
Structure and Function of ATP-dependent Chromatin 
Remodeling Complexes

Alexis A Reyes1,2,*, Ryan D Marcum1,*, Yuan He1,2,3,4,†

1Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 
60208-3500, USA

2Interdisciplinary Biological Sciences Program, Northwestern University, 2205 Tech Drive, 
Evanston, IL, USA, IL 60208-3500, USA

3Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern 
University, 676 N. St. Clair, Chicago, IL 60611, USA

4Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA

Abstract

Chromatin remodelers act to regulate multiple cellular processes, such as transcription and DNA 

repair, by controlling access to genomic DNA. Four families of chromatin remodelers have been 

identified in yeast, each with non-redundant roles within the cell. There has been a recent surge in 

structural models of chromatin remodelers in complex with their nucleosomal substrate. These 

structural studies provide new insight into the mechanism of action for individual chromatin 

remodelers. In this review, we summarize available data for the structure and mechanism of action 

of the four chromatin remodeling complex families.
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Introduction

Essential processes such as transcription, DNA replication, and repair depend on DNA being 

accessible to the protein complexes that initiate and conduct their respective processes. A 

group of ATP-dependent chromatin remodelers serves to regulate DNA accessibility by 

repositioning, ejecting, or modifying nucleosomes. This important class of enzymes ensures 

the proper positioning of nucleosomes to allow DNA-centric processes to occur and 

represent another level of regulation. Eukaryotic cells contain four families of chromatin 

remodelers, which are categorized based on the similarities and differences of the ATPase 

subunits [1], including switch/sucrose non-fermentable (SWI/SNF), imitation switch (ISWI), 

chromodomain helicase DNA-binding (CHD), and INOsitol requiring 80 (INO80).

Each family of chromatin remodelers carries out specialized functions within the cell. 

SWI/SNF remodelers, which include the SWI/SNF and RSC complexes, establish 

nucleosome depleted regions [2] as well as position the +1 nucleosome for transcription 

initiation through nucleosome sliding and ejection [3, 4]. ISWI remodelers, Isw1a, Isw1b, 

and Isw2 complexes, and CHD function in nucleosome maturation and spacing to create 

nucleosomal arrays with fixed distances [5]. INO80 family chromatin remodelers, INO80 

and SWR1, play a role in nucleosome editing by exchanging histone variants [6, 7].

In recent years a considerable amount of biochemical, biophysical, and genomic work has 

been done to determine the mechanism of chromatin remodeling and how remodelers serve 

to regulate cellular processes. All four families of remodelers are highly conserved 

throughout evolution, but we will focus mainly on the yeast chromatin remodelers. In this 

review, we will focus on the most recent high-resolution cryo-electron microscopy (cryo-

EM) structures of the various remodelers and the current mechanistic understanding of 

remodeler function.

Structure of chromatin remodeling complexes

Recent cryo-EM studies have provided high-resolution information about the interaction of 

chromatin remodeler complexes with their nucleosomal substrate. This can provide insight 

into the organization and mechanism of action of the different families of chromatin 

remodelers. Here we review the currently available structural models of yeast chromatin 

remodelers.

SWI/SNF

The SWI/SNF complex can be divided into three main modules – the ATPase, Actin-Related 

Protein (ARP), and Body modules (Figure 1A, Table 1) [8]. The ATPase module includes 

Snf2 and, as the name suggests, is responsible for coupling ATP hydrolysis to DNA 

translocation. Similar to other remodelers, the ATPase domain of Snf2 is made up of two 

RecA-like domains connected by a pair of brace helices [8, 9]. Snf2 interacts with the 

exposed surface of nucleosomal DNA at superhelical location 2 (SHL 2) through the cleft 

formed by the RecA-like domains (Figure 1A). Basic residues of the DNA binding cleft 

interact with the phosphate backbone of DNA, which can explain its ability to bind in a 

sequence-independent manner [10]. This mode of Snf2 binding to the nucleosome is similar 
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in structures of Snf2 alone and in the context of the full SWI/SNF complex [8,9,11]. In 

addition to the ATPase domain, Snf2 also harbors a C-terminal bromodomain that increases 

binding affinity to acetylated nucleosomes [12, 13]. Previous studies of the homologous 

human BRG1 showed a canonical four-helix bundle bromodomain with moderate affinity for 

acetylated histone H3 and H4 tails [14]. The Snf2 bromodomain is unresolved in SWI/SNF 

cryo-EM structures, likely due to flexibility of histone tails or heterogenous post-

translational modifications of the nucleosome substrate used in most structural studies to 

date.

The ARP module includes the Snf2 HSA (helicase-SANT associated) domain, Rtt102, Arp7, 

and Arp9, and acts to support and coordinate the ATPase module with the Body module 

(Table 1). The Snf2 HSA domain forms a long, single helix between the ATPase domain and 

the N-terminus of Snf2, which is within the Body module (Figure 1A). Arp7 and Arp9 pack 

against and straddle the Snf2 HSA domain. Rtt102 binds to one side of the HSA-Arp7/9 

subcomplex to further stabilize the ARP module [15].

The Body module of SWI/SNF consists of Swi1, Snf5, Swi3, Snf12/Swp73, Snf6, and 

Swp82 [Table 1]. The Body is the largest module of the SWI/SNF complex and packs 

against the opposite face of the nucleosome from the ATPase module, creating additional 

nucleosome interactions with histone- and DNA-interacting subunits. These additional 

nucleosome interactions are suggested to play an important role in substrate recognition and 

anchoring the octamer during DNA translocation. One essential histone binding protein is 

Snf5, which interacts with the acidic patch of the histone octamer. Loss of Snf5 uncouples 

ATP hydrolysis from DNA translocation [16], indicating an important role in anchoring the 

octamer as DNA slides around the nucleosome. Swi1, which acts as a scaffold for the Body 

module, also includes an AT-rich interaction domain (ARID). Previous work has shown that 

Swi1 ARID interacts with AT-rich DNA sequences [17], and structural studies of this 

domain in humans revealed a helix-turn-helix motif that interacts with the major groove of 

DNA [18]. Swi1 ARID is unresolved in the cryo-EM structure, likely due to the 

conformational flexibility of its interaction with DNA, and it is unknown how this domain 

engages DNA when bound to the nucleosome. Other subunits work to act as a scaffold for 

assembly or further stabilize the Body module. Two long helices of Snf12 and the coiled-coil 

domains of Swi3 form a four-helix bundle within the Body, likely playing a role in early 

complex assembly and transcription regulation [8, 19, 20]. Swi3 also contains two SANT 

domains that anchor and stabilize Snf2 within the complex. Snf6 and Swp82 are yeast 

specific subunits that occupy peripheral regions of the Body module and are believed to 

further stabilize the complex [8].

RSC

The cryo-EM structure of RSC, another member of the SWI/SNF family, bound to the 

nucleosome reveals a similar overall architecture when compared to SWI/SNF containing 

corresponding ATPase, ARP, and Body modules [21–23] (Figure 1B, Table 1). Sth1, an Snf2 

paralog, forms the ATPase module with C-terminal RecA-like domains and a classical 

bromodomain that interacts with acetylated histone peptides [1,24]. Similar to Snf2, Sth1 
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engages its nucleosome substrate at SHL 2. However, one of the ATPase lobes of Sth1 also 

engages the second DNA gyre near SHL 6 [22].

Remarkably similar to the SWI/SNF ARP module, the Sth1 HSA helix, Arp9, Arp7, and 

Rtt102 form the RSC ARP module. The ARP module bridges the ATPase and Body 

modules, allowing for coupling and regulation of ATP hydrolysis and DNA translocation 

[22, 25]. Very similar to the SWI/SNF ARP module, Arp7 and Arp9 pack against the HSA 

helix of Sth1 with Rtt102 wrapping around one face of Arp 7 and Arp9. A recent study 

suggests that binding of Arp7 and Arp9 to the Sth1 HSA domain induces proper folding of 

HSA [22].

The Body module of RSC consists of Sfh1 (a Snf5 paralog), Rsc7, Rsc8a/b (a Swi3 

paralog), Rsc9, Rsc58, Rsc6 (a Swp73 paralog), Rsc2, Rsc4, Rsc3, Rsc30, and Htl1 (Table 

1], which interacts with the face of the nucleosome opposite from the ATPase module. In the 

Body module, Sfh1 interacts directly with the H2A/H2B acidic patch anchoring the Body to 

the core histone octamer, serving a similar function as Snf5 in the SWI/SNF complex. The 

RSC Body module harbors histone tail binding domains, including bromodomains in Rsc2 

(known to interact with H3 tails), Rsc4 (which binds acetylated H3 tails), and Rsc58. The 

Body module also contains various DNA-binding domains, including zinc clusters in 

Rsc3/30 that are unresolved in the cryo-EM structure, an RFX domain in Rsc9, and a zinc-

finger domain in Rsc8 [26–28]. However, it is not fully understood how these histone tail 

and DNA binding domains contribute to the positioning of the RSC complex and sensing 

post-translational modifications on the nucleosome. A major difference between the 

SWI/SNF and RSC Body modules is that RSC is also shown to bind DNA that has exited the 

nucleosome (Figure 1A, B). Rsc3/30, which are known to recognize DNA elements within 

promoters, are included in the region of the Body that binds DNA upstream of SHL 7 [29]. 

This DNA binding site likely contributes to the high affinity that RSC has for nucleosomes 

flanking nucleosome depleted regions (NDRs).

ISWI

Currently, high-resolution cryo-EM structures of ISWI complexes bound to nucleosome are 

limited to the Iswi1 ATPase subunit (Figure 1C, Table 1). The catalytic subunits of the ISWI 

family of remodelers, Isw1 or 2, contain N-terminal RecA-like helicase domains, a C-

terminal HAND-SANT-SLIDE (HSS) domain, and a regulatory auto-inhibition domain. The 

RecA-like domains pack together to form the ATPase domain, as seen in other chromatin 

remodeling complexes. The cryo-EM structure of yeast Isw1 shows that the ATPase domain 

engages nucleosomes at SHL 2 in a similar manner to Snf2 (Figure 1C) [30,31]. The C-

terminus of Isw1 harbors a four-helix HAND domain followed by a SANT domain and 

SLIDE domain, referred to as the HSS domain, that is involved in nucleosome substrate 

binding. THE SANT and SLIDE domains are known to bind DNA. Furthermore, deletion of 

the SANT-SLIDE domains leads to decreased remodeling by Isw1 [32]. This effect may be 

due to the HSS-DNA interaction preventing the C-terminal negative regulator (NegC) from 

folding back on the helicase domain.

A comparison of the structures of Isw1 alone or in complex with the histone H4 tail 

demonstrates the mechanism of autoinhibition [33]. The N-terminal auto inhibition domain 
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(AutoN) binds to RecA-like helicase in the absence of nucleosomal substrate, locking it into 

an inactive conformation. Histone H4 tails compete with AutoN to bind to the negatively 

charged surface of the second lobe of the RecA-like ATPase [34]. Additionally, NegC binds 

to one lobe of Isw1, preventing the helicase domain from coming together into the active 

conformation. When Isw1 is bound to DNA, NegC is prevented from folding back and 

inhibiting the activation of the helicase domain. Together these suggest a mechanism 

whereby Isw1 is inhibited until it binds to its nucleosomal substrate. The H4 tails and DNA 

compete with autoinhibitory domains, allowing Isw1 to adopt its active conformation.

Individual ISWI complexes are composed of a catalytic subunit in addition to accessory 

proteins that affect their function [35] (Figure 1C, Table 1). Isw2 forms a single complex 

consisting of Isw2 and Itc1. Isw1 is included in two different complexes, Isw1a and Isw1b, 

that are differentiated by their accessory subunits. Isw1a includes Ioc3, and Isw1b includes 

Ioc2 and Ioc4. A previous study showed that the Isw1 HSS domain interacts with Ioc3, 

revealing an extensive interface between a hydrophobic pocket of Ioc3 and the HSS SLIDE 

domain [32]. Low-resolution cryo-EM studies indicate that Isw1 HSS and Ioc3 interact with 

the nucleosome dyad within mono-nucleosomes. A recent study revealed that Isw1a 

preferentially binds and more efficiently remodels dinucleosomes, likely due to Ioc3 not 

binding the dyads of dinucleosomes [36]. When Isw1a binds mono-nucleosomes, Ioc3 

extensively binds to the lateral face and acidic patch of the nucleosome. However, when 

binding di-nucleosomes, it is Isw1 that binds the lateral face and acidic patch. The Isw1b 

auxiliary subunits, Ioc4 and Ioc2, contribute to nucleosome binding through interactions 

with methylated histones [37,38]. Further work is required to better understand how Ioc3, 

Itc1, Ioc2, and Ioc4 contribute to complex assembly, substrate binding, and DNA 

translocation in the context of nucleosome arrays.

CHD

CHD chromatin remodelers are known to interact with elongation and chromatin-modifying 

factors, such as Paf1, FACT, and SAGA [39–41]. Whereas the previously reviewed 

chromatin remodelers form their own multi-subunit complexes, CHD proteins appear to 

coordinate with multiple chromatin-modifying complexes. The details of CHD protein 

interactions with these complexes remain unclear. However, recent cryo-EM studies provide 

insight into the interaction between Chd1, the only CHD protein in S. cerevisiae, and its 

nucleosome substrate [42,43].

The Chd1 ATPase interacts with the nucleosome between DNA gyres at SHL 2 in a similar 

manner as Isw1 and Snf2 (Figure 1D, Table 1). Additional DNA contacts occur involving 

the N-terminal double chromodomains and the C-terminal SANT-SLIDE domains with SHL 

1 and extranucleosomal DNA, respectively, introducing a kink in the DNA trajectory and 

unraveling DNA from the octamer [42,43]. Minimal engagement occurs between Chd1 and 

histones, although the ATPase domain of Chd1 does interact with the first alpha-helix of 

histone H3 and the histone H4 tail. It is likely that subunits of associated factors (i.e., FACT, 

SAGA, etc.) engage in extensive contact with the histone octamer and assist in DNA 

translocation. Further studies of Chd1 potential interactions with these factors are necessary 

to understand the underlying mechanism by which they cooperate.
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INO80

The cryo-EM structure of the C. thermophilum INO80 complex was solved in complex with 

nucleosome [44] (Figure 1E) and displays a unique architecture when compared to 

SWI/SNF and RSC chromatin remodelers. Like SWI/SNF and RSC, INO80 can be 

organized into the ATPase, ARP, and Body modules (Table 1). Although the Ino80 ATPase 

domain shares a similar structure with the ATPase domains discussed above, it interacts with 

the nucleosome at a unique position, SHL 6. Ies2 is also part of the INO80 ATPase module 

and wraps around nucleosomal DNA to bind SHL 2, providing a more extensive DNA 

binding interface than is observed in SWI/SNF and RSC. The INO80 family of remodelers 

is also known for a long linker, often referred to as the INO80 insertion, between the ATPase 

lobes of the catalytic subunits. The Ino80 insertion spans most of the complex, engaging in 

specific interactions with Ruvb1/Ruvb2, Ies2, Arp5, and Ies6 [44].

The ARP module of INO80 consists of Ino80 HSA domain, Arp4, Arp8, Nhp10, and N-

actin. This module is unresolved within the cryo-EM structure of the INO80-nucleosome 

complex, although additional density suggests it binds to extranucleosomal DNA [44]. The 

crystal structure of the ARP module alone contains a long, helical HSA domain providing a 

binding scaffold for additional subunits of the module [45]. It was further reported that the 

ARP module preferentially binds to extranucleosomal DNA and that this interaction is 

mediated by basic residues of the HSA helix along with the N-terminus of Arp8 and the C-

terminus of Arp4 [46]. This contrasts with SWI/SNF and RSC ARP modules, which do not 

appear to interact with extranucleosomal DNA and are positioned away from the 

nucleosome dyad. Arp8 shows a strong preference for binding H3-H4 tetramers suggesting 

that Arp8 plays a role in maintaining nucleosome recognition [47].

Ruvb1/Ruvb2 make up the core of the Body module, which also includes Arp5, Ies2, Ies4, 

Ies6, and Taf14. The yeast INO80 complex also consists of Ies1, 3, and 5. Arp5 binds the 

H2A/H2B acidic patch on the face of the nucleosome proximal to the Body module, while 

Ies2 wraps around the nucleosome to bind the distal H2A/H2B acidic patch [44]. Additional 

contacts occur between Ies6 and the H2B C-terminal helix. Arp5 and Ies6 also bind DNA at 

SHL 2 and 3, respectively, forming an interface on the opposite side of the H2A/H2B dimer 

from the ATPase domain. This unique mode of binding to a nucleosomal substrate is more 

extensive than that found in SWI/SNF and RSC, suggesting a distinct mechanism of 

chromatin remodeling.

SWR1

SWR1, a member of the INO80 family, is remarkably similar to the INO80 complex in its 

overall architecture and can also be organized into the ATPase, ARP, and Body modules [48] 

(Figure 1F, Table 1). The ATPase module includes Swr1, which consists of an ATPase 

domain, an HSA domain, and an insert between the two ATPase lobes that is characteristic 

of INO80 remodelers. Unlike Ino80, but similar to other ATPase subunits discussed above, 

the Swr1 ATPase lobes bind nucleosomes at SHL 2. A unique feature of Swr1 binding at 

SHL 2 involves a displacement of the bound DNA that results in a significant rotation of 

Swr1, allowing the first ATPase lobe to also make extensive contacts with the second DNA 

gyre. Binding of the second ATPase lobe is also associated with significant DNA distortion 
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due to alpha helices within the second lobe being pushed against the bound DNA [48]. 

Unlike other remodelers, Swr1 only translocates DNA near SHL 2 and is unable to further 

propagate DNA to reposition nucleosomes, likely due to the tighter interactions made by the 

first ATPase lobe [49,50].

Although the densities of the ARP module are disordered in the SWR1-nucleosome cryo-

EM structure, the ARP module consists of the N-terminus of Swr1, N-actin, Arp4, Swc4, 

Swc7, Yaf9, and Bdf1. The Swr1 N-terminus is necessary to direct the association of Arp4, 

Swc4, Swc7, Yaf9, and Bdf1, suggesting that it is the primary scaffold within the ARP 

module [51]. Bdf1 is known to bind acetylated lysines on the histone H4 tail, possibly 

contributing to the recruitment of SWR1 to +1 nucleosomes [52,53]. The N-terminus of 

Swr1 also contains a H2AZ-H2B binding site, which likely plays a role in regulating SWR1 

histone exchange activity.

The Body module of SWR1 is very similar to INO80 and consists of Ruvb1, Ruvb2, Swc2, 

Arp6, Swc3, Swc5, and Swc6 [48] (Figure 1E, F). Arp6 contains an actin fold that interacts 

with Swc6 to form a heterodimer very similar to the Arp5/Ies6 dimer formed in INO80. The 

Arp6/Swc6 heterodimer connects to H2A and linker DNA on the opposite side of the Swr1 

nucleosome binding site (Figure 1F). Swc6 also contains a hydrophobic core that allows for 

further interactions between Swc6 and H2A. Swc2 spans a large part of the Body and 

extends into the ATPase module, similar to Ies2 in INO80, creating an extensive interface for 

connections within the SWR1 complex as well as additional binding to the nucleosome 

acidic patch and linker DNA [48,54]. The acidic N-terminus of Swc5 binds H2A-H2B 

dimers, likely contributing to nucleosome recognition and regulation of histone exchange 

[55]. The RuvBL ATPase ring is believed to mainly play an architectural role within the 

SWR1 complex, as it does in INO80, although the ATP binding sites within the RuvBL ring 

are occupied by nucleotides in the cryo-EM structure. The structural similarities among the 

various remodelers, especially within the ATPase modules, help explain the common DNA 

translocating mechanism shared across the families. While the structural differences, 

especially within the ARP and Body modules, shed some light on the differences in overall 

function among remodeler families.

Mechanism of Chromatin Remodeling

Cryo-EM structures of Snf2, the ATPase in SWI/SNF, provide insight into the mechanism by 

which DNA is translocated around the histone octamer [9, 11]. The shared mechanism of 

DNA translocation by ATP-dependent chromatin remodelers has been extensively reviewed 

and illustrated previously [56–58]. Data suggest that the ATPase subunit induces a ~1 base 

pair bulge at SHL 2 on the tracking strand of DNA in the absence of nucleotide or with ADP. 

This advances the tracking strand of DNA (oriented 5’ to 3’ towards the dyad) forward in 

relation to the histone octamer while the rest of the DNA remains in position. The addition 

of a stable ATP analog leads to a closed state of the ATPase domain where DNA is not 

strained by a 1bp bulge. This suggests a conformational cycle whereby SWI/SNF 

remodelers slide a DNA wave that is propagated along the histone octamer. In this model, 

Snf2-like ATPases engage nucleosomal DNA at SHL 2 and induce a 1base pair bulge in the 

DNA binding cleft. A conformational change occurs upon ATP binding where the ATPase 

Reyes et al. Page 7

J Mol Biol. Author manuscript; available in PMC 2022 July 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



domain grabs and pushes the bulging DNA strand translocating DNA one base pair toward 

the exit site of the nucleosome. ATP hydrolysis resets the ATPase domain to release the 

DNA strand and introduce another one base pair DNA bulge at SHL 2. ADP is then released 

and the cycle is reset. This model is consistent with smFRET studies of the RSC complex 

that shows the DNA at both the nucleosome entry and exit sites do not significantly lift from 

the histone octamer, further supporting the creation of a bulge within the nucleosome and the 

observation that the RSC ATPase remains at a fixed site on the nucleosome during 

remodeling [59,60]. This mechanism would keep most of the nucleosomal DNA along its 

canonical path around the histone octamer, which can help the H2A-H2B dimer to remain 

mostly undisturbed and keep the octamer intact [59]. However, SWI/SNF remodelers are 

also able to eject H2A-H2B dimers or the full octamer [61,62]. H2A-H2B dimer ejection 

can potentially act as a means for increasing DNA accessibility while maintaining regulation 

offered by the presence of a partial nucleosome. Full octamer ejection is likely a more 

efficient means of nucleosome reorganization at sites, such as promoters, that would require 

substantial sliding to achieve adequate nucleosome depletion [62,63].

Cryo-EM structures show a conserved mode of binding between the SWI/SNF complex and 

the ATPase domains of Isw1, Chd1, Sth1, and Swr1 [8, 30, 43]. Furthermore, the same 

conformational cycle of DNA distortion is observed in the structure of Isw1, wherein a one 

base pair bulge is introduced in the ADP bound state but not present in the ADP-BeFx 

structure [31]. Although a high-resolution structure of Isw2 is not available, biochemical 

evidence supports a similar mode of nucleosome binding and cyclical ATP-dependent DNA 

translocation mechanism described above [64–66]. Chd1 ATPase also adopts a closed 

conformation upon the addition of a non-hydrolyzable ATP analog [43], although currently 

there is no high-resolution structure available for the ADP or nucleotide-free states. 

However, chemical crosslinking experiments of Chd1 identified a similar one base pair step 

DNA translocation cycle [67]. smFRET experiments of Chd1 and Isw1a also showed that 

movement first occurs at the entry-side DNA with a delay of movement at the exit-side DNA 

[68]. This suggests a similar mechanism of DNA translocation among these chromatin 

remodelers as found in the SWI/SNF family. ISWI and CHD remodelers are known for 

globally establishing equally spaced nucleosome arrays that heavily rely on the ability to 

bind extranucleosomal DNA [35,69–72]. In vitro studies have shown that sensing 

extranucleosomal DNA is critical for the ability of ISWI and CHD remodelers to bind and 

reposition nucleosomes [71,73–75]. Adjacent nucleosomes move closer together, as the 

ISWI and CHD ATPases translocate DNA around the histone octamer. Eventually, the 

extranucleosomal DNA between adjacent nucleosomes becomes too short for ISWI and 

CHD to bind, resulting in equally spaced nucleosomes.

As stated previously, INO80 has a unique binding mode with nucleosomes when compared 

to other chromatin remodelers. A similar cyclic mechanism of ATP binding and hydrolysis is 

used as revealed by cryo-EM structures of the yeast, fungus, and human INO80 complexes 

showing similar conformational states for the nucleotide-free and ATP analog bound 

complexes when compared to other remodelers [44,76]. The unique interaction of INO80 

with the nucleosome instead affects the mechanism of DNA translocation and H2A-H2B 

dimer exchange [6,59,77]. Unlike the SWI/SNF ATPases, Ino80 induces unwrapping of 

nucleosomal DNA very close to the nucleosome entry site and disrupts DNA-histone 
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interactions to partially expose H2AZ-H2B dimers [44,45]. Although it has not been directly 

observed, the INO80-nucleosome structure suggests that DNA could be looped out in a 

ratchet-like manner during DNA translocation and to mediate histone exchange. Binding 

sites at SHL 2 and SHL 6 would allow for the ATPase to pump DNA across the octamer 

toward Arp5 without DNA moving on the exit side. This loop could facilitate H2A-H2B 

exchange by transiently exposing the H2AZ-H2B dimer prior to the release of DNA by 

Arp5. A large loop of DNA within the nucleosome would require the Ino80 motor to remain 

in place while DNA is being looped. The Ino80 motor is anchored by Ies2, Ruvb1/Ruvb2, 

Arp5, and Ies6, which bind the H2A-H2B acidic patch, SHL 2, and the Ino80 insertion, as 

DNA is pumped into the nucleosome [44]. Arp5 undergoes a conformational change that is 

believed to block DNA from exiting the nucleosome, likely playing a role in regulating 

histone exchange. Ies2 and Arp5 bind the nucleosome acidic patch at opposite sides of the 

nucleosome to stabilize the H2A histones as the entry DNA is being unwrapped and looped 

within the nucleosome. Binding of Arp5 to the nucleosome acidic patch is partially 

regulated by Arp8 and Arp4, which have been shown to be critical in coupling the sensing of 

extranucleosomal DNA to nucleosome positioning [45,46]. Notably, the INO80 complex is 

recruited to and helps position the +1 nucleosome [78,79]. The DNA translocation step is 

completed upon release of DNA by Arp5, allowing the DNA loop to exit and reposition the 

nucleosome in a relatively large step, ~15 bp, when compared to other chromatin 

remodelers. [44,77].

The ATPase subunit of SWR1 binds to nucleosome in a similar manner as Snf2, Sth1, Isw1, 

and Chd1[8,21,22,30,42,43]. However, the mechanism of DNA distortion within the 

nucleosome caused by Swr1 is slightly different and does not result in net DNA 

translocation. While Swr1 binds the nucleosome at SHL 2, the binding is tighter due to a 

rotation in the first ATPase lobe allowing Swr1 to interact with both DNA gyres. The second 

ATPase lope causes DNA distortion at SHL 2, like the subunits mentioned above, but the 

distortion is caused by an alpha helix pushing against the DNA and significantly changes the 

path of the DNA when compared to the Chd1 structure. Similar to the SWI/SNF, ISWI, and 

CHD remodelers, the ability of SWR1 to translocate DNA within the nucleosome is 

dependent on ATP binding [48]. The differences in binding and DNA distortion between 

SWR1 and the other families of remodelers likely play a role in histone exchange and 

preventing significant DNA translocation out of the nucleosome. Unlike INO80, SWR1 is 

able to function as a monomer. This ability is potentially due to an H2A.Z binding site being 

present at the N-terminal domains of Swr1 and Swc2 while Arp6 and Swc6 bind H2A-H2B, 

allowing for one SWR1 complex to differentiate and bind both H2A and H2A.Z [48,80]. It 

is known that SWR1 exchanges H2A-H2B for H2A.Z-H2B dimers in a stepwise fashion, 

and the ATPase activity of SWR1 is enhanced by the presence of H2A containing 

nucleosomes and free H2A.Z-H2B dimers [48,81]. Although the exact mechanism of 

histone exchange by SWR1 is not fully understood, a model can be proposed based on 

recent biophysical and biochemical studies. An SWR1 monomer binds H2A containing 

nucleosome at SHL 2, and ATP binding causes DNA distortion and some translocation 

around SHL 2 [48,49]. Binding of H2A and free H2A.Z-H2B dimers enhance the ATPase 

activity of Swr1, and ATP hydrolysis leads to the exchange of one H2A-H2B dimer for 

H2A.Z-H2B. A second round of SWR1 binding and ATP hydrolysis on the heterotypic 
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nucleosome result in the other H2A-H2B dimer being exchanged, creating a homotypic 

H2A.Z nucleosome [81].

Cryo-EM and single-molecule studies support a common mechanism of DNA translocation 

by most ATPase domains of chromatin remodelers, despite differences in how they engage 

the nucleosome. A unique translocation mechanism by INO80 is likely due to the difference 

in ATPase binding and regulation by accessory proteins within the Body module. Additional 

investigation of the Arp and Body modules is needed to understand the mechanism by which 

ISWI, CHD, and INO80 complexes display novel remodeling activities, such as maintaining 

nucleosome spacing and exchanging histones.

Perspective

The recent influx of cryo-EM structures of chromatin remodelers has provided crucial 

insight into their function and mechanism of action. Although models are available for their 

ATPase domains on the nucleosome, we currently lack high-resolution structures of ISWI 

family remodelers. More complete models of the INO80 remodelers that include high-

resolution density for the Arp modules are also needed. Future studies of the fully intact 

complexes can explain the role of accessory proteins in remodeling complex function. This 

can help to explain the unique functions of ISWI, CHD, and INO80 complexes within the 

cell.

Previous structural and single-molecule studies have presented a unified mechanism of DNA 

translocation by the ATPase domain in chromatin remodeler complexes. The differences in 

complex localization and function are instead determined by additional non-catalytic 

subunits. This raises fundamental questions such as: How do chromatin remodelers sense 

DNA linker length? What is the molecular mechanism by which nucleosome spacing is 

maintained? How do histone chaperones cooperate with chromatin remodelers to accomplish 

specific histone exchange?
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SWI/SNF Switch/Sucrose non-fermentable

RSC Remodeling Structure of Chromatin

ISWI Imitation Switch

CHD Chromodomain Helicase DNA-binding

INO80 INOsitol Requiring 80

SWR1 SWI2/SNF2-Related 1 Chromatin Remodeling

Cryo-EM Cryogenic Electron Microscopy
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ARP actin-related protein

AutoN auto inhibition domain

NegC C-terminal negative regulator

HSA helicase-SNAT associated

TSS transcription start site

NDR nucleosome depleted region
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Research Highlights

• High-resolution structures of chromatin remodelers explain the mechanism by 

which individual remodelers interact with the nucleosome and translocate 

DNA. There are shared features across families of chromatin remodelers, such 

as the structure of the RecA-like ATPase domain and key contacts between 

accessory proteins and the H2A-H2B acidic patch.

• The ATPase domain of chromatin remodelers displays a shared mechanism of 

DNA translocation throughout different families. A cyclical conformational 

change occurs, which introduces a one base pair bulge in nucleosomal DNA 

and induces a DNA wave that translocates DNA across the nucleosome.
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Figure 1. 
Architecture of chromatin remodelers. Structural models of A) SWI/SNF (PDB 6UXW), B) 

RSC (PSB 6TDA) C) Isw1a (PDB 6JYL), D) Chd1 (PDB 5O9G), E) INO80 (PDB 6FML), 

and F) SWR1 (PDB 6GEN). Each structural model is colored to denote structural features – 

nucleosome (grey), ATPase module (green), ARP module (blue), Body module (purple).
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Table 1.

Composition of chromatin remodelers. Each remodeler is organized into their respective family and broken 

down into the modules highlighted in Fig 1. Each protein within a complex is organized into the module(s) 

that it is most commonly associated with, even though some proteins span multiple modules.

Family Complex Module Protein

SWI/SNF

SWI/SNF

ATPase Snf2

ARP Snf2 Rtt102 Arp7 Arp9

Body Swi1 Snf5 Swi3 Snf12/Swp73 Snf6 Swp82

RSC

ATPase Sth1

ARP Sth1 Rtt102 Arp7 Arp9

Body
Sfh1 Rsc7 Rsc8a/b Rsc9 Rsc58 Rsc6 Rsc4

Rsc2 Rsc3 Rsc30 Htl1

ISWI

ISW1a
ATPase Isw1

Body Ioc3

ISW1b
ATPase Isw1

Body Ioc2 Ioc4

ISW2
ATPase Isw2

Body Itc1

CHD CHD1 ATPase Chd1

INO80

ATPase Ino80 Ies2

ARP Ino80 Arp4 Arp8 N-actin Nhp10

Body
Ruvb1 Ruvb2 Arp5 Ies2 Ies1 Ies3 Ies4

Ies5 Ies6 Taf14

SWR1

ATPase Swr1

ARP Swr1 Arp4 N-actin Swc4 Swc7 Yaf9 Bdf1

Body Arp6 Ruvbl1 Ruvbl2 Swc2 Swc3 Swc5 Swc6
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