reported as follows: V1=Primary visual network, V2=Secondary visual network, SM=Somatomotor network, 

CO= Cingulo-opercular network, DA=Dorsal attention network, L=Language network, FP=Frontoparietal 

network, A=Auditory network, DMN=Default mode network, PM=Posterior multimodal network, 

VM=Ventral multimodal network, and OA=Orbito affective network

Overall V1 V2 SM CO DA L FP A DMN PM VM OA

SN vs. FNsimplex 0.390 0.018 0.456 0.394 0.416 0.331 0.459 0.284 0.681 0.437 0.434 0.482 0.649

SN vs. SFNsimplex 0.401 0.041 0.474 0.417 0.437 0.332 0.465 0.283 0.704 0.451 0.443 0.541 0.676

FNPearson vs. FNsimplex 0.400 0.537 0.34 0.39 0.438 0.475 0.596 0.508 0.529 0.462 0.544 0.215 0.289

FNPearson vs. SFNsimplex 0.394 0.546 0.337 0.387 0.435 0.474 0.598 0.504 0.528 0.458 0.548 0.171 0.288
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Table 3.
The comparison of mean coefficients of variation (COV) for seven different approaches 
for building the networks.

The mean COV across the edges were reported. The low COV denoted that the constructed network showed 

lower inter-subject variability.

FNPearson FNPartial FNgl SFNagl SN FNsimplex SFNsimplex

COV 2.322 151.660 53.349 54.880 3.167 5.423 6.110
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Table 4.
Comparison of the prediction models to predict a WM-2bk-acc score.

The prediction performance was reported in terms of RMSE and correlation coefficient (r) between actual and 

predicted scores. The values were reported as format of mean ± standard deviation. The performance 

measurements were computed from 1,000 bootstrap samples.

Functional Network

FNPearson FNPartial FNgl FNsimplex

r 0.059 ± 0.155 0.142 ± 0.116 0.257 ± 0.113 0.263 ± 0.090

RMSE 11.85 ± 4.59 10.40 ± 1.12 10.40 ± 1.33 10.95 ± 1.58

Functional + Structural

SN + FNPearson SN + FNPartial SN + FNgl SFNagl SFNsimplex

r 0.255 ± 0.131 0.195 ± 0.151 0.241 ± 0.168 0.299 ± 0.114 0.304 ± 0.098

RMSE 4.98 ± 1.88 9.52 ± 1.89 9..45 ± 1.85 10.60 ± 1.53 10.47 ± 1.39

Structural Network

SN

r 0.281 ± 0.099

RMSE 10.60 ± 1.40
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Table 5.
Comparison of the prediction models to predict a gF score.

The prediction performance was reported in terms of RMSE and correlation coefficients between actual and 

predicted scores. The values were reported as format of mean ± standard deviation. The performance 

measurements were computed from 1,000 bootstrap samples.

Functional Network

FNPearson FNPartial FNgl FNsimplex

r 0.062 ± 0.109 0.103 ± 0.110 0.080 ± 0.104 0.271 ± 0.054

RMSE 5.28 ± 2.06 4.79 ± 0.44 4.77 ± 0.40 4.53 ± 0.35

Functional + Structural

SN + FNPearson SN + FNPartial SN + FNgl SFNagl SFNsimplex

r 0.255±0.131 0.110 ± 0.080 0.112 ± 0.089 0.105 ± 0.107 0.287 ± 0.090

RMSE 4.98±1.88 4.61 ± 0.51 4.61 ± 0.40 4.73 ± 0.39 4.54 ± 0.37
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