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Abstract

Structural magnetic resonance imaging (MRI) has shown great clinical and practical values in 

computer-aided brain disorder identification. Multi-site MRI data increase sample size and 

statistical power, but are susceptible to inter-site heterogeneity caused by different scanners, 

scanning protocols, and subject cohorts. Multi-site MRI harmonization (MMH) helps alleviate the 

inter-site difference for subsequent analysis. Some MMH methods performed at imaging level or 

feature extraction level are concise but lack robustness and flexibility to some extent. Even though 

several machine/deep learning-based methods have been proposed for MMH, some of them 

require a portion of labeled data in the to-be-analyzed target domain or ignore the potential 

contributions of different brain regions to the identification of brain disorders. In this work, we 

propose an attention-guided deep domain adaptation (AD2A) framework for MMH and apply it to 

automated brain disorder identification with multi-site MRIs. The proposed framework does not 

need any category label information of target data, and can also automatically identify 

discriminative regions in whole-brain MR images. Specifically, the proposed AD2A is composed 

of three key modules: 1) an MRI feature encoding module to extract representations of input 

MRIs, 2) an attention discovery module to automatically locate discriminative dementia-related 

regions in each whole-brain MRI scan, and 3) a domain transfer module trained with adversarial 

learning for knowledge transfer between the source and target domains. Experiments have been 

performed on 2, 572 subjects from four benchmark datasets with T1-weighted structural MRIs, 

with results demonstrating the effectiveness of the proposed method in both tasks of brain disorder 

identification and disease progression prediction.
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1. Introduction

Structural magnetic resonance imaging (MRI) has shown great clinical and practical values 

in computer-aided brain disorder identification, such as Alzheimers disease (AD) and its 

early stage, i.e., Mild Cognitive Impairment (MCI), is of great clinical value (Brookmeyer et 

al., 2007; Alzheimer’s Association, 2019). With MRI data acquired from multiple 

neuroimaging centers/sites (Frisoni et al., 2010), numerous learning-based learning methods 

have been proposed to tackle the problem of brain disorder identification (Falahati et al., 

2014; Cuingnet et al., 2011). Among these methods, deep learning (LeCun et al., 2015), e.g., 

convolutional neural networks (CNNs) (Krizhevsky et al., 2012), has recently demonstrated 

its advantages over traditional machine learning methods in neuroimaging-based diagnosis 

and prognosis of brain dementia (Liu et al., 2018, 2020).

Multi-site MRI data help increase sample size and statistical power but maybe susceptible to 

inter-site heterogeneity caused for instance, by different scanners, scanning protocols, and 

subject cohorts. Previous studies typically assume that multi-site neuroimaging data are 

sampled from the identical distribution (Valiant, 1984; Lian et al., 2020), and directly apply 

a model (trained on source domain) to target data. However, such an assumption is too 

strong and may not hold in real-world applications due to the inter-site heterogeneity 

(Quionero-Candela et al., 2009). Multi-site MRI harmonization (MMH) helps alleviate the 

inter-site difference for subsequent analysis. Failure to perform MMH will cause biased 

results and erroneous conclusions that can potentially mislead future scientific endeavors. To 

deal with this problem, some methods facilitate MMH at the imaging level through hardware 

and software tuning (Clarke et al., 2020). Some methods adopt statistical techniques at the 

feature extraction level for MMH. Pomponio et al. (Pomponio et al., 2020) estimate the 

location and scale differences in ROI volumes across sites, and then remove these effects to 

achieve standardized ROI volumes for feature extraction. Wrobel et al. (Wrobel et al., 2020) 

adopt nonlinear transformations which are calculated by aligning distribution functions of 

intensity values to facilitate MMH. These methods are concise and effective to some extent, 

but often rely on some prior knowledge and assumptions which limit their robustness and 

flexibility. A more promising solution for MMH is to use domain adaptation methods to 

improve the transferability of models across multi-site data (Cheng et al., 2015; Madani et 

al., 2018), thereby generating a model that can work well on both source and target domains.

Existing domain adaptation methods can be generally divided into two categories: 1) feature 

transfer and 2) model transfer approaches. The first category aims to learn transferable 

features through deep learning techniques. It has been revealed that deep convolutional 

networks (CNNs) can be used to learn discriminative and transferable features across 

different domains (Oquab et al., 2014; Zeiler and Fergus, 2014). Based on this finding, CNN 

has been introduced to deal with various tasks of brain dementia classification, aiming to 

achieve higher transferability across different sites (Korolev et al., 2017; Lian et al., 2020). 
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These methods do not use target samples during the learning process, which may limit their 

generalizability to the target data. The second category aims to learn transferable models by 

fine-tuning a pretrained model using samples in the target domain (Khan et al., 2019; 

Hosseini-Asl et al., 2016; Cheng et al., 2015). Taking the domain heterogeneity into 

consideration during the learning process, these methods tend to show higher 

generalizability. However, these methods often suffer from the following limitations. First, 

many of them require a part of labeled target data for model fine-tuning, thus greatly 

limiting their applications to unsupervised scenarios where no labeled target data are 

available. Note that labeling MRIs is a tedious and time-consuming task that requires the 

participation of experienced radiologists. Second, most existing methods equally treat all 

voxels in the whole-brain MRI, ignoring the potential different contributions of different 
regions to brain disorder identification, resulting in less robust models. It has been revealed 

that different brain regions have different effects on brain disorders (Mu and Gage, 2011; Ott 

et al., 2010; Lian et al., 2020). Intuitively, incorporating such prior knowledge into the 

training process of domain adaptation models will improve the performance of brain 

disorder identification.

In this work, we propose an attention-guided deep domain adaptation (AD2A) framework 

for MMH and apply it to the automated identification of brain disorders. The proposed 

AD2A method leverages domain adaptation to overcome the shortage of labeled target data 

for model fine-tuning (transferability enhancement) via adversarial learning (Goodfellow et 

al., 2014; Ganin and Lempitsky, 2015) and also can locate disease-related brain areas shared 

by cross-domain MRIs via an attention mechanism (Zhou et al., 2016; Woo et al., 2018). As 

shown in Fig. 1, our AD2A framework consists of three key components: 1) an MRI feature 
encoding module that extracts hierarchical feature representations of the input brain MRIs in 

both source and target domains, 2) an attention discovery module that automatically locates 

disease-related regions in whole-brain MRIs, and 3) a domain transfer module with 

adversarial learning that transfers knowledge between the source and target domains. In the 

experiments, the proposed AD2A method is evaluated on four independent datasets (i.e., 

ADNI-1 (Jack Jr et al., 2008), ADNI-2, ADNI-3, and AIBL (Ellis et al., 2009)) for multiple 

AD-related diagnosis tasks. Experimental results demonstrate that AD2A can yield superior 

cross-domain diagnostic performance compared with the state-of-the-art methods, and also 

effectively identify AD-related discriminative atrophy locations in MRIs.

The major contributions of this work can be summarized as follows. First, an unsupervised 

MMH framework is proposed for MRI-based brain disorder identification without requiring 

any label information of target data. Second, we propose to incorporate discriminative brain 

region localization into the model learning process for domain adaptation, which can reduce 

the negative influence of brain regions that are uninformative for prognosis. Besides, 

extensive experiments have been performed on 2, 572 subjects from four benchmark datasets 

with multi-site structural MRI scans.

The remainder of this paper is organized as follows. We first review relevant studies in 

Section 2. Section 3 introduces the materials used in this work and the details of the 

proposed method. In Section 4, we present the experimental settings, evaluation metrics, and 

experimental results. We further analyze the influence of several key components of the 
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proposed method and discuss the limitations of the current work and future work in Section 

5. The paper is finally concluded in Section 6.

2. Related Works

2.1. MRI-based Brain Disorder Analysis

Structural MRI data have been widely used in the computer-aided systems for brain disorder 

diagnosis and prognosis. Conventional methods usually extract hand-crafted MRI features 

and enhance robustness through feature fusion or selection (Falahati et al., 2014; Cuingnet et 

al., 2011; Shi et al., 2014; Zhu et al., 2014; Rathore et al., 2017). (Klöppel et al., 2008) 

extracted the grey matter density map of the entire brain MRI to train a support vector 

machine (SVM) for AD classification. (Cho et al., 2012) used converted thickness features 

with an incremental learning-based LDA for AD classification. (Chincarini et al., 2011) 

proposed to extract statistical and textural features of predefined brain regions, and 

subsequently trained an SVM for MCI conversion prediction.

In recent years, deep learning (e.g., CNN) has achieved promising results in computer vision 

(Krizhevsky et al., 2012; He et al., 2016) and neuroimaging analysis (Shen et al., 2017). 

(Gupta et al., 2013) used a sparse auto-encoder to extract features from brain MRIs, 

followed by a 2D CNN for AD classification. (Suk et al., 2014) proposed to use Deep 

Boltzmann Machine (DBM) trained with multi-modal images, i.e., MRI and positron 

emission tomography (PET), for automated AD classification. (Korolev et al., 2017) 

proposed VoxCNN, a 3D VGG-like CNN, for brain MRI classification. (Parisot et al., 2018) 

proposed to adopt graph convolutional networks (GCN) for the task of MCI conversion 

prediction.

These methods have shown promising performance for the task of brain dementia 

identification. However, they only rely on source data for model learning and ignore the 

distribution of target data, which may limit their transferability.

2.2. Domain Adaptation for Medical Image Analysis

Conventional machine learning methods typically assume that the training/source MRI data 

and test/target MRI data have identical distribution. However, this assumption does not 

always hold in real-world applications. For example, domain distributional heterogeneity 

(i.e., domain shift) is widespread among multi-site MRI datasets caused by different 

scanners, scanning parameters, and subject populations. Therefore, multi-site MRI 

harmonization (MMH) is essential to avoid biased results and erroneous conclusions by 

alleviating the inter-site difference.

As a promising solution to MMH, domain adaptation has attracted increasing attention in the 

filed (Kouw and Loog, 2019; Wang and Deng, 2018; Csurka et al., 2017; Pan and Yang, 

2010). (Wachinger and Reuter, 2016) computed thickness and shape features from brain 

MRIs, then trained an elastic-net regression model based on instance weighting strategy to 

alleviate domain shift. (Moradi et al., 2014) proposed to utilize a transductive support vector 

machine (TSVM) for domain adaptation, based on gray matter density features of brain 

MRIs. (Li et al., 2019) adopted subspace alignment to reduce domain boundaries and trained 
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a discriminative analysis classifier for AD identification. (Cheng et al., 2015) proposed a 

feature selection method based on gray matter tissue volumes of predefined regions-of-

interest (ROIs), followed by a TSVM for MCI conversion prediction. (Madani et al., 2018) 

proposed a semi-supervised generative adversarial network (GAN) model for chest X-ray 

classification, which can incorporate unlabeled target data into network training to enhance 

the model transferability. (Zhang et al., 2019b) proposed a noise GAN model, an image-to-

image translation GAN, which can map source samples to the target domain to alleviate the 

domain shift. (Ahn et al., 2020) proposed a zero-bias convolutional auto-encoder to learn 

features of target samples in an unsupervised manner. (Khan et al., 2019) first pretrained a 

VGG network on natural images, then performed layer-wise fine-tuning with MRIs for AD 

classification. (Hosseini-Asl et al., 2016) proposed an adaptive 3D CNN that was pretrained 

on MRIs in the source domain, and then fine-tuned task-specific layers on MRIs in the target 

domain. (Zhang et al., 2019a) developed an unsupervised conditional adversarial network 

for brain disease identification, by learning both domain-invariant and domain-specific 

features of structural MRI scans. However, existing methods rarely exploit the unique 

characteristics of brain images; that is, different brain regions may have different 

contributions to the recognition of specific brain diseases.

3. Materials and Methodology

3.1. Materials and MRI Preprocessing

Four benchmark datasets with baseline MRIs are used in this work, including 1) Alzheimer’s 

Disease Neuroimaging Initiative (ADNI-1) (Jack Jr et al., 2008), 2) ADNI-2, 3) ADNI-3, 

and 4) Australian Imaging Biomarkers and Lifestyle Study of Aging database (AIBL) (Ellis 

et al., 2009). Subjects that simultaneously appear in ADNI-1, ADNI-2 and ADNI-3 are 

removed from ADNI-2 and ADNI-3 for the sake of independent evaluation. Specifically, 

ADNI-1 consists of 748 subjects with 1.5T T1-weighted structural MRIs, including 205 AD, 

231 cognitively normal (CN), 165 progressive MCI (pMCI) and 147 stable MCI (sMCI) 

subjects. ADNI-2 contains 708 subjects with 3T T1-weighted structural MRIs, including 162 

AD, 205 CN, 88 pMCI and 253 sMCI subjects. ADNI-3 involves 567 subjects with 3T T1-

weighted structural MRIs, including 60 AD, 329 CN, 178 MCI subjects. Note that there are 

no pMCI and sMCI labels for the MCI subjects in ADNI-3. Besides, AIBL has structural 

MRIs acquired from 549 subjects, including 71 AD, 447 CN, 11 pMCI and 20 sMCI 

subjects. The demographic and clinical information of studied subjects can be found in Table 

1.

All brain MR images were preprocessed through a standard pipeline, including skull 

stripping, intensity correction, and spatial normalization to Automated Anatomical Labeling 

(AAL) template. To avoid losing useful information, we followed the requirement that all 

brain tissues should be completely preserved.

3.2. Problem Setting

We focus on the problem of unsupervised domain adaptation for MRI-based brain disorder 

classification. Let X × Y represent the joint space of samples (subjects) and the 

corresponding category labels. A source domain S and a target domain T are defined on the 
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joint space, with unknown distributions P and Q (P ≠ Q), respectively. Suppose Ns samples 

are provided with category labels in the source domain, i.e., DS = xiS, yiS i = 1
Ns

. Also, we 

have Nt samples in the target domain but without category labels, i.e., DT = xjT j = 1
Nt . 

These two domains are assumed to share the same set of category labels. Our goal is to 

design an unsupervised learning model, which is constructed on labeled source samples and 

can accurately predict the labels of subjects in the target domain without any help of label 

information of target samples.

There are two important concepts for understanding the problem in this work: 1) category 
label and 2) domain label. Specifically, the category label indicates the category of a subject 

(e.g., AD, CN, and MCI). The term “label” or “label information” refers to the category 

label in this paper. The domain label indicates the domain to which the subject belongs. For 

example, “1” indicates the source domain, and “0” indicates the target domain. It should be 

noted that the domain label is determined by the model setting for a specific task.

3.3. Proposed Method

As shown in Fig. 1, the proposed attention-guided deep domain adaptation (AD2A) 

framework consists of three main components: 1) a feature encoding module, 2) an attention 

discovery module, and 3) a domain transfer module. We now introduce the details of each 

component as follows.

3.3.1. MRI Feature Encoding—We design a 3D CNN to extract features of brain MR 

images both in both source and target domains. As illustrated in the left panel of Fig. 1, the 

feature encoding module contains ten 3×3×3 convolution (Conv) layers, with the channel 

numbers of 8, 8, 16, 16, 32, 32, 64, 64, 128, and 128, respectively. Each Conv layer is 

followed by batch normalization (BN) and a rectified linear unit (ReLU). To avoid 

overfitting and enlarge receptive fields, down-sampling operations (stride: 2×2×2) are added 

to the Conv2, Conv4, Conv6, Conv8 and Conv10, respectively.

3.3.2. Dementia Attention Discovery—Previous studies have revealed that brain 

disorders are highly associated with certain regions in the brain (Mu and Gage, 2011; Ott et 

al., 2010; Woo et al., 2018; Lian et al., 2020). In addition, we also find in our experiments 

that locating disease-related areas can improve the transferability of the learning model. 

Based on these motivations, we design a trainable attention discovery module to 

automatically identify essential brain regions that are more closely linked to subject-specific 

abnormal status in brain MR images.

As illustrated in the middle part of Fig. 1, the feature maps generated by the Conv10 layer of 

feature encoder is used as the input of the proposed attention discovery module. Let M = 

[M1, … , MC] denote the input feature map, where Mi ∈ ℝH × W × D(i = 1, 2, ⋯, C) is the 

feature map at the ith channel and C represents the number of channels. Cross-channel 

average pooling and max-pooling are then performed on M to generate two feature maps, 

i.e., Mavg and Mmax, respectively. We concatenate these two feature maps and send them to a 

Conv layer (i.e., Conv 11 with only one channel) to produce a spatial attention map. The 
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sigmoid function is then used as the nonlinear activation to calculate the final attention map 

A. The role of the sigmoid function is to constrain each element in A within the range of [0, 

1], which can reflect the importance of different areas in the MRI feature map. That is, 

important brain areas in the feature map would be assigned larger weights, while less 

important ones would be assigned smaller weights. Mathematically, the attention map is 

defined as:

A = σ f3 × 3 × 3 Mmax, Mavg , (1)

where σ represents the sigmoid function and f3×3×3 denotes a convolution operator with a 3 

× 3 × 3 kernel.

As shown in Fig 1, the proposed AD2A has two parallel branches corresponding to the 

source and target domains, respectively. Each of the branches follows the same pipeline to 

generate the attention maps as presented above. Let As and At denote the attention maps for 

source and target domains, respectively. To encourage the attention consistency and transfer 

semantic information from the source domain to target domain, we design an attention 
consistency loss in AD2A, which is defined as the mean square difference between As and 

At as follows:

ℒatt = 1
N × H × W × D ∑

i = 1

N
‖Ai

s − Ai
t‖, (2)

where N is the number of samples.

Besides the attention consistency loss, our attention module also leverages both image-level 

category labels and domain labels as supervision for end-to-end training (see Fig. 1). This is 

the main difference between our model and previous deep learning models (e.g., localized 

class activation maps (Zhou et al., 2016)) that are trained by using only category labels as 

supervision. Therefore, our attention module helps highlight discriminative regions across 

different domains, while others can only focus on a single domain.

3.3.3. Domain Transfer via Adversarial Learning—Due to the data heterogeneity 

and distribution difference between the source and target domains, a model that is well-

trained on a source domain may have degraded performance when directly applied to the 

target domain. It is especially challenging when there is no label information offered in the 

target domain for model fine-tuning. Thus our goal is to build a robust learning model based 

on only labeled source data. To this end, we develop a domain transfer module in the 

proposed AD2A (see the right panel of Fig. 1). This module is trained in an adversarial 

learning manner to balance the classification performance and generalization ability. More 

importantly, it does not require any label information of target samples.

Specifically, the proposed transfer module consists of a category classifier for classification 

and a domain discriminator/classifier for telling whether an input sample is from the source 

or target domain. Through co-training of these two classifiers, the proposed AD2A is 

encouraged to not only achieve good classification performance on source data but also learn 
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domain-invariant features for both domains. In this way, we could improve the robustness of 

the learned model when applying it to the target domain.

Category Classifier.: The category classifier CS is built to estimate the labels of input MRI 

samples. Since no labeled data are available for the target domain, we can only train this 

classifier using labeled data in the source domain. Using the feature map generated by the 

feature encoder and weighted by the attention map as input, we employ three fully-

connected layers with 128, 64 and 2 units in the category classifier for classification, with 

the loss defined as:

ℒcls = 1
Ns

∑
i = 1

Ns
L CS xiS , yiS , (3)

where L(·) denotes the cross-entropy loss.

Domain Discriminator.: The domain discriminator CD is designed to distinguish MRI 

features from different domains. It is trained by adversarial learning in which it serves as a 

player (the other one is the feature encoding module) in a min-max game. In this game, we 

try to maximize the loss of the domain classifier; thus the feature encoding module is 

encouraged to learn domain-invariant MRI features for both source and target data. To this 

end, three successive fully-connected layers with 128, 64 and 2 units are added in the 

domain discriminator. For network training, a training set x1, y1
D , x2, y2

D , ⋯, xN, yN
D

with N samples is formed, where yiD = 1 indicates that xi comes from the source domain and 

yiD = 0 denotes that xi is from the target domain. In each batch, we select equal numbers of 

training samples from both the source domain and target domain to avoid bias towards either 

of them. Then the domain discriminator is trained by minimizing the following loss:

ℒdom = 1
N ∑

i = 1

N
L CD xj , yjD , (4)

where L(·) denotes the cross-entropy loss and yiD is the domain label.

The final goal of our system is to learn domain-invariant and disease-related features across 

the source and target domains. To achieve this, the task can be performed by learning a 

model that is capable of predicting category labels correctly without any domain cues. In 

this work, we jointly minimize the category classification loss in Eq. (3), minimize the 

attention consistency loss in Eq. (2), and maximize the domain classification loss in Eq. (4). 

The overall objective function of AD2A is defined as follows:

ℒtotal = ℒcls + αℒatt − βℒdom, (5)

where α and β are the hyperparameters used to control the contributions of three terms. The 

proposed method can be used in various applications where the to-be-analyzed domain has 

no labeled data, especially for problems with few or even no labeled target data.
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3.3.4. Implementation—The proposed AD2A model was implemented using Python 

based on PyTorch. The network was trained for 100 epochs. The Adam solver (Kingma and 

Ba, 2015) was used as the optimizer with a learning rate of 1 × 10−4 and a batch size of 2. 

The dropout operation with a rate of 0.5 was used to prevent over-fitting. We empirically set 

the parameter α and β in Eq. (5) to be 0.5 and 0.1, respectively. In the training process, we 

first pretrain the feature encoding network and the attention discovery module for 

classification according to Eq. (3) for 30 epochs. Then, these modules were further fine-

tuned and co-trained with both the domain discriminator and category classifier via Eq. (5).

4. Experiments

4.1. Experimental Setup

We conduct four groups of experiments, including: 1) AD identification (i.e., AD vs. CN 

classification), 2) MCI conversion prediction (i.e., pMCI vs. sMCI classification), 3) AD vs. 

MCI classification, and 4) MCI vs. CN classification.

For AD identification, six transfer learning settings are considered: 1) “ADNI-1→ADNI-2” 

with ADNI-1 as the source domain and ADNI-2 as the target domain; 2) 

“ADNI-2→ADNI-1” with ADNI-2 and ADNI-1 as the source and target domains, 

respectively; 3) “ADNI-1→ADNI-3” with ADNI-1 and ADNI-3 as the source and target 

domains, respectively; 4) “ADNI-1+ADNI-2 → ADNI-3” with the combination of ADNI-1 

and ADNI-2 as the source domain and ADNI-3 as the target domain; 5) “ADNI-1→AIBL” 

with ADNI-1 and AIBL as the source and target domains, respectively; and 6) 

“ADNI-1+ADNI-2 → AIBL” with the combination of ADNI-1 and ADNI-2 as the source 

domain and AIBL as the target domain. Since the number of MCI subjects in AIBL is small 

(i.e., 32) and there is no pMCI and sMCI labels in ADNI-3, we only evaluate the 

performance of MCI conversion prediction on two transfer learning settings: 1) 

“ADNI-1→ADNI-2”; and 2) “ADNI-2→ADNI-1”. For AD vs. MCI classification, four 

transfer learning settings are considered: 1) “ADNI-1→ADNI-2”; 2) “ADNI-2→ADNI-1”; 

3) “ADNI-1→ADNI-3”; and 4) “ADNI-1+ADNI-2→ADNI-3”. For MCI vs. CN 

classification, four transfer learning settings are considered: 1) “ADNI-1→ADNI-2”; 2) 

“ADNI-2→ADNI-1”; 3) “ADNI-1→ADNI-3”; and 4) “ADNI-1+ADNI-2→ADNI-3”.

Four metrics were employed for performance evaluation in the experiments, i.e., 

classification accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under the 

receiver operating characteristic curve (AUC). Denote TP, TN, FP, FN as the true positive, 

true negative, false positive and false negative, respectively. Then, these four evaluation 

metrics can be defined as ACC = TP+TN
TP+TN + FP + FN , SEN = TP

TP+FN , and SPE = TN
TN+FP . For 

each metric, a higher value indicates better classification performance.

4.2. Competing Methods

In our experiments, we compared the proposed AD2A with four hand-crafted feature-based 

domain adaptation methods, including 1) Transfer Component Analysis (TCA) (Pan et al., 

2010), 2) Subspace Alignment (SA) (Fernando et al., 2013), 3) Geodesic Flow Kernel 

(GFK) (Gong et al., 2012), and 4) Correlation Alignment (CORAL) (Sun et al., 2017; 
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Kumar et al., 2017). We also compare AD2A with two state-of-the-art deep learning 

methods, including 1) VoxCNN (Korolev et al., 2017), and 2) Domain-Adversarial Training 

of Neural Network (DANN) (Ganin and Lempitsky, 2015). The four hand-crafted feature-

based methods use gray matter volumes of 90 regions defined in the AAL template as the 

feature representation of MRIs, and logistic regression as the classifier. The deep learning 

methods (i.e., VoxCNN, DANN and our AD2A) learn MRI feature representations 

automatically from data in an end-to-end manner. We briefly introduce these competing 

methods as follows.

1. TCA (Pan et al., 2010). In the TCA method, several transfer components are 

learned based on the MR image features in different domains. Then, Maximum 

Mean Discrepancy (MMD) is utilized in the Reproducing Kernel Hilbert Space 

to make the distribution of multiple domains close to each other. In the 

experiments, we use a linear kernel for feature learning in TCA. We set the four 

key parameters of TCA as σ = 2, μ = 1, λ = 0, γ = 0.1, respectively.

2. SA (Fernando et al., 2013). In the SA method, MRI features of source and target 

domains are represented by a subspace spanned by eigenvectors. Then a mapping 

function is learned to align the subspace representations by minimizing the 

Bregman matrix divergence. The parameter for the new feature dimension in SA 

is set to 20.

3. GFK (Gong et al., 2012). In the GFK method, low dimensional representations 

of the MRIs from the source and target domain are learned. The data distribution 

difference is reduced by exploring the low-dimensional data structures that are 

domain-invariant. The parameter of the subspace dimension in GFK is set to 20.

4. CORAL (Sun et al., 2017). In the CORAL method, domain shift is minimized 

by aligning the second-order statistics of source and target distributions. CORAL 

needs to compute the covariance of the source and target features without extra 

parameters.

5. VoxCNN (Korolev et al., 2017). VoxCNN is a deliberately designed CNN model 

for MRI-based dementia classification. It contains ten 3 × 3 × 3 Conv layers 

(with the channel numbers of 8, 8, 16, 16, 32, 32, 32, 64, 64, and 64, 

respectively) for feature learning, and two fully-connected layers for 

classification. Note that this VoxCNN method does not include any data 

adaptation process, since the model is trained on the source domain and directly 

applied to the target domain.

6. DANN (Ganin and Lempitsky, 2015). DANN is a state-of-the-art adversarial 

learning-based domain adaptation method that has been widely used in modern 

medical imaging tasks (Yang et al., 2019; Kamnitsas et al., 2017; Javanmardi and 

Tasdizen, 2018). It adopts AlexNet for feature learning and a domain classifier 

for domain adaptation. Different from our model, it only aligns feature 

distributions of source and target domains in the top fully-connected layers, 

whereas our method also aligns the attention maps learned from convolution 

layers (with more spatial information).
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4.3. Results of Cross-Domain Classification

We first evaluate the proposed AD2A and the competing methods in cross-domain problems, 

with one dataset used as the source domain and the other as the target domain. In this group 

of experiments, 80% source samples are used for training and the remaining 20% source 

samples are used for validation. Target samples (with an equal number of the training source 

data) are used for model training, and these target samples have no label information. More 

discussions on the number of target samples are reported in the Supplementary Materials.

4.3.1. AD vs. CN Classification—Table 2 reports the results achieved by different 

methods in the task of AD identification. From Table 2, one can observe that the proposed 

AD2A consistently outperforms the conventional hand-crafted feature based methods and 

the deep learning method in six transfer learning settings. Besides, our AD2A achieves 

overall better performance in the setting of “ADNI-1+ADNI-2 → AIBL” than “ADNI-1 → 
AIBL”. This implies that training with more diverse data in the source domain may enhance 

the robustness of learned models when applied to the target domain.

4.3.2. MCI Conversion Prediction—Table 3 reports the results achieved by different 

methods in the task of MCI conversion prediction. From Table 3, we can see that the 

performance of seven methods in “ADNI-2 → ADNI-1” is usually worse than “ADNI-1 → 
ADNI-2”. This result could be caused by imbalanced pMCI (i.e., 88) and sMCI (i.e., 253) 

subjects in ADNI-2. Also, results in Tables 2–3 show that accurately predicting the future 

conversion of MCI subjects is more challenging than the task of AD identification, while our 

AD2A still achieves the overall best performance.

4.3.3. AD vs. MCI Classification—Results achieved by different methods in the task 

of AD vs. MCI classification are shown in Table 4. From Table 4, we can see that the 

proposed AD2A still achieves the best performance among the conventional and deep 

learning methods. In addition, our AD2A yields overall better results in the setting of 

“ADNI-1+ADNI-2 → ADNI-3” than “ADNI-1 → ADNI-3”. This again validates that using 

more diverse training data helps produce models with higher transferability for multi-site 

MRI harmonization.

4.3.4. MCI vs. CN Classification—Table 5 reports the results achieved by different 

methods in the task of MCI vs. CN classification. From Table 5, we can see that the results 

of all methods are worse than those in Tables 2–4, suggesting that the task of MCI vs. CN 

classification is quite challenging. This can be attributed to that the MCI and CN subjects are 

relatively closer in the MRI feature space, since only very subtle structural changes occur in 

brain MRIs of MCI subjects.

4.4. Results of Within-Domain Classification

We further evaluate the performance of different methods for within-domain classification 
by using the mixed data from ADNI-1, ADNI-2, ADNI-3 and AIBL. A 5-fold cross-

validation strategy is used here. That is, we first randomly partitioned all AD and CN 

subjects from these four datasets into five folds. One of these five folds is used as the testing 

set (target domain) alliteratively, while the remaining four folds are used as the training set 
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(source domain). The AD vs. CN classification results of different methods in each fold are 

listed in Table 6.

Table 6 suggests that the proposed AD2A can achieve the overall superior performance in 

terms of both ACC and AUC values, compared with those in Table 2. This can be attributed 

to the decrease in distribution difference between the source and target domains when 

performing cross-validation on mixed data of four datasets.

5. Discussion

In this section, we will investigate several major components in the proposed AD2A, analyze 

the influences of parameters, and present the limitations of the current work. Besides, we 

study the influence of a fine-tuning strategy (i.e., using a part of labeled target data for 

network refinement), and report the experimental results in the Supplementary Materials.

5.1. Ablation Study

The proposed AD2A consists of two key components, i.e., the attention discovery module 
and the 2) domain discriminator. To evaluate their contribution, we compare AD2A with its 

three variants for ablation analysis. These variants include: 1) ADN that only contains the 

feature encoding module and the category classifier in Fig. 1; 2) ADN-T that contains the 

feature encoding module, attention discovery module, and the category classifier; and 3) 

AD2A-S that includes the feature encoding and domain transfer modules. Note that ADN 

and ADN-T do not have domain adaptation modules. That is, these two models are firstly 

trained on source data and then directly applied to target data. Fig. 2 shows the AUC results 

achieved by AD2A and its three variants in four cross-domain tasks.

From Fig. 2, we can derive the following observations. First, ADN (without the attention 

discovery module and domain discriminator) yields the worst performance in four 

classification tasks. Second, the results of AD2A-S (without the attention discovery module) 

and ADN-T (without the domain discriminator) are generally inferior to AD2A. These 

results suggest that both the attention discovery module and the domain discriminator are 

useful in boosting the learning performance. The underlying reason could be that the 

attention mechanism plays a role in feature selection that enables the model to focus on the 

discriminative patterns across domains for dementia identification. And the proposed 

domain discriminator helps extract domain-invariant features that are robust for cross-

domain classification.

5.2. Parameter Analysis

The parameters α and β in Eq. (5) play important roles in balancing the contributions of the 

attention alignment and domain discriminator. To study their influence on the proposed 

AD2A model, we vary their values within the range of [0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1], 

and report the corresponding AUC values. Fig. 3 reports the experimental results of AD2A 

with different values of α and β in MCI conversion prediction in the setting of “ADNI-1 → 
ADNI-2”. From Fig. 3, we can see that AD2A can yield good performance with α ∈ [0.05, 

0.5] and β ∈ [0.01, 0.2]. Also, with α = 0 or β = 0, the AUC values of AD2A are not that 
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good. This suggests the attention discovery module and the domain discriminator have 

positive complementary effects on enhancing transferability.

5.3. Learned Attention Maps

We further visualize the generated attention maps for eight subjects from ADNI-1 and 

ADNI-2, as shown in Fig. 4. From the visualization results, we can see that the most 

discriminative areas (denoted by red) for dementia prognosis mainly located in the 

hippocampus (Mu and Gage, 2011) and ventricles (Ott et al., 2010). Besides, it can be 

observed that the discriminative regions within AD subjects are more distinct than those of 

MCI (i.e., pMCI and sMCI) subjects. Considering the fact that structural changes caused by 

AD are relatively easier to be detected than MCI, these results suggest that the learned 

attention maps of the proposed AD2A are reasonable.

5.4. Visualization of Distribution after Adaptation

To intuitively illustrate the effectiveness of the proposed method, we visualize the data 

distribution of two datasets (i.e., ADNI-1, ADNI-2) before and after domain adaptation (via 

our AD2A). To visualize the domain heterogeneity before adaptation, we randomly selected 

200 subjects (AD and CN) from ADNI-1, ADNI-2, and extracted gray matter volumes of 90 

regions defined in the AAL template as feature representation of brain MRIs. Then, we use 

the t-SNE algorithm (Maaten and Hinton, 2008) to visualize their data distributions in Fig. 5 

(a), from which we can observe that there is a significant domain shift between ADNI-1 and 

ADNI-2. After adaptation via AD2A, we use the trained network to extract features of 

samples from these two datasets, and then use t-SNE to plot their distribution as shown in 

Fig. 5 (b). From Fig. 5, we can see that the domain shift has been largely reduced, 

suggesting the effectiveness of the proposed method.

5.5. Computational Cost

We now analyze the computational cost of the proposed AD2A model. Since the training 

process is conducted in an off-line manner, we only analyze the computational cost for the 

online test stage for new test MR images. The proposed network was implemented in 

PyTorch on a workstation equipped with a GPU (TI-TANX, 12G), and it took about 0.08 s to 

predict an input MRI scan. This result indicates that our AD2A method can perform real-

time diagnosis of brain diseases, which is very useful in real-world applications.

5.6. Limitations and Future Work

Although the proposed AD2A model has obtained good performance in brain dementia 

identification, there are still some limitations that need to be addressed in the future.

First, the feature encoding network is trained from scratch in the current work. It is 

interesting to pretrain existing 3D CNNs on the other large-scale 3D medical image datasets 

and fine-tune them on the dementia dataset to further improve the classification 

performance. Second, only neuroimaging data are considered in our current work, while 

demographic information (e.g., age (Peters, 2006)) may also play a role in brain dementia 

prediction. It is interesting to incorporate some demographic information to improve the 

classification results. Besides, our current model is mainly trained on one domain and 
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transferred to other domains. As future work, one can study how to leverage multi-source 

domain learning (Zhao et al., 2020) to incorporate more diverse training sets into the whole 

learning process to further enhance the robustness and transferability. Furthermore, the size 

of the training samples is still relatively small. It is desired to collect more neuroimaging 

data from multi-site MRI studies and use generative models (e.g., generative adversarial 

network (Yi et al., 2019)) to augment the training samples.

6. Conclusion

In this paper, we proposed an attention-guided deep domain adaptation (AD2A) framework 

for multi-site MRI harmonization and applied it to automated brain disorder identification. 

Specifically, the proposed AD2A consists of three main components, i.e., a feature encoding 

model for MRI feature extraction, an attention discovery module to locate disease-related 

regions in brain MRIs, and a domain transfer module for knowledge transfer between the 

source and target domains. We evaluated the AD2A model on four benchmark datasets with 

T1-weighted structural MRIs acquired from multiple imaging centers. Experimental results 

show that this method is effective in identifying brain diseases compared to several state-of-

the-art methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• An unsupervised domain adaptation framework for brain disorder 

identification.

• Avoid the demand for labeled target data for training.

• Automatically locate disease-related brain areas.

• Extensive experiments on multi-site neuroimaging datasets.
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Figure 1: 
Illustration of the proposed attention-guided deep domain adaptation (AD2A) framework for 

MRI-based dementia identification. There are three main components: 1) a feature encoding 

module, 2) an attention discovery module, and 3) a domain transfer module with adversarial 

learning for knowledge transfer between the source and target domains.
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Figure 2: 
Ablation study for verifying the effectiveness of different components in AD2A.
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Figure 3: 
Impact of two parameters, i.e., (top) α (with β = 0) and (bottom) β (with α = 0), on the 

proposed method in MCI conversion prediction.
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Figure 4: 
Attention maps generated by our AD2A for eight typical subjects from ADNI-1 (a) and 

ADNI-2 (b). The red and blue denote the high and low discriminative capability of brain 

regions in disease identification, respectively.
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Figure 5: 
Visualization of (a) the original distribution and (b) the distribution after adaptation via our 

proposed AD2A for two structural MRI datasets (i.e., ADNI-1, ADNI-2).
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Table 1:

Demographic and clinical information of subjects included in four benchmark datasets (i.e., ADNI-1, ADNI-2, 

ADNI-3, and AIBL). The gender is presented as male/female. The age, education years, and mini-mental state 

examination (MMSE) scores are presented as mean ± standard deviation (std).

Datasets Category Gender Age Education MMSE

ADNI-1

NC 119/112 76.0 ± 5.0 15.9 ± 4.1 28.5 ± 2.6

sMCI 101/46 74.6 ± 7.7 15.6 ± 3.0 27.1 ± 1.5

pMCI 101/64 74.8 ± 6.8 15.4 ± 3.5 26.5 ± 1.1

AD 106/99 75.7 ± 7.6 13.1 ± 6.8 24.1 ± 1.4

ADNI-2

NC 110/95 73.2 ± 6.4 16.5 ± 2.5 26.5 ± 1.3

sMCI 146/107 71.0 ± 7.4 16.2 ± 2.1 27.2 ± 1.5

pMCI 52/36 73.1 ± 7.0 16.0 ± 2.5 27.0 ± 2.0

AD 95/67 74.2 ± 8.0 15.9 ± 2.6 24.0 ± 1.2

ADNI-3

NC 118/211 70.4 ± 7.5 15.7 ± 2.8 29.1 ± 1.1

MCI 100/78 72.4 ± 7.7 16.2 ± 2.7 27.8 ± 2.1

AD 37/23 74.1 ± 12.7 15.9 ± 2.6 23.9 ± 2.8

AIBL
NC 192/255 72.8 ± 6.6 – 28.7 ± 1.2

AD 30/41 73.4 ± 7.8 – 20.5 ± 5.7
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Table 2:

Results of seven methods in AD identification (i.e., AD vs. CN classification) in six different transfer learning 

settings.

Source Domain→Target Domain Method ACC (%) SEN (%) SPE (%) AUC (%)

ADNI-1→ADNI-2

TCA 74.39 56.79 88.29 80.55

SA 74.65 61.72 84.88 80.10

GFK 65.40 55.56 73.17 70.33

CORAL 77.65 82.71 73.65 85.16

VoxCNN 83.65 85.80 81.95 90.43

DANN 87.19 83.33 90.24 90.77

AD2A (Ours) 89.92 87.65 91.70 94.01

ADNI-2→ADNI-1

TCA 73.62 66.83 79.65 80.61

SA 73.39 59.51 85.71 80.12

GFK 62.16 49.27 73.59 65.05

CORAL 76.38 72.20 80.09 84.00

VoxCNN 82.33 70.24 93.07 89.94

DANN 84.17 79.51 88.31 90.01

AD2A (Ours) 87.84 86.83 88.74 92.07

ADNI-1→ADNI-3

TCA 76.35 60.00 79.33 80.15

SA 77.89 56.67 81.76 80.33

GFK 74.55 61.67 76.90 72.22

CORAL 71.21 58.33 73.56 84.50

VoxCNN 86.11 61.67 90.57 89.07

DANN 88.17 61.67 93.00 92.46

AD2A (Ours) 92.03 66.67 96.65 95.01

ADNI-1+ADNI-2→ADNI-3

TCA 80.21 63.33 83.28 83.00

SA 83.55 56.67 88.45 85.29

GFK 75.32 65.00 77.20 76.10

CORAL 76.35 63.33 78.72 85.87

VoxCNN 87.66 66.67 91.18 90.74

DANN 88.69 71.67 91.79 92.82

AD2A (Ours) 92.54 75.00 95.74 95.66

ADNI-1→AIBL

TCA 68.34 32.39 74.05 50.92

SA 69.69 36.62 74.94 51.37

GFK 59.85 46.48 61.97 50.25

CORAL 54.44 45.07 55.93 54.48

VoxCNN 85.91 66.20 89.04 86.06

DANN 86.49 73.24 88.59 90.10

AD2A (Ours) 88.80 85.92 89.26 92.73

ADNI-1+ADNI-2→AIBL

TCA 69.31 30.99 75.39 51.69

SA 74.02 26.46 85.84 52.33

GFK 63.71 36.62 68.00 50.90
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Source Domain→Target Domain Method ACC (%) SEN (%) SPE (%) AUC (%)

CORAL 57.72 50.70 58.84 57.24

VoxCNN 87.07 83.10 87.70 92.28

DANN 88.03 80.28 89.26 93.05

AD2A (Ours) 90.35 87.32 90.83 95.37

Med Image Anal. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guan et al. Page 27

Table 3:

Results of seven methods in MCI conversion prediction (i.e., pMCI vs. sMCI classification) in two different 

transfer learning settings.

Source Domain→Target Domain Method ACC (%) SEN (%) SPE (%) AUC (%)

ADNI-1→ADNI-2

TCA 70.09 43.18 79.45 61.33

SA 67.44 34.09 79.05 58.29

GFK 69.20 42.05 78.66 55.17

CORAL 68.91 50.00 75.49 67.57

VoxCNN 73.21 34.09 86.96 74.56

DANN 75.07 52.27 83.00 76.01

AD2A (Ours) 78.01 53.41 86.56 78.82

ADNI-2→ADNI-1

TCA 58.33 53.94 63.27 60.11

SA 58.65 57.58 59.86 57.33

GFK 54.17 47.88 61.22 51.00

CORAL 59.61 40.61 80.95 58.45

VoxCNN 63.14 64.24 61.90 66.42

DANN 66.99 60.61 74.14 67.87

AD2A (Ours) 69.88 65.45 74.82 71.41
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Table 4:

Results of seven methods in AD vs. MCI classification in four different transfer learning settings.

Source Domain→Target Domain Method ACC (%) SEN (%) SPE (%) AUC (%)

ADNI-1→ADNI-2

TCA 63.62 22.22 83.28 58.76

SA 64.02 25.31 82.40 61.25

GFK 65.01 35.80 78.89 64.10

CORAL 67.99 29.01 86.51 67.40

VoxCNN 69.58 46.91 80.35 70.79

DANN 73.76 41.98 88.86 75.02

AD2A (Ours) 75.55 46.29 89.44 77.67

ADNI-2→ADNI-1

TCA 53.57 22.44 74.04 58.21

SA 53.80 21.95 74.68 60.12

GFK 60.35 43.41 71.47 63.65

CORAL 67.70 41.46 84.93 66.79

VoxCNN 68.09 41.95 85.26 68.96

DANN 68.47 42.43 85.57 69.65

AD2A (Ours) 70.41 43.90 87.82 71.99

ADNI-1→ADNI-3

TCA 71.84 46.67 80.90 60.48

SA 73.11 51.67 80.33 59.30

GFK 64.29 50.00 69.10 51.75

CORAL 67.23 51.67 72.47 69.67

VoxCNN 76.89 51.67 85.39 70.15

DANN 79.83 53.33 88.76 72.90

AD2A (Ours) 81.51 55.00 90.45 75.88

ADNI-1+ADNI-2→ADNI-3

TCA 72.68 40.00 83.71 67.32

SA 73.95 41.67 84.83 64.11

GFK 65.13 38.33 74.16 56.80

CORAL 68.49 50.00 74.72 69.85

VoxCNN 78.57 45.00 89.89 74.74

DANN 81.09 48.33 92.13 75.96

AD2A (Ours) 82.35 50.00 93.25 77.61
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Table 5:

Results of seven methods in MCI vs. CN classification in four different transfer learning settings.

Source Domain→Target Domain Method ACC (%) SEN (%) SPE (%) AUC (%)

ADNI-1→ADNI-2

TCA 57.88 53.96 64.39 58.19

SA 58.05 54.25 64.39 55.62

GFK 59.52 54.55 67.80 58.14

CORAL 60.44 62.46 57.07 63.60

VoxCNN 61.72 58.65 66.83 63.90

DANN 64.10 59.53 71.71 69.58

AD2A (Ours) 67.03 63.64 72.68 70.33

ADNI-2→ADNI-1

TCA 53.22 48.08 60.17 54.25

SA 54.14 47.76 62.77 54.72

GFK 55.25 47.44 65.80 55.18

CORAL 60.41 55.77 66.67 60.05

VoxCNN 60.77 56.09 67.10 65.12

DANN 63.90 60.90 67.97 67.55

AD2A (Ours) 65.19 61.53 70.13 69.96

ADNI-1→ADNI-3

TCA 59.17 38.20 70.51 58.68

SA 54.24 22.47 71.43 58.12

GFK 52.46 23.03 68.39 52.51

CORAL 60.35 28.65 77.51 52.67

VoxCNN 62.92 42.13 74.16 59.06

DANN 68.84 41.57 83.59 64.90

AD2A (Ours) 70.22 42.70 85.11 67.22

ADNI-1+ADNI-2→ADNI-3

TCA 61.14 33.71 75.99 60.05

SA 60.16 31.46 75.68 58.55

GFK 57.99 39.89 67.78 56.72

CORAL 60.95 40.45 72.04 60.52

VoxCNN 65.48 41.01 78.72 63.11

DANN 69.82 41.57 85.11 65.00

AD2A (Ours) 71.60 44.94 86.02 69.23

Med Image Anal. Author manuscript; available in PMC 2022 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Guan et al. Page 30

Table 6:

Results of AD vs. CN classification achieved by the proposed method and six competing methods on the 

mixed data from ADNI-1, ADNI-2, ADNI-3 and AIBL using 5-fold cross validation.

Method Fold #1 Fold #2 Fold #3 Fold #4 Fold #5

ACC 
(%)

AUC 
(%)

ACC 
(%)

AUC 
(%)

ACC 
(%)

AUC 
(%)

ACC 
(%)

AUC 
(%)

ACC 
(%)

AUC 
(%)

TCA 73.97 79.88 74.56 80.23 73.39 77.32 74.85 80.98 74.27 79.11

SA 75.14 80.76 74.26 77.28 73.10 76.09 73.39 77.89 75.43 81.42

GFK 71.64 70.22 70.17 70.05 69.88 70.30 69.29 70.11 70.46 70.50

CORAL 73.10 83.79 76.02 84.71 77.20 84.85 78.95 87.75 77.78 85.31

VoxCNN 83.33 89.02 84.80 90.05 86.25 88.14 85.09 90.12 84.50 89.03

DANN 90.64 90.02 90.35 90.44 88.89 90.00 90.05 91.75 90.93 91.86

AD2A 
(Ours)

92.40 94.76 90.64 90.86 90.93 91.06 92.98 94.31 93.57 94.98
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