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Abstract

Accurate microbial identification and abundance estimation are crucial for metagenomics analysis. 

Various methods for classifying metagenomic data and estimating taxonomic profiles, broadly 

referred to as metagenomic profilers, have been developed. Yet, benchmarking metagenomic 

profilers remains challenging because some tools are designed to report relative sequence 

abundance while others report relative taxonomic abundance. Here, we show how misleading 

conclusions can be drawn by neglecting this distinction between relative abundance types when 

benchmarking metagenomic profilers. Moreover, we show compelling evidence that interchanging 

sequence abundance and taxonomic abundance will influence both per-sample summary statistics 

and cross-sample comparisons. We suggest that the microbiome research community should pay 

attention to potentially misleading biological conclusions arising from this issue when 
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benchmarking metagenomic profilers, by carefully considering the type of abundance data that 

was analyzed and interpreted, and clearly stating the strategy used for metagenomic profiling.

By directly interrogating the community composition in an unbiased and culture-

independent manner, metagenomic sequencing is transforming microbiology by enabling 

more rapid species detection and discovery1. This has a wide range of applications in 

environmental and clinical microbiology. Various computational methods have been 

developed to identify species contained in the samples by classifying sequencing reads and 

quantifying their relative abundances1–5. Those computational methods are broadly referred 

to as metagenomic profilers.

Following a previous benchmarking study3, metagenomic profilers can be categorized based 

on their reference database type (Fig.1a): (1) DNA-to-DNA methods (e.g., Kraken6, 7, 

Bracken8, and PathSeq9), which compare sequence reads with comprehensive metagenome 

databases; (2) DNA-to-Protein methods (e.g., Kaiju10 and Diamond11), which compare 

sequence reads with genomic databases of protein-coding sequences; or (3) DNA-to-Marker 

methods (e.g., MetaPhlAn12, 13 and mOTUs5, 14), which only include specific gene families 

in their reference databases. Note that those metagenomic profilers all rely on reference 

databases. They should not be confused with de novo assembly-based methods that do not 

use any reference databases15, 16. Those reference-free binning methods cannot 

taxonomically classify sequences15, 16 and are not directly comparable with the 

metagenomic profilers evaluated here.

Many studies have benchmarked metagenomic profilers2, 17–20, finding that the abundance-

estimation performance of different profilers varies considerably even on the same 

benchmark datasets. For example, in a recent benchmarking study2, the abundance-

estimation performance of 20 metagenomic profilers were evaluated based on the L2 

distance between the observed and true relative abundance profiles. It was found that DNA-

to-DNA methods were among the best-scoring methods, with typical average L2 distance < 

0.1, while DNA-to-Marker methods had much higher L2 distance, indicating less favorable 

performance.

Here we show that this apparently high performance-variation largely arises because the 

profilers report one of two fundamentally different types of relative abundances: sequence 
abundance or taxonomic abundance. For example, the raw output of DNA-to-DNA methods 

is the relative abundance of a given taxon calculated as the proportion of sequences assigned 

to it out of the total number of sequences, i.e., the sequence abundance. For DNA-to-Protein 

methods, the output type is the relative sequence abundance of protein-coding 

sequences10, 11. By contrast, DNA-to-Marker methods directly output the relative abundance 

of each taxon calculated as the number of genomes of that taxon relative to the total number 

of genomes detected, i.e., the taxonomic abundance. Unfortunately, the distinction between 

the two types of relative abundances has rarely been carefully considered in previous 

benchmarking studies2, 18, 19, 21.

In this paper, we show that the two types of relative abundances are not related by any 

universal algebraic relation. Moreover, interchanging them leads to very misleading 
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performance assessments of metagenomic profilers. These results imply that many 

benchmarking results presented in the literature require re-examination. Beyond re-

evaluating previous benchmark results in light of the confounded use of relative abundance 

types, we further point out the serious issues in microbiome data analysis based on sequence 

abundances, which are typically produced by DNA-to-DNA methods and have been applied 

in thousands of published microbiome studies (e.g., Kraken: 1,438 citations; Kraken2: 204 

citations; Bracken: 202 citations, by March 2021, according to their official websites). We 

find that microbiome data analysis based on sequence abundance will underestimate (or 

overestimate) the relative abundances of microbes with smaller (or larger) genome sizes, 

respectively. This will fundamentally affect differential abundance analyses and other 

analytical methods that rely on accurate taxon counts in their input contingency matrix. 

Without careful consideration, these issues could impede cross-study comparisons of 

differentially abundant taxa identified from different methods and hence warrant more 

attention from the entire microbiome research community.

Results

Illustration of the caveat in benchmarking metagenomic profilers.

To illustrate the caveat of confusing sequence abundance and taxonomic abundance in 

benchmarking metagenomic profilers, we simulated a simple microbial community with 

only two genomes (see Fig.1b), where genome A (Bacillus pseudofirmus, 

GCF_000005825.2, size: 4.2MB) is twice the size of genome B (Lactobacillus salivarius, 

GCF_000008925.1, size: 2.1MB). In this simulated community, the sequence abundance 

ratio of genome A : genome B = 1:1, while the taxonomic abundance ratio of genome A : 

genome B = 1:2.

As shown in Fig.1c, the DNA-to-DNA profiler Bracken (or Kraken2) reported the 

abundance ratio between Bacillus pseudofirmus and Lactobacillus salivarius as 49.9% : 

50.1% ≈ 1 : 1.004 (or 49.6% : 49.4% ≈ 1 : 0.996, respectively), which is very close to the 

ground truth of sequence abundance ratio (1:1). Moreover, Bracken (or Kraken2) identified 

only one false-positive species --- Lactobacillus plantarum with very low sequence 

abundance 0.04% (or 0.1%), respectively. Notably, for another DNA-to-DNA profiler 

PathSeq, when the genome-length correction is disabled (by default), it reported the 

abundance ratio between Bacillus pseudofirmus and Lactobacillus salivarius as 40.1% : 

48.5% ≈ 1 : 1.209, which is quite different to the ground truth of sequence abundance ratio 

(1:1). With enabled genome length correction, PathSeq reported the abundance ratio as 

27.4% : 64.6% ≈ 1 : 2.358, which certainly doesn’t represent the sequence abundance ratio 

(1:1), and is still quite different from the ground truth of taxonomic abundance ratio (1:2). 

Hence, the genome-length correction in PathSeq does not work as well as we expected. We 

suspect that this is largely due to its very high false-positive rate. Indeed, 786 of the 788 

species identified by PathSeq are false-positive, with accumulated sequence abundance 

~10.5% and taxonomic abundance ~8.0%. This simple example clearly demonstrates that 

neither the raw sequence abundance profile nor the taxonomic profile obtained after 

genome-length correction produced by DNA-to-DNA profilers represents the true taxonomic 

profile of a microbiome sample.
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DNA-to-Protein profiler Kaiju (or Diamond) reported the abundance ratio between Bacillus 
pseudofirmus and Lactobacillus salivarius as 22.8% : 19.9% ≈ 1 : 0.873 (or 7.0% : 8.0% ≈ 
1 : 1.143), respectively (Fig.1c). The ratios are close to 1:1, indicating the methods are 

indeed reporting sequence abundance. However, due to the conservation of protein 

sequence22, these two methods reported a very large number of false-positive species: 330 

for Kaiju and 152 for Diamond, with accumulated abundance 57.3% and 85.0%, 

respectively.

DNA-to-Markers profiler MetaPhlAn2 (or mOTUs2) reported the abundance ratio between 

Bacillus pseudofirmus and Lactobacillus salivarius as 33.8% : 66.2% ≈ 1 : 1.959 (or 33.6% : 

66.4% ≈ 1 : 1.976), respectively, without any false-positive species (Fig.1c). The ratio 

between the relative abundances of the two species is roughly 1:2, indicating the methods 

are indeed reporting taxonomic abundances.

To avoid the potential impact of false positives on benchmarking metagenomic profilers, 

going forward we will focus on DNA-to-DNA and DNA-to-Markers methods. And for 

DNA-to-DNA methods, we will focus on Bracken and Kraken2.

No universal algebraic relation between the two types of relative abundances.

We emphasize that mathematically there is no universal (i.e., sample-independent) algebraic 

relation between the two types of relative abundances, even in the ideal case (when all 

genomes/taxa are known). To demonstrate this, let’s denote Ri as the number of 

metagenomic reads assigned to the genome of a microbial taxon i with genome size Li and 

ploidy Pi (i.e., the number of copies of the genome in one cell of taxon i). The number of 

microbial cells classified as taxon i is then given by Ci = Ri/(LiPi). Let n be the number of 

identified taxa in the sample. Then the sequence abundance of taxon i is given by

Si = Ri
∑j = 1

n Rj
, [1]

and its taxonomic abundance is given by

T i = Ci
∑j = 1

n Cj
= Ri/ LiPi

∑j = 1
n Rj/ LjPj

. [2]

From Eqs.[1–2], we have Si/Ti ∝ LiPi, but the coefficient ∑j = 1
n Rj/ LjPj /∑j = 1

n Rj is 

complicated and sample-specific. Hence, as long as Li and Pi vary across different taxa, Si 

and Ti are not connected by any universal or sample-independent algebraic relation.

The variation of genome size Li of different taxa can be very large. Indeed, in the recently 

updated microbial genome database (NCBI RefSeq, 2020 Nov 6th), the sizes of fully 

sequenced and assembled microbial genomes vary considerably (Fig.2a). For example, just 

within the bacteria kingdom, the genome size variation can be more than 100-fold, e.g., 

Candidatus Nasuia deltocephalinicola (GCF_000442605.1) with 112,091 bp vs. Sorangium 
cellulosum (GCF_000418325.1) with 14,782,125 bp. Therefore, microbial genome sizes 

could vary radically within a single microbiome sample, especially when viruses (which 
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tend to have shorter genomes, Fig.2a) are analyzed together with bacteria in shotgun 

metagenomics.

Regrading ploidy Pi, although prokaryotes are usually thought to contain one copy of a 

circular chromosome, previous studies have demonstrated that many species of archaea and 

bacteria are polyploid and can contain more than ten copies of their chromosome23. In fact, 

extreme polyploidy has been observed in a large bacterium Epulopiscium, which contains 

tens of thousands of copies of its genome24.

The variations in Li and Pi drive the theoretical distinction between sequence abundance and 

taxonomic abundance. To further illustrate the difference between the two relative 

abundance types, we generated synthetic microbial communities based on the NCBI RefSeq 

database. As shown in Fig.2b, where we investigate a complex microbial community 

consisting microbes from all different kingdoms (fungi, bacteria, and virus), Si tends to 

overestimate Ti of species with larger genome sizes (e.g., fungi) and underestimate Ti of 

species with smaller genome sizes (e.g., viruses). This is true even if we investigate a 

community consisting of microbes from the same kingdom (Fig.2c). For synthetic 

communities, the over- and underestimation of taxonomic abundances can be quantified as 

follows. For a given community, let’s denote the difference between taxon-i’s sequence 

abundance Si and taxonomic abundance Ti as δi ≡ Si − Ti. First, we identify a “reference” 

species A that has the minimum |δi|. (In the ideal case, δA = 0, implying that species A has 

identical Si and Ti in the community. Then for those species that have a larger (or smaller) 

genome sizes Li than LA, their Ti will tend to be overestimated (or underestimated), i.e., 

their δi will tend to be positive (or negative), respectively. Indeed, for the simulated 

bacterial, fungal, and viral communities analyzed in Fig.2c, we found that, δi > 0 (or < 0) for 

those taxa with genome sizes Li > LA (or < LA), respectively (Fig.2d). But we emphasize 

there is so simple relationship between δi and (Li – LA). In fact, we found some “outlier 

species”, which have genome sizes much larger or smaller than LA, and yet their δi values 

are close to 0. Those outlier species typically have very low abundances. Note that here, for 

the sake of simplicity, in our simulations we did not consider the variation of ploidy, but 

only focused on the variation of genome sizes. Hence, the difference between sequence 

abundance and taxonomic abundance demonstrated in Fig.2c,d is very conservative.

In reality, many factors will further complicate the relation between Si and Ti, and hence 

affect the benchmarking of metagenomic profilers. First of all, most metagenomic profilers 

do not consider ploidy in their abundance estimation, because the ploidy information is still 

lacking for many genomes. Second, the presence of unknown genomes/taxa renders the 

conversion from sequence abundance to taxonomic abundance extremely challenging, and 

significantly affects the benchmarking based on real data. This is because different profilers 

report different types of relative abundance and handle unknown genomes/taxa differently. 

Finally, instead of converting Si to Ti through Li and Pi correction, DNA-to-Marker methods 

directly calculate Ti as the ratio of sequence coverage of single-copy marker genes of each 

taxon to that of all taxa, which naturally avoids the genome-size and copy-number 

corrections. This also affects the direct comparability of metagenomic profilers, because the 

taxonomic abundances produced by DNA-to-Marker methods are meant to reflect relative 

cell abundances, which can be achieved by classifying only those metagenomics reads that 
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map against taxonomic marker genes, rather than sequences abundances produced by DNA-

to-DNA methods, which are based on classifying all metagenomic reads in a given sample. 

In addition, transforming taxonomic abundance to sequence abundance may introduce 

systematic error since it requires accurate genome size information.

Benchmarking results depend on the abundance type.

To further illustrate the problem of mixing sequence abundance and taxonomic abundance in 

benchmarking metagenomic profilers, we simulated metagenomic sequencing reads for 25 

communities from distinct habitats (e.g., gut, oral, skin, vagina and building, five 

communities for each habitat, see Methods). To avoid reference database biases of different 

metagenomic profilers, the genomes used to generate simulated communities were selected 

from the intersection among the reference databases of MetaPhlAn2, mOTUs2, and 

Kraken2. (Bracken and Kraken2 use the same reference database.) Then we calculated the 

distance between the ground truth abundance profiles and the estimated ones from different 

profilers. We notice that in previous benchmarking studies, typically L120 or L22 distance 

was used. Yet, just like other popular distance/dissimilarity measures used in microbiome 

data analysis, e.g., Bray-Curtis dissimilarity (BC) and root Jensen-Shannon divergence 

(rJSD), those measures (L1, L2, BC and rJSD) are not compositionally aware25. This 

prompted us to ask if the compositional unawareness of those measures will affect the 

benchmarking result. It is well known that the classical Aitchison distance (based on 

centered log-ratio transform) is a compositionally aware distance measure26. However, it 

suffers from the inflated zero counts in microbiome data because log-transform of zero 

counts is undefined unless arbitrary pseudocounts are added to each taxon. Fortunately, a 

recently developed distance measure --- the robust Aitchison distance (rAD)27 does not 

involve any pseudocounts, and hence naturally avoids the issue of dealing with sparse zero 

counts using the classical Aitchison distance. Therefore, in this work, to systematically study 

the potential impact of compositional-unawareness of dissimilarity/distance measures on the 

benchmarking result, we used the following five measures: BC, rJSD, L1, L2, and rAD.

As shown in Fig.3a,b, we found that for BC, rJSD, L1, and L2, if the sequence abundance is 

used as the ground truth, Bracken and Kraken2 outperform MetaPhlAn2 and mOTUs2; 

while if the taxonomic abundance is used as the ground truth, MetaPhlAn2 and mOTUs2 

outperform Bracken and Kraken2.

Interestingly, with rAD as the evaluation metric, regardless of the ground truth being 

sequence or taxonomic abundance, mOTUs2 and MetaPhlan2 always outperform Bracken 

and Kraken. This could be due to the fact that, as a compositionally aware distance measure, 

rAD weighs low-abundance taxa more than the other measures. To test this idea, we sought 

to rule out the bias introduced by false positives and calculated rAD based on taxonomic 

profilers where false positives have been removed (Methods). This is denoted as modified 

rAD in Fig.3a,b. We found that, after removal of averagely 27 ± 10 species from default 

profiling results in Kraken2 (with accumulated abundance 29.26% ± 12.13%), 40 ± 14 in 

Bracken (36.91% ± 12.11%), 8 ± 4 in mOTUs2 (11.47% ± 4.62%), and 9 ± 4 in 

MetaPhlAn2 (11.29% ± 4.19%), the benchmarking result based on rAD is the same as that 

of using BC, rJSD, L1, and L2, or their modified versions (Fig.S1). (Note that ± represents 
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standard deviation throughout the paper.) We always found the same pattern: if the sequence 

abundance is used as the ground truth, Bracken and Kraken2 outperform MetaPhlAn2 and 

mOTUs2; while if the taxonomic abundance is used as the ground truth, MetaPhlAn2 and 

mOTUs2 outperform Bracken and Kraken2. This result strongly indicates that the 

benchmarking result of metagenomic profilers depends on the selected abundance type.

Moreover, we emphasize that even though the five distance/dissimilarity measures (BC, 

rJSD, L1, L2, and rAD) all showed the similar results in the performance evaluation (after 

the removal of false positives), L2 was not designed for compositional data analysis. To 

investigate whether the discriminating power of these distance measures for the two 

sequence types persists with varied microbial diversity, we simulated a set of abundance 

tables (for both taxonomic abundance and sequence abundance) with different species 

counts ranging from 10 to 500 (see Methods). We then calculated the distance or 

dissimilarity between the sequence abundance and taxonomic abundance profiles (Fig.S2). 

We found that with an increasing number of species, the discriminative power of L2 keeps 

decreasing, while BC, rJSD, L1 and rAD can still distinguish the two abundance types. This 

result suggests that L2 distance cannot discriminate the two types of relative abundances in 

microbiome samples of high species richness. This might be due to the fact that L2 distance 

is not appropriate for compositional data analysis at all26, 28.

Precision-recall analysis of different metagenomic profilers.

We emphasize that the above contradicting performance evaluations due to different 

abundance types cannot be detected by the Precision-Recall analysis. This is because 

Precision and Recall only concern the difference of presence/absence patterns in the ground 

truth and predicted abundance profiles, and by definition the ground truth sequence and 

taxonomic abundance profiles share exactly the same presence/absence pattern. We also 

want to emphasize that the evaluation of Precision and Recall is largely impacted by the 

reference database used by different profilers29. To avoid the bias introduced by the database 

differences, we selected genomes from the intersection among the reference databases of 

MetaPhlAn2, mOTUs2, and Kraken2/Bracken. This enables us to evaluate the Precision and 

Recall of different profilers in an unbiased manner (see Supplementary Note, Fig.3c–h and 

Figs.S3 for details).

Impact of abundance type on the alpha diversity calculation.

Interchanging sequence abundance and taxonomic abundance strongly influences per-

sample summary statistics. To demonstrate this issue, we simulated 500 abundance profiles 

representing microbiota from distinct habitats (gut, oral, skin, vagina, and building, 100 

profiles for each, see Methods) with known sequence abundance and taxonomic abundance 

profiles. Note that here we didn’t use profiling results generated by different metagenomic 

profilers. This is mainly because, in the empirical study, we found it is technically 

challenging to accurately convert sequence abundance to taxonomic abundance for all 

detected taxa, which can heavily impact the alpha diversity calculation. For simulated 

abundance profiles, the species richness will not be affected by using sequence abundance or 

taxonomic abundance as ground truth, because they share the same absence/presence 

pattern. However, we found that statistically the Shannon index, Simpson index, and 

Sun et al. Page 7

Nat Methods. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pielou’s evenness index calculated from taxonomic abundances are significantly higher than 

those calculated from sequence abundances (p-value<0.001, two sided Wilcoxon signed-

rank test) regardless of the habitat (Fig.4a,c,e). Interestingly, when ranking the samples 

according to their alpha diversity measures calculated from sequence or taxonomic 

abundance, the rankings are not fully concordant with each other (Spearman correlation of 

the rank vectors is 0.929 ± 0.020 for Shannon index, 0.835 ± 0.042 for Simpson index, and 

0.808±0.045 for Pielou’s evenness index). In fact, in the histograms of the differences 

between those indices calculated from sequence and taxonomic abundances (denoted as 

ΔShannon, ΔSimpson, ΔPielou), we found both negative and positive parts, despite the mean is 

always negative (Fig.4b,d,f). These results suggest that alpha diversity calculations and 

comparisons can be strongly affected by the type of relative abundance used.

Impact of abundance types on the beta diversity and ordination analyses.

To check if mixing sequence abundance and taxonomic abundance will also influence 

between-sample attributes such as beta diversity and ordination analyses, we re-analyzed the 

500 samples generated for Fig.4. In order to quantify the impact of influence on beta 

diversity introduced by abundance type, we performed Mantel test30, 31 to compare the beta-

diversity (in terms of BC, rJSD, L1, L2 and rAD) calculated from the taxonomic abundance 

and sequence abundance profiles of those samples (see Methods). Interestingly, regardless of 

the species richness in the habitats, the abundance type has some influence on the cross-

sample comparisons based on the BC, rJSD and L1 measures (Spearman coefficient r = 

0.944 ± 0.006, 0.947 ± 0.009, 0.944 ± 0.006, respectively; p-value =10−4 for all), but affects 

L2 and rAD more strongly (r = 0.844 ± 0.026, 0.519 ± 0.137, respectively; p-value=10−4 for 

both). These results demonstrate the inconsistent relative relationships between samples 

introduced by different abundance types in beta diversity calculation.

We then performed ordination analyses using four different methods: Non-metric 

Multidimensional Scaling (NMDS)32, Principal Coordinates Analysis (PCoA)33, t-

distributed stochastic neighbor embedding (t-SNE)34, and Uniform Manifold Approximation 

and Projection (UMAP)35. We found that, regardless of the distance/dissimilarity measures 

used (e.g. rJSD, BC and rAD), taxonomic abundance and sequence abundance profiles are 

drastically different in all the four ordination results (Fig.5, Figs.S4–S5). We then performed 

Procrustes analysis36, 37 to analyze the congruence of two-dimensional shapes produced 

from superimposition of ordination analyses from two abundance types. We found very low 

similarity between the ordination results calculated from sequence and taxonomic 

abundances (Fig.5, Figs.S4–S5, Monte Carlo p-value<0.05). These results indicate that both 

beta diversity (especially for L2 and rAD) and ordination analyses can be heavily affected by 

the relative abundance type used.

Discussion

Taken together, we emphasize the importance of differentiating between sequence 

abundance and taxonomic abundance in metagenomic profiling. Ignoring this distinction can 

underestimate (or overestimate) the relative abundances of organisms with small (or large) 

genome sizes, respectively. Sequence abundances are typically produced by DNA-to-DNA 
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or DNA-to-Protein methods, which rely on microbial genomes or genes as the reference 

database, report relative sequence abundance, i.e. the fraction of sequence reads assigned to 

each entity in the database. By contrast, DNA-to-Marker methods output relative taxonomic 

abundance representing the fraction of each detected taxon.

Our results demonstrate that misleading performance assessment of metagenomic profilers 

and spurious alpha and beta diversity patterns can arise from interchanging sequence 

abundance with taxonomic abundance. For alpha diversity measures (Shannon index, 

Simpson index, and Pielou’s evenness index), statistically they are higher based on 

taxonomic abundance than that based on sequence abundance. Yet, the relative rankings of 

those measures calculated from taxonomic or sequence abundances are not fully concordant 

with each other. Indeed, their differences (ΔShannon, ΔSimpson, ΔPielou) can be either negative 

or positive. Dramatic changes in the relative position between samples are also shown in the 

ordination analysis. Therefore, interchanging abundance types could have a deleterious 

effect on the interpretation of alpha and beta diversity analyses and meta-analyses.

The distinction between the two types of relative abundances was known to the field of 

microbiome research (at least to the developers of various metagenomic profilers), and has 

been conceptually considered in some benchmark studies (e.g., CAMI19). However, the 

consequences of ignoring this distinction for benchmarking metagenomic classifiers, per-

sample summary statistics, and cross-sample comparisons have not been quantitatively 

studied or clearly illustrated so far. In particular, the vast majority of end users of those 

metagenomic profilers should be clearly aware of the distinction between sequence 

abundance and taxonomic abundance, and of the consequences of ignoring this distinction in 

selecting metagenomics tools, data interpretation, and cross-study comparison of 

differentially abundant taxa identified by different tools.

Theoretically, sequencing abundance can be converted to taxonomic abundance through 

genome-size and ploidy corrections, as shown in Eq. [2]. Yet, in reality, unknown microbial 

genomes/taxa, missing ploidy information, and misclassification of reads from conserved 

regions across different species render the conversion very challenging, if not impossible. It 

is not our intention to imply that one should convert sequence abundance to taxonomic 

abundance. In some cases, the conversion is actually not needed. For example, instead of 

converting sequence abundance to taxonomic abundance, DNA-to-Marker methods directly 

calculate taxonomic abundance as the ratio of sequence coverage of single-copy marker 

genes of each taxon to that of all taxa, which naturally avoids genome-size and copy-number 

corrections5.

In summary, we suggest that the whole microbiome research community should pay more 

attention to potentially misleading biological conclusions arising from the issue of ignoring 

the distinction between sequence and taxonomic abundances. In particular, we suggest that 

end users should be more careful in interpretating sequence abundance data. If we identified 

a low abundance of viruses/bacterial phages using Kraken or other similar profilers, then we 

should be aware of the potential abundance under-estimation. Similarly, if a fungus showed a 

high abundance in the data, it could be over-estimated especially when calculating bacteria-

fungi ratio. Going forward, in future development or evaluation of metagenomic profilers, 
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the type of the relative abundance should be strictly distinguished and labeled, especially 

when the sequence abundance is the default output. This would substantially improve the 

comparison of abundance estimations of metagenomic profilers and enhance the 

reproducibility and biological interpretation of microbiome studies. In most microbiome 

studies, we first need to address questions related to who are there and how abundant they 

are in a microbial community. In other words, taxonomic abundance is what we need first. 

Considering the challenges in genome-length and ploidy corrections for DNA-to-DNA 

methods, and the biological relevance of taxonomic abundance, the development of DNA-to-

Marker methods should be more encouraged and appreciated by the whole microbiome 

research community.

Methods

Simulation of microbiome profiles.

In the simulation of microbiome profiles based on different species number (from 10 to 500 

metagenomes representing different species), the abundance was created randomly from a 

log-normal distribution using “rlnorm” function in R language with parameters: meanlog = 0 

and sdlog = 1, and 10 repeats were simulated for each species count. In the simulation of 

microbiome profiles for alpha diversity calculation, 100 profiles were simulated for each 

habitat, and species number in different habitats were set up as: 10–50 (vaginal), 50–100 

(skin), 100–150 (gut), 150–200 (oral), 200–300 (building). The representative species in 

each specific habitat were selected based on the set of microbial species identified in the 

HMP38 and by Hsu et al.39.

Simulation of sequencing reads.

Firstly, the 25 microbiome profiles (five for each habitat) were simulated using the above 

method. Then the simulation of sequencing data is illustrated as the process in Fig.1a: Given 

a specified species composition (taxonomic abundance), their sequence abundance can be 

inferred accordingly (taxonomic abundance equals to sequence abundance divide by their 

genome length) and “Wgsim” (https://github.com/lh3/wgsim) was then used (with default 

parameters) to simulate the sequences. The selection of genomes for simulated data was 

based on the intersection between MetaPhlAn2 and mOTUs2 reference database and 

Bracken’s database to avoid database biases.

Currently, there are many more DNA-to-DNA profilers (e.g., Bracken and Kraken2) than 

DNA-to-Marker profilers (e.g., MetaPhlAn2 and mOTU2). In this paper we focused on two 

DNA-to-DNA profilers for the following reasons. First, as representative DNA-to-DNA 

methods, Bracken and Kraken/Kraken2 demonstrated the best performance in previous 

benchmarking studies6, 8, 20, and have been cited in more than one thousand microbiome 

studies. Second, mOTU2 and MetaPhlAn2 do not support custom reference databases, and 

the reference database is a critical factor affecting profiler performance. As such we decided 

to use the intersection of organisms in mOTU2, MetaPhlaAn2, and Kraken2 reference 

databases as the source for our simulation data. Introducing more DNA-to-DNA profilers 

could further reduce the reference database size of the simulated data and affect the diversity 

of genome sizes (Fig.S6).

Sun et al. Page 10

Nat Methods. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/lh3/wgsim


Alpha and beta diversity calculation.

Alpha diversity calculation e.g. Shannon and Simpson indices were performed in R language 

by the “Vegan 2.5-6” package. As for the beta diversity, we employed “Vegan 2.5-6” for 

distance/dissimilarity calculation e.g. L1 (“Manhattan” in vegdist function), L2 

(“Euclidean”) and BC (“Bray”), while rJSD and rAD were calculated by self-programmed 

script (see code availability). In the ordination analyses, R packages “ade4 1.7-15”, “Rtsne 

0.15”, “ape 5.4-1” and “umap 0.2.6.0” were used to conduct the NMDS, t-SNE, PCoA and 

UMAP analyses separately. Since the iterative algorithm of NMDS, t-SNE and UMAP find 

different solutions depending on the starting point of the calculation (which is a randomly 

chosen configuration) we performed 101 repeats of NMDS, t-SNE, UMAP and their 

Procrustes test, the median result (sorting by the Mote-Caro test) was selected for 

presentation of similarity and p-value in Fig.5, Fig.S4 and Fig.S5. The ordination analyses 

based on the ground truth of the sequence abundance and taxonomic abundance for the 500 

profiles (from five habitats) were conducted separately before Procrustes analysis.

Robust Aitchison distance calculation.

We applied DEICODE (https://github.com/biocore/DEICODE) to calculate the robust 

Aitchison distance (rAD) to benchmark the performance of metagenomics profilers. 

DEICODE represents a form of Aitchison Distance that is robust to high levels of sparsity. It 

preprocesses the compositional data using the centered log-ratio (CLR) transform only on 

the non-zero values of the data (hence no pseudo counts are used). Then it performs 

dimensionality reduction through robust PCA based on the non-zero values of the data. The 

Euclidean distance of the robust CLR-transformed abundance profiles (i.e., rAD) was finally 

employed to evaluate the performance of metagenomic profilers. To avoid the impact of 

false positives on the benchmarking results, we further filtered out false positives in all 

output taxonomic profiles and compared the performance of different profilers using rAD 

calculated from the true positives only. This is termed as the modified rAD in Fig.3. For 

other evaluation measures, the same procedure was performed and presented in Fig.S1.

Mantel Test.

Mantel test was used as a correlation test to determine the correlation between two beta 

diversity (BC, rJSD, L1, L2 and rAD) matrices based on sequence abundance and taxonomic 

abundance. In order to calculate the correlation, the matrix values of both matrices are 

‘unfolded’ into long column vectors, which are then used to determine correlation. 

Permutations (n=9999) of one matrix are used to determine significance. Whether distances 

between samples in one matrix are correlated with the distances between samples in the 

other matrix is revealed by the p-value.

Procrustes analysis.

Procrustes analysis (by R package “ade4 1.7-15”) typically takes as input two coordinate 

matrices with matched sample points, and transforms the second coordinate set by rotating, 

scaling, and translating it to maximize the similarity between corresponding sample points in 

the two shapes. It allows us to determine whether we would come to same conclusions on 

the beta diversity, regardless of which distance/dissimilarity measure was used to compare 
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the samples. To assess the significance level of observed similarity between two matrices, 

empirical p-values are calculated using a Monte Carlo simulation. Basically, sample labels 

are shuffled in one of the coordinate matrices, and then the similarity between them is re-

computed for 9999 times. Here, similarity is calculated as the sum of the squared residual 

deviations between sample points for each measurement. The proportion of similarity values 

that are equal to or lower than the observed similarity value is then the Monte Carlo or 

empirical p-value.

Data availability.—All the simulated datasets can be downloaded here: https://

figshare.com/projects/Challenges_in_Benchmarking_Metagenomic_Profilers/79916

Code availability.—R scripts used in this paper is available at https://github.com/

shihuang047/re-benchmarking
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison of profiling results.
a, Illustration of the reference databases and the default output abundance type for DNA-to-

DNA, DNA-to-Protein and DNA-to-Marker profilers on a mixture of two species A (1 cell) 

and B (2 cells). b, A simulated microbial community with only two genomes: Bacillus 
pseudofirmus (genome size 4.2MB) and Lactobacillus salivarius (genome size 2.1MB). We 

merged one copy of Bacillus pseudofirmus genome (genome A) with two copies of 

Lactobacillus salivarius genome (genome B) sequences into one metagenome file. Then we 

sheared the merged metagenomic sequences into 150bp to simulate a typical metagenomic 

dataset. c, Profiling results (default output) of different profilers for the simulated microbial 

community. The bar plots show the estimated relative abundance of the two microbial 

members A and B using different metagenomics profilers. PathSeq (default) represents the 

profiling result generated by the default setting of PathSeq (without genome-length 

correction). PathSeq (corrected) represents the profiling result of PathSeq with the parameter 

“--divide-by-genome-length” (i.e., genome-length correction) enabled.
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Figure 2. Correlation between sequence abundance and taxonomic abundance in synthetic 
profiles based on different kingdoms.
a, Genome size distribution of microorganisms calculated from the microbial genome 

database (NCBI RefSeq 2020 Nov 6th) that includes 171,927 bacteria, 293 fungi, 945 

archaea, and 9,362 viruses. b, The scatter plot shows the correlation between taxonomic 

abundance (x axis) and sequence abundance (y axis) of 600 randomly selected species in a 

simulated profile (n=1) which includes bacteria (species number=200), fungi (species 

number=200) and virus (species number=200). c, Correlation between taxonomic abundance 

(x-axis) and sequence abundance (y-axis) of 200 randomly selected species in a simulated 

microbial community within each of the three kingdoms: bacteria (n=1 simulated profile), 

fungi (n=1), and virus (n=1). d, Relationship between the genome length of a species (Li) 

and the difference between its sequence and taxonomic abundances (denoted as δi). Each 

point represents a species and is colored by its log10-transformed sequence abundance in the 

simulated microbial communities shown in c. The “reference” species A has the minimum |

δi|. In those figures, the minimum |δi|’s is close to 0, indicating that species A has almost 
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identical sequence and taxonomic abundances in those communities. The confidence interval 

(CI) is 0.95.
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Figure 3. Quantitative and qualitative benchmarking results of four representative metagenomic 
profilers using 25 simulated communities.
a-b: Differential benchmarking results of four representative metagenomics profilers using 

two types of relative abundance as ground truth: sequence abundance (a) and taxonomic 

abundance (b). The boxplots indicate the dissimilarities based on L1, L2, root Jensen-

Shannon divergence (rJSD), Bray-Curtis (BC), and robust Aitchison distance (rAD) between 

the ground-truth profiles and the profiles predicted by different metagenomics profilers 

(Bracken, Kraken2, mOTUs2, and MetaPhlAn2) at the species level. For each metagenomic 

profiler, we performed the dissimilarity calculations based on 25 simulated microbial 

communities from five representative environmental habitats (gut, oral, skin, vagina and 

building) separately. Note that for each profiler based on any evaluation metric, its 

performance variation across different synthetic communities is due to microbiome 

complexity difference (e.g., species composition and richness). c-d: Precision-recall 

analysis. c-e: Boxplots indicate the precision (c), recall (d), and F1 score (e) based on the 

default profiling results of four metagenomic profilers (without any abundance thresholding) 
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using either sequence abundance (green) or taxonomic abundance (yellow) as the ground 

truth. f-h: The change of the precision (f), recall (g), and F1 score (h) with abundance 

threshold tuned from 0 to 0.01. Each dot represents the microbial profile of a simulated 

community, n = 25 simulated datasets. Significance levels: p-value<0.05 (*), <0.01 (**), 

<0.001 (***), NS (non-significance); two-sided Wilcoxon signed-rank test. Exact p-values 

are provided in the Source Data File. The lower and upper hinges correspond to the first and 

third quartiles, and the center refers to the median value. The upper (or lower) whisker 

extends from the hinge to the largest (smallest) value no further (at most) than 1.5 * IQR 

from the hinge. Data beyond the end of the whiskers are plotted individually.
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Figure 4. Alpha diversity based on sequence abundance and taxonomic abundance.
Alpha diversity (a-b: Shannon index; c-d: Simpson index; and e-f: Pielou’s evenness index) 

based on ground truth of simulated data from different habitats, and the histogram of the 

alpha-diversity difference calculated from two different abundance types. For each sample, 

the indices calculated from two abundance types were connected by a gray line to illustrate 

their difference. Significance levels: p-value<0.05 (*), <0.01 (**), <0.001 (***), NS (non-

significance); two-sided Wilcoxon signed-rank test. Exact p-values are provided in the 

Source Data File.
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Figure 5 . Ordination analyses of simulated profiles based on rJSD.
Scatter plots of NMDS, PCoA, t-SNE and UMAP illustrate the dissimilarities between the 

sequence abundance (red dots) and taxonomic abundance (blue dots), which are the ground 

truth of the simulated 100 gut profiles. Root Jensen-Shannon divergence (rJSD) was used in 

the ordination analyses. The plots of the ordination analyses based on sequence abundance 

and taxonomic abundance were adjusted to overlap with each other first, then the similarity 

was calculated by the Monte-Carlo test. For each simulated profile, the two dots 

(corresponding to two abundance types) were connected by a grey line to demonstrate the 

difference of their positions in the ordination plot.
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