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Abstract

Multimodal image registration has many applications in diagnostic medical imaging and image-

guided interventions, such as Transcatheter Arterial Chemoembolization (TACE) of liver cancer 

guided by intraprocedural CBCT and pre-operative MR. The ability to register peri-procedurally 

acquired diagnostic images into the intraprocedural environment can potentially improve the intra-

procedural tumor targeting, which will significantly improve therapeutic outcomes. However, the 

intra-procedural CBCT often suffers from suboptimal image quality due to lack of signal 

calibration for Hounsfield unit, limited FOV, and motion/metal artifacts. These non-ideal 

conditions make standard intensity-based multimodal registration methods infeasible to generate 

correct transformation across modalities. While registration based on anatomic structures, such as 

segmentation or landmarks, provides an efficient alternative, such anatomic structure information 

is not always available. One can train a deep learning-based anatomy extractor, but it requires 

large-scale manual annotations on specific modalities, which are often extremely time-consuming 

to obtain and require expert radiological readers. To tackle these issues, we leverage annotated 

datasets already existing in a source modality and propose an anatomy-preserving domain 

adaptation to segmentation network (APA2Seg-Net) for learning segmentation without target 
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modality ground truth. The segmenters are then integrated into our anatomy-guided multimodal 

registration based on the robust point matching machine. Our experimental results on in-house 

TACE patient data demonstrated that our APA2Seg-Net can generate robust CBCT and MR liver 

segmentation, and the anatomy-guided registration framework with these segmenters can provide 

high-quality multimodal registrations.

Graphical Abstract

Keywords

Multimodal registration; Unsupervised segmentation; Image-guided intervention; Cone-beam 
Computed Tomography

1. Introduction

Primary liver cancer is the fourth most common cancer and the third most common cause of 

cancer-related mortality worldwide with incidence rates rising across the globe and 

especially in the United States and Europe (Bray et al., 2018). Local image-guided therapies, 

such as Transcatheter Arterial Chemoembolization (TACE), are commonly used procedures 

that are performed in patients with intermediate to advanced stages as a palliative therapy 

option, capable of significantly prolonging patient survival (Pung et al., 2017). Most patients 

undergo multi-parametric multi-phasic contrast-enhanced MRI using gadolinium-enhanced 

T1 sequences both for diagnostic purposes as well as for the sake of therapy planning. This 

readily available multi-parametric information on tumor vascularity, size, location and even 

tissue properties is clinically underutilized for intra-procedural navigation primarily for 

technical reasons such as lack of practical image registration solutions. Intraprocedural 

navigation and targeting is instead achieved with serial, planar angiographic imaging as well 

as intra-procedural Cone-beam Computed Tomography (CBCT) imaging that provides a 

coarse cross-sectional dataset, which can then be used to map arterial supply of the tumor 
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and allow for accurate catheter guidance and intra-procedural feedback. While CBCT 

utilizes an x-ray source and the high-resolution 2D flat panel detector enables fast 3D organ 

visualization during procedures, CBCT suffers from low contrast-to-noise ratio (CNR), 

narrow abdominal tissue dynamic range, limited field-of-view (FOV), and motion/metal-

induced artifacts, making it challenging to directly visualize and localize targeted tumors 

(Tacher et al., 2015; Pung et al., 2017). Therefore, multimodal image registration, i.e. 

mapping preoperative MR imaging and associated liver segmentations to intraprocedural 

CBCT is essential for accurate liver/tumor localization, targeting and subsequent drug 

delivery. Current workflows do not apply any quantitative measurements on the acquired 

CBCT images and the predominant technique is mere gestalt assessment of the images. 

Automatic multimodal registration is therefore highly desirable in image-guided 

interventional procedures.

Previous multimodal/monomodal image registration algorithms can be categorized into two 

classes: conventional iterative based approaches (Wyawahare et al., 2009; Maes et al., 1997; 

Avants et al., 2008; Rohr et al., 2001; Heinrich et al., 2012) and deep learning based 

approaches (Hu et al., 2018; Qin et al., 2019; Lee et al., 2019; Zhou et al., 2020a; Wang and 

Zhang, 2020; Arar et al., 2020; Mok and Chung, 2020). Conventional approaches utilize 

iterative maximization of intensity similarity metrics, such as mutual information (Maes et 

al., 1997), cross correlation (Avants et al., 2008) and difference in MIND (Heinrich et al., 

2012), to find the optimal registration transformation between images. If paired key points 

between the images are available, landmark-based thin-plate splines registration can be 

applied to estimate the transformation between images. Previously, Al-Saleh et al. (2015, 

2017) demonstrated the feasibility of temporomandibular joints MRI-CBCT registration via 

the above mentioned intensity-based and landmark-based registration methods. In the 

application of head and neck CBCT-CT registration, Zhen et al. (2012); Park et al. (2017) 

proposed to integrate the intensity matching between CT and CBCT into conventional 

iterative based approaches for more accurate CT-CBCT registrations. However, the intensity 

matching approaches are suitable for either monomodal or multimodal with similar imaging 

physics and cannot be adapted to CBCT-MR registration. More recently, Solbiati et al. 

(2018) proposed a two-stage registration for CBCT-CT liver registration, where manually 

annotated key points in the first stage are used for coarse alignment and conventional 

iterative registration based on mutual information is subsequently performed to refine the 

alignment.

With the recent advances in data driven learning (Zhou et al., 2020b), deep learning based 

methods have achieved comparable registration performance with a significantly higher 

inference speed. For monomodal registration, Balakrishnan et al. (2019) proposed the first 

deep learning based registration method using a deep convolutional network to predict the 

registration transformation between monomodality images, called VoxelMorph. Mok and 

Chung (2020) further improved its registration performance by adding the symmetric 

diffeomorphic properties into the network design. Moreover, Wang and Zhang (2020) 

developed a learning-based registration framework, called DeepFLASH, that utilizes low 

dimensional band-limited space for efficient transformation field computing. For multimodal 

registration, Hu et al. (2018) proposed to use the organ segmentations for weakly supervised 

training the transformation estimation network, where intensity-neutral supervision makes 
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the multimodal registration feasible. However, accurate manual organ segmentation is 

required for their approach and thus limits its applications. As an alternative to this 

approach, Qin et al. (2019) proposed to estimate the non-rigid transformation from 

disentangled representation of multimodal image contents. There are also recent studies of 

multimodal image registration for natural images (Arar et al., 2020), where source image 

appearance is first translated to fix image appearance, and then previously established 

monomodal registration methods (Balakrishnan et al., 2019) are applied. Although all the 

above methods achieve impressive results, they are limited to multimodal registration with 

no occluded FOV, sufficiently wide intensity range, or organ segmentations. Those 

conditions are hardly satisfied in many image-guided intervention procedures, such as 

TACE. More recently, Augenfeld et al. (2020) proposed to use manual CBCT liver 

annotation to train a CBCT segmenter and register based on the predicted CBCT 

segmentation and manually annotated MR. While demonstrating the feasibility of 

registration in TACE, segmenting liver on intraprocedural image is not clinical routine and 

training such segmenter from limited annotation data impede the segmentation and 

registration performance.

To tackle these issues, we present an anatomy-guided registration framework by learning 

segmentation without target modality ground truth. In previous works of learning 

segmentation without target modality, Zhang et al. (2018a) proposed a two-step strategy, 

where they first use CycleGAN (Zhu et al., 2017) to adapt the target domain image to the 

domain with a well-trained segmenter, and then predict the segmentation on the adapted 

image. However, the segmentation performance relies on the image adaptation performance, 

thus the two-step process may prone to error aggregation. To improve the CycleGAN 

performance in medical imaging, Zhang et al. (2018b) suggested adding two segmenters as 

additional discriminators for generating shape-consistent image adaption results. However, 

ground-truth segmentation is required for both source and target domains. Recently, Yang et 

al. (2020) proposed to add the Modality Independent Neighborhood Descriptor (MIND) loss 

(Heinrich et al., 2012) in the CycleGAN to constrain image structure during the adaptation. 

Similarly, Ge et al. (2019) proposed to incorporate correlation coefficient loss in the 

CyleGAN to constrain image structure. Both strategies demonstrated improvements in MR-

to-CT translation. On the other hand, Huo et al. (2018) proposed Syn2Seg-Net that merges 

CycleGAN with a segmentation network on the target domain output, such that the 

segmentation network is trained on the target domain without target domain ground truth. 

However, the training image of the segmentation network relies on high-quality adapted 

images from the CycleGAN part of SynSeg-Net. Without anatomy-preserving constraint 

during the adaptation, the image could be adapted to a target domain image with incorrect 

anatomical contents, and negatively impact the subsequent segmentation network’s training. 

Inspired by Huo et al. (2018) and with large-scale manual liver segmentation on 

conventional CT available from public dataset, such as LiTS (Bilic et al., 2019) and CHAOS 

(Kavur et al., 2020), we propose an anatomy-preserving domain adaptation to segmentation 

network (APA2Seg-Net) for learning segmentation without CBCT/MR ground truth. 

Specifically, we aim to use only conventional CT segmentation to train robust CBCT/MR 

segmenters in an anatomy-preserving unpaired fashion. The extracted anatomic information 

of CBCT/MR, i.e liver segmentations, guides our Robust Point Matching (RPM) to estimate 
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the multimodal registration transformation. Our experimental results on TACE patients 

demonstrate that our APA2Seg-Net based registration framework allows us to get robust 

target modality segmenters without ground truth, and enables accurate multimodal 

registration. Our code is available at https://github.com/bbbbbbzhou/APA2Seg-Net.

2. Methods

We propose a novel two-stage multimodal registration framework for mapping pre-operative 

MR to intraprocedural CBCT for liver image-guided interventions. In the first stage, our 

APA2Seg-Net is trained with 3 sources of images: paired conventional CT with liver 

segmentation and unpaired CBCT/MR, such that CBCT/MR segmenters can be extracted 

from our APA2Seg-Net for outputting the anatomic information. In the second stage, we 

extract the surface points of the outputted CBCT and MR segmentations, and input them 

into our RPM machine to predict MR to CBCT transformation. Finally, the transformation is 

applied to the pre-operative MR and the associated labels to register to the intraprocedural 

CBCT. The details are discussed in following sections.

2.1. Anatomy-preserving Adaptation to Segmentation Network

Our APA2Seg-Net consists of two parts - an anatomy-preserving domain adaptation network 

(APA-Net) and a segmentation network. The architecture and training/test stages are shown 

in Figure 1. The APA-Net is a cyclic adversarial network based on Zhu et al. (2017) with the 

addition of anatomy content consistency regularization. As illustrated in Figure 1, APA-Net 

adapts images between two domains: the conventional CT domain A and the CBCT/MR 

domain B. The anatomy consistency regularization ensures organ and tumor content 

information are not lost during the unpaired domain adaptation process, thus critical for 

training a robust segmenter in domain B. Specifically, our APA2Seg-Net contains five 

networks, including two generators, two discriminators and one segmenter. The generator 

GA→B adapts images from the conventional CT domain to the CBCT/MR domain, the 

generator GB→A adapts the inverse way, the discriminator DB identifies real CBCT or the 

adapted ones from GA→B, the discriminator DA identifies real conventional CT or the 

adapted ones from GB→A, and the segmenter MB predicts the segmentation SB on adapted 

image from generator GA→B. There are two training paths in our APA2Seg-Net. Path A first 

adapts conventional CT images IA to I B in the CBCT/MR domain through GA→B. Then, I B
is adapted back to the conventional CT domain as I A through GB→A. In parallel, I B is also 

feed into segmenter MB to generate segmentation prediction SB. Similarly, path B first 

adapts CBCT/MR images IB to I A in the conventional CT domain through GB→A. Then, I A
is adapted back to the CBCT/MR domain as I B through GA→B.

Training supervision comes from five sources:

(a) adversarial loss ℒadv utilizes discriminators to classify if adapted image belong to 

specific domain. The adversarial objective aims to encourage G to generate adapted images 

that are indistinguishable to the discriminators. Two adversarial losses are introduced to train 

generators and discriminators:
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ℒadv GA B, DB, IB, I B = EIB B log DB IB
+ EIA A log 1 − DB GA B IA

(1)

ℒadv GB A, DA, IA, I A = EIA A log DA IA
+ EIB B log 1 − DA GB A IB

(2)

(b) cycle-consistency loss ℒcycle constrains the image that returns to the original domain 

after passing through two generators to have minimal alternation to image content, such that 

a compound of two generators should be an identity mapping:

ℒcycle = EIA A GB A GA B IA − IA 2
2

+ EIB B GA B GB A IB − IB 2
2 (3)

(c) segmentation loss ℒseg on the segmentation prediction from image I B. The segmentation 

prediction should be consistent with the ground truth label from the conventional CT domain 

A:

ℒseg = EIA A 1 −
2 MB GA B IA ∩ SA

MB GA B IA + |SA|
(4)

(d) identity loss ℒidt regularizes the generators to be near an identity mapping when real 

samples of the target domain are provided. For example, if a given image looks like it is 

from the target domain, the generator should not map it into a different image. Therefore, the 

identity loss is formulated as:

ℒidt = EIB B GA B IB − IB 2
2

+ EIA A GB A IA − IA 2
2 (5)

(e) anatomy-preserving loss ℒAP  enforces the anatomical content is preserved before and 

after adaptation. Unlike conventional CycleGAN (Zhu et al., 2017) that does not use direct 

content constraint, we use both the MIND loss (Yang et al., 2020; Heinrich et al., 2012) and 

correlation coefficient loss (Ge et al., 2019) to preserve the anatomy in our unpaired domain 

adaptation process:

ℒAP = λccℒcc + λmdℒmd (6)

The first term ℒcc is the correlation coefficient loss, and is formulated as:
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ℒcc = EIA A
Cov GA B IA , IA

σGA B IA σIA

+ EIB B
Cov GB A IB , IB

σGB A IB σIB

(7)

where Cov is the variance operator and σ is the standard deviation operator. The second term 

ℒmd is the MIND loss (Yang et al., 2020), and is formulated as:

ℒmd = EIB B F GA B IA − F IA 1
+ EIA A F GB A IB − F IB 1

(8)

where F is a modal-independent feature extractor defined by:

Fx(I) = 1
Z exp − Kx(I)

V x(I) (9)

where Kx(I) is a distance vector of image patches around voxel x with all the neighborhood 

patches within a non-local region in image I. Vx(I) is the local variance at voxel x in image I. 
Here, dividing Kx(I) with Vx(I) aims to reduce the influence of image modality and intensity 

range, and Z is a normalization constant to ensure that the maximum element of Fx equals to 

1. In our anatomy-preserving loss, the weight parameters are set to λcc = 1 and λmd = 1 to 

achieve balanced training. The anatomy-preserving loss ensures the adaptation only alter the 

appearance of image while maintaining the anatomical content, such that segmentation 

network MB can be trained correctly to recognize the anatomical content in the adapted 

image.

Finally, the overall objective is a weighted combination of all loss listed above:

ℒall = λ1ℒcycle + λ2ℒadv + λ3ℒseg + λ4ℒidt + λ5ℒAP (10)

where weight parameters are set to λ1 = 10 and λ2 = λ3 = λ4 = λ5 = 1 to achieve a balanced 

training and near-optimal performance according to our hyper-parameter search. The sub-

networks’ details are shown in Figure 2. Specifically, we use a decoder-encoder network 

with 9 residual bottleneck for our generators, a 3-layer CNN for our discriminators. Our 

segmenter is a 5-level UNet with concurrent SE module Roy et al. (2018) concatenated to 

each level’s output.

2.2. Anatomy-guided Multimodal Registration

Using our APA2Seg-Net trained by conventional CT with liver segmentation, we can obtain 

CBCT and MR segmenters. Then, the segmenters are deployed in our anatomy-guided 

multimodal registration to guide the Robust Point Matching (RPM) machine to predict the 

transformation between MR and CBCT images. The registration pipeline is shown in Figure 

3. The CBCT and MR segmenters from APA2Seg-Net predict the CBCT and MR 
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segmentations. Then, we extract the surface points from the CBCT and MR segmentations 

and input them into the RPM.

RPM is a point-based registration framework based on deterministic annealing and soft 

assignment of correspondences between point sets (Gold et al., 1998), which is robust to 

point outliers. Specifically, given two point sets ℳ and S , RPM aims to find the affine 

transformation T that best relates the two point sets. Reformulating the transform T into 

transformation matrix A and translation vector t form, we have T(m) = Am + t where A is 

composed of scale, rotation, horizontal shear, and vertical shear parameters, denoted as a, θ, 

b, and c, respectively. The registration cost function can be written as:

C = ∑
j = 1

N
∑
i = 1

M
μij sj − Ami + t 2 + α a2 + b2 + c2 − β ∑

j = 1

N
∑
i = 1

M
μij (11)

where μ is the point match matrix with uij = 1 if point mi corresponds to point sj and uij = 0 

otherwise. The first term minimizes the distance between point sets, and the second term 

constrains the transformation to avoid large numbers or dramatic transformations. The third 

term biases the cost toward stronger point correlation by decreasing the cost function. Then, 

the cost function can be iteratively solved by the soft assignment algorithm. The soft 

assignment between point sets allows point registration with exclusion of the outlying points 

and avoids local minima, which fits the problem of CBCT-MR registration well, since the 

liver is often partially occluded in CBCT due to limited FOV. In addition, for the purpose of 

intraprocedural registration, RPM provides high-speed registration as it is based on points. 

The generated transformation T is then applied to original MR image to created registered 

CBCT-MR pair, which provides better visualization of tumor during image-guided 

intervention.

In our implementation, we extract the liver surface points from CBCT and MR segmentation 

for RPM. Other types of point features from segmentation can also be used in RPM, such as 

landmarks and skeletons.

3. Experimental Results

3.1. Data and Setup

In the conventional CT domain, we collected 131 and 20 CT volumes with liver 

segmentation from LiTS (Bilic et al., 2019) and CHAOS (Kavur et al., 2020), respectively. 

In the CBCT/MR domain, we collected 16 in-house TACE patients with both 

intraprocedural CBCT and pre-operative MR for our segmentation and registration 

evaluations. All the CBCT data were acquired using a Philips C-arm system with a 

reconstructed image size of 384 × 384 × 297 and voxel size of 0.65 × 0.65 × 0.65mm3. The 

MR data were acquired using different scanners with different spatial resolutions. Thus, we 

resampled all the CBCT, MR and conventional CT to an isotropic spatial resolution of 1 × 1 

× 1mm3.

In the CBCT APA2Seg-Net setup, the conventional CT inputs were first randomly cropped 

in the axial view using a circular spherical mask on the liver region to simulate the limited 
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FOV in CBCT, as demonstrated in Figure 4. The circular mask maintains the same cropping 

geometry observed in CBCT with a radius of 125mm. As a result, we obtained 13, 241 2D 

conventional CT images with liver segmentation, and 3, 792 2D CBCT images. In the MR 

APA2Seg-Net setup, both the conventional CT and MR input were zero-padded or cropped 

to keep an axial FOV of 410 × 410mm2. As a result, we obtained 13, 241 2D conventional 

CT images with liver segmentation, and 1, 128 2D MR images. All the 2D images were 

resized to 256 × 256 for APA2Seg-Net inputs. With 16 TACE patients in our dataset, we 

performed four-fold cross-validation with 12 TACE used as training and 4 patients used as 

testing in each validation.

3.2. Segmentation Results

After training, we extracted the segmenters from the APA2Seg-Net for prediction of liver 

segmentations on both CBCT and MR. For qualitative study, we compared our segmentation 

performance with: i. CBCT/MR-to-CT CycleGAN concatenated with conventional CT 

segmenter (CycleGAN+SegCT), where the CT segmenter is trained on conventional CT 

images with liver annotations (SegCT); ii. APA2Seg-Net without MIND loss and CC loss for 

anatomy preserving constraint during the training (Ours-MD-CC); iii. APA2Seg-Net with 

MIND loss only for anatomy preserving constraint during the training (Ours+MD-CC); iv. 

APA2Seg-Net with CC loss only for anatomy preserving constraint during the training 

(Ours-MD+CC); v. APA2Seg-Net with both MIND loss and CC loss for anatomy preserving 

constraint during the training (Ours+MD+CC); and vi. the segmenter trained on target 

domain images with limited liver annotations (Supervised SegCBCT / SegMRI).

Qualitative comparison of CBCT segmentation results are shown in Figure 5. As we can see, 

CBCT in TACE suffers from limited FOV, metal artifacts, and low CNR. CycleGAN+SegCT 

is non-ideal because it requires adapting the input CBCT to conventional CT first, and the 

segmentation relies on the translated image quality. However, the unpaired and 

unconstrained adaption from CBCT to CT is difficult as it consists of metal artifact removal 

and liver boundary enhancement. The multi-stage inference in CycleGAN+SegCT aggregates 

the prediction error into the final segmentation. On the other hand, our APA2Seg-Net with 

anatomy-preserving constraint and one-stage inference mechanism achieved significantly 

better CBCT liver segmentation results. We found combining CC loss and MIND loss for 

our anatomy-preserving constraint in APA2Seg-Net yields the best results. We also found 

our identity loss that helps maintain the target domain feature during the adaptation process 

provides us better segmentation performance. Furthermore, compared to the segmenters 

trained on target domains using relatively limited annotation data (2844 2D images), our 

APA2Seg-Net trained from large-scale conventional CT data (13,241 2D images) can 

provide slightly better segmenters. Qualitative comparison of MR segmentation results are 

illustrated in Figure 6. Similar observations can be found in the MR segmentation results.

Dice Similarity Coefficient (DSC) and Average Symmetric Surface Distance (ASD) were 

used to evaluate the quantitative segmentation performance. Table 1 summarizes the 

quantitative comparison of CBCT and MR segmentation results. As we can see, our 

APA2Seg-Net achieved the best CBCT and MR segmentation in terms of DSC and ASD, 

indicating the best overall liver segmentation.
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3.3. Registration Results

With the CBCT and MR segmenters extracted from APA2Seg-Nets, we integrate the 

segmenters into our anatomy-guided multimodal registration pipeline for registering MR to 

CBCT. The CBCT and MR liver segmentation from segmenters are inputted into RPM to 

generate the transformation parameters. For qualitative studies, we first compared our 

registration results with classical previous works of intensity-based affine registration and 

intensity-based B-spline registration (Wyawahare et al., 2009; Maes et al., 1997). We also 

compared our registration results with intensity-based affine/B-spline registration based on 

CT images translated from CBCT and MR using APA-Net - similar to the idea in Arar et al. 

(2020). Two examples are illustrated in Figure 7. The ground truth (GT) CBCT liver mask 

(green) and the transformed GT MR liver mask (blue) are overlaid on the CBCT image to 

qualitatively evaluate the registration performance. As we can observe, neither intensity-

based registration methods can correctly estimate the MR transformation, while our 

anatomy-guided registration, as demonstrated in the last column of Figure 7, can more 

accurately map the MR to CBCT images. Compared to the RPM registration based on 

ground truth liver segmentations, our anatomy-guided registration based on APA2Seg-Net’s 

segmenter provides similar registration performance. Additional registration results using 

our method are shown in Figure 8.

For quantitative registration evaluation, we first evaluated the averaged error of 

transformation parameters where the transformation from human annotation based RPM 

registration is used as ground truth. Based on 3D affine transformation equation:

T =

1 0 0 Δx
0 1 0 Δy
0 0 1 Δz
0 0 0 1

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

1 ℎxy ℎxz 0
ℎyx 1 ℎyz 0
ℎzx ℎzy 1 0
0 0 0 1

=

sx sxℎxy sxℎxz Δx
syℎyx sy syℎyz Δy
szℎzx szℎzy sz Δz

0 0 0 1

,

(12)

twelve 3D affine transformation parameters were evaluated: sx, sy, sz are the scaling factors 

on the x,y,z directions, hxy, hxz, hyx, hyz, hzx, hzy are parameters that control the shear 

transformation, and Δx, Δy, and Δz are the translation on the x,y,z directions. The average 

errors of the parameters are reported in Table 2. As we can observe, our registration method 

achieves the least errors in estimating transformation parameters.

To further validate our registration, we computed the DSC and ASD metrics between the 

human annotated CBCT liver segmentation and the transformed human annotated MR liver 

segmentation using transformation generated from different methods. The results are 

summarized in Table 3. Please note that due to the limited FOV of CBCT, the liver mask in 

CBCT is often truncated while the liver mask in MR is intact. Therefore, the upper limit/

gold standard of the metrics are not DSC=1 and ASD=0, but assumed to be the registration 

results based human annotated liver segmentation. As we can observe from the table, our 
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segmenter-based RPM registration achieved a mean DSC of 0.847 that is comparable to the 

human annotation based RPM registration with a mean DSC of 0.853. Our anatomy-guided 

method is also significantly better than the intensity-based methods. In Figure 9, we 

visualize the case-by-case DSC/ASD differences between our method and the human 

annotation based registration. Our method can achieve similar registration performance 

across all 16 cases as compared to the human annotation based registration. A maximal DSC 

difference less than 0.07 and a maximal ASD difference less than 3mm can be observed. 

Furthermore, we compared our APA2Seg-Net segementer-based RPM registration to the 

target domain supervised segmenter-based RPM registration in Table 3. We found that our 

method also outperforms the supervised method that requires annotations on the target 

domains with the difference significant at p < 0.05 for both DSC and ASD.

4. Conclusion and Discussion

In this work, we proposed an anatomy-guided registration framework by learning 

segmentation without target modality ground truth. Specifically, we developed an APA2Seg-

Net to learn CBCT and MR segmenters without ground truth, which are then plugged into 

the anatomy-guided registration pipeline for mapping MR to CBCT. We overcame three 

major difficulties in multimodal image registration. First, we proposed an anatomy-based 

registration framework that utilizes point clouds of the segmented anatomy, instead of 

relying on multimodal image intensity which may have significant distribution differences. 

To obtain robust segmenters of target modality without ground truth, we proposed a 

segmentation network training scheme without using target modality ground truth, which 

mitigates the manual annotation requirement on the target modality. Then, we also proposed 

to use RPM-based point registration that is robust to partially occluded view (point outliers), 

a scenario commonly observed in TACE and other image-guided intervention procedures.

We demonstrated the successful application on TACE, in which pre-operative diagnostic MR 

are registered to intraprocedural CBCT for guiding TACE procedures. Firstly, our method 

achieved the superior segmentation performance even when compared to the fully 

supervised methods that requires annotations on the target domains. As annotating new 

domain data, i.e. intraprocedural CBCT, is not a clinical routine and is time-consuming, one 

may only obtain limited amount of labeled data for supervised training on the target domain. 

Thus, it cannot provide sufficient data variability for generating a robust model. On the other 

hand, our APA2Seg-Net utilizing large-scale conventional CT dataset offers much larger 

data variability, thus achieved superior segmentation performance even without using ground 

truth annotations from the target domain. Then, given the more robust segmenters from 

APA2Seg-Net, our registration pipeline based on these segmenters and RPM can also offer 

superior registration performance. In Table 3, our method is able to reduce the ASD between 

MR and CBCT liver segmentation from 4 cm based on previous intensity-based affine 

registration to 0.5cm, and reduce the translation difference from 9.6cm based on previous 

intensity-based affine registration to 2cm, as demonstrated in Table 2. With our method, the 

registration errors now fall within a more acceptable range. This allows MR to be more 

accurately registered to CBCT, reinforcing the utility of MR-derived information within the 

clinical TACE image guidance environment.
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The presented work also has potential limitations. First of all, the CBCT segmentation 

performance is far from perfect with a mean DSC of 0.893. In our current APA2Seg-Net 

implementation, only 2D networks were considered in this study since the amount of 

training data is not large enough to train a robust 3D network. However, the proposed 

APA2Seg-Net can be extended to 3D with the expense of higher GPU memory consumption 

and longer computation time, which would potentially provide better segmentation results if 

a large amount of 3D training scans is available. As a matter of fact, Zhang et al. (2018b); 

Cai et al. (2019) had demonstrated the promising results from 3D synthesis and 

segmentation. On the other hand, our APA2Seg-Net is an open framework with flexibility in 

network components. While we used 2D Res-Net/Patch GAN/concurrent-SE-UNet as our 

generator/discriminator/segmenter, we do not claim optimality of the combination for 

segmentation. Other image segmentation networks, such as attention UNet (Oktay et al., 

2018), multi-scale guided attention network (Sinha and Dolz, 2020), and adversarial image-

to-image network (Yang et al., 2017), could be deployed in our framework and might yield 

better segmentation performance on different applications. Secondly, as the segmentation is 

imperfect from our APA2Seg-Net, it leads to difference between registration based on our 

segmentation and human segmentation. However, the impact of imperfect CBCT/MR 

segmentation is mitigated through our RPM based registration. As we can observe from 

Table 3 and Figure 7, the human segmentation based registration is very close to the 

APA2Seg-Net segmentation-based registration in terms of qualitative visualization and 

quantitative comparison (< 0.01 in terms of Dice). Thirdly, we considered affine 

transformation in our CBCT-MR liver registration, and incorporating non-rigid registration 

could potentially provide more accurate internal structure mappings. However, liver in 

CBCT is often truncated due to limited FOV. Therefore, using non-rigid registration would 

lead to incorrect matching on the truncated boundary. Future works on incorporating non-

rigid registration while rejecting the point outliers outside of FOV is needed. Lastly, we 

evaluated the registration performance on the entire liver, while registration performance on 

other important landmarks, such as tumor location, is not included here. We will evaluate 

other landmark’s alignment in our future clinical feasibility studies.

The design of our anatomy-guided registration framework by learning segmentation without 

ground truth also suggests several interesting topics for future studies. First of all, our 

method could be adapted to other multimodal registration tasks that conventional registration 

techniques are not applicable, such as MR-Ultrasound (US) registration for neurosurgery 

(Rivaz et al., 2014) and prostate interventions (Hu et al., 2012), where occluded FOV and 

intensity inhomogeneity is often observed in US. There are several public datasets 

containing MR brain tumor and MR prostate with ground truth segmentation Simpson et al. 

(2019), which make it possible to adapt our method to these applications. More specifically, 

we could use APA2Seg-Net to obtain the US and MR segmenters, which are then embedded 

into our anatomy-guided registration pipeline for real-time MR-US alignments. Similar to 

our idea in registration, Sultana et al. (2019) recently proposed a prostate US-PET/CT 

registration algorithm based on segmentation for dose planning Dréan et al. (2016), in which 

our APA2Seg-Net could potentially provide the US and PET/CT prostate segmenter as well. 

Secondly, our method could also be adapted to landmark-based registration tasks. While 

anatomy-guided registration framework based on segmentation is demonstrated in this work, 
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the segmenter in APA2Seg-Net could be replaced with a detector for learning keypoint 

detection without ground truth on target domain. Then, the keypoint detector could also be 

embedded into our anatomy-guided registration pipeline for keypoint based alignments.

In summary, we proposed an anatomy-guided registration framework by learning 

segmentation without target modality ground truth based on APA2Seg-Net. We 

demonstrated the successful application on intraprocedural CBCT-MR liver registration. In 

the future, we will assess the tumor-of-interest’s registration accuracy and evaluate the 

clinical impact of real-time intraprocedural MR-CBCT liver registration.
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Highlights

• We proposed an anatomy-guided multimodal registration framework and 

demonstrated the successful application to CBCT-MR liver registration.

• For obtaining the anatomic structure information from CBCT/MR, we 

proposed an anatomy-preserving domain adaptation to segmentation network 

(APA2Seg-Net) that allows us to learn segmentation without ground truth.

• With the CBCT/MR segmenters obtained from APA2Seg-Net, we proposed a 

registration pipeline that allows MR and MR-derived information to be 

accurately registered to CBCT liver to facilitate the TACE procedure.

• We believe our design can be extended to similar image-guided intervention 

procedures, when standard registration techniques are limited due to the non-

ideal image quality conditions.
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Fig. 1. 
Illustration of our Anatomy-Preserving domain Adaptation to Segmentation Network 

(APA2Seg-Net). It consists of an anatomy-preserving domain adaptation network (left 

portion), and a segmenter for target domain. During test phase, the segmenter is extracted 

from APA2Seg-Net for predicting structural information, i.e., segmentation.
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Fig. 2. 
Illustration of our segmenter, generator, and discriminator network structures in the 

APA2Seg-Net. 5-level U-Net with the concurrent squeeze and excitation module is used for 

our segmenter. An autoencoder with multiple residual bottleneck is used for our generator. 

The feature size shrinks in the encoder phase, stays constant in the transformer phase, and 

expands again in the decoder phase. The feature size of the layer outputs is listed below it, in 

terms of the input image size, H. On each layer is listed the number of filters, the size of 

those filters, and the stride.
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Fig. 3. 
Our anatomy-guided multimodal registration pipeline. The segmenters are obtained from 

APA2Seg-Net in Figure 1.
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Fig. 4. 
Generation of limited FOV CT from conventional CT as input for our APA2Seg-Net.
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Fig. 5. 
Comparison of CBCT segmentation at different liver latitudes. Red mask: liver segmentation 

prediction. Green contour: liver segmentation ground truth. Results on APA2Seg-Net with or 

without CC loss and MIND loss are shown in the box.
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Fig. 6. 
Comparison of MRI segmentation at different liver latitudes. Red mask: liver segmentation 

prediction. Green contour: liver segmentation ground truth. Results on APA2Seg-Net with or 

without CC loss and MIND loss are shown in the box.
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Fig. 7. 
CBCT (target) and MRI (source) registration results. Deformation fields are applied on 

ground truth MRI liver mask and overlaid on CBCT images (blue). Ground truth CBCT liver 

mask (green contour) is overlaid on CBCT images as well. ‘CT’ Intensity based Affine 

means intensity-based affine registration based on CT images translated from CBCT and 

MR using APA-Net. ‘CT’ Intensity based BSpline means intensity-based BSpline 

registration based on CT images translated from CBCT and MR using APA-Net.
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Fig. 8. 
Three examples of CBCT (target) and MRI (source) registration results visualized at 3 liver 

latitudes. RPM registration is performed based on APA2Seg-Net segmentation. Liver tumors 

are located by red arrows in CBCT and registered MRI.
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Fig. 9. 
Plots of all 16 patients’ DSC and ASD differences between RPM registration based on 

human annotation and RPM registration based on our segmentation.
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Table 2.

Quantitative comparison of average transformation parameter errors. Underline means supervised trained 

model using ground truth segmentation on the target domain.

Names Intst-Affine ‘CT’-Intst-Affine RPM(Ours) RPM(Seg)

sx 3.23 3.33 0.23 0.33

sy 0.51 0.62 0.07 0.15

sz 0.62 0.67 0.06 0.26

hxy 0.19 0.67 0.04 0.09

hxz 0.32 0.65 0.04 0.08

hyx 0.22 1.39 0.12 0.21

hyz 0.29 0.43 0.07 0.15

hzx 0.68 0.71 0.25 0.72

hzy 0.28 0.33 0.09 0.39

Δx 79.85 mm 73.76 mm 25.13 mm 65.71 mm

Δy 64.48 mm 38.44 mm 15.05 mm 27.03 mm

Δz 96.12 mm 161.32 mm 22.74 mm 52.54 mm
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