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MOCCASIN: a method for correcting for known
and unknown confounders in RNA splicing analysis
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The effects of confounding factors on gene expression analysis have been extensively studied

following the introduction of high-throughput microarrays and subsequently RNA sequen-

cing. In contrast, there is a lack of equivalent analysis and tools for RNA splicing. Here we first

assess the effect of confounders on both expression and splicing quantifications in two large

public RNA-Seq datasets (TARGET, ENCODE). We show quantification of splicing variations

are affected at least as much as those of gene expression, revealing unwanted sources of

variations in both datasets. Next, we develop MOCCASIN, a method to correct the effect of

both known and unknown confounders on RNA splicing quantification and demonstrate

MOCCASIN’s effectiveness on both synthetic and real data. Code, synthetic and corrected

datasets are all made available as resources.
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RNA-Seq is an experimental technique that quantifies the
relative abundance of RNA molecules in a sample through
sequencing of short RNA fragments. By mapping those

sequences to a transcriptome or an annotated genome,
researchers can quantify expression levels and alternative splicing
of genes. RNA-Seq is commonly used in a variety of analysis tasks
like the identification of differentially expressed genes or isoforms
between two or more conditions; the identification of genes and/
or samples that cluster together by gene expression or RNA
splicing variations; and quantitative trait loci analysis to identify
genetic variants associated with changes in expression (eQTL) or
splicing (sQTL).

The results of such analyses can be greatly affected by
unwanted factors such as sequencing lane1,2 or processing
batch3,4. These factors are either already known prior to starting
the analysis task (e.g., sequencing lane), or unknown (e.g., dif-
ference in mouse diet which was never recorded). Generally, such
confounders (also termed nuisance variables) affect the variability
of the data and, depending on the relationship to the biological
signal of interest, can lead to inflated rates of false positives and
false negatives. Fortunately, for gene expression analysis, there are
well-established methods to remove or account for both known
and unknown confounding factors, such as limma5, ComBat6,
RUV7,8, and surrogate variable analysis (svaseq)9,10. All of these
tools have been applied in many studies and are highly cited.

For the quantification of alternative splicing (AS), a variety of
methods and approaches exist. Some methods quantify whole
transcripts, usually by assuming a known transcriptome. Many
methods, such as RSEM11, SALMON12, and Kallisto13 estimate
some form of normalized transcript expression (TE). These
estimates can then be corrected for confounder effects using the
methods listed above. Other methods, such as MISO14 and
BANDITS15, estimate relative transcript usage (TU), i.e., the
fraction of transcripts from each gene’s isoform. In contrast,
many other methods focus on “local” splicing changes, quanti-
fying expression at the exon levels (e.g., DEXSeq16), or the relative
usage of specific RNA segments or splice junctions. This latter
approach, described in more details below, involves quantifying
the percent spliced in (PSI) for local splice variations (LSVs), or
AS events. AS events commonly captured by these methods
include exon skipping (where PSI captures the fraction of iso-
forms including or excluding an exon) and alternative 3′/5′ splice
sites. Notably, PSI-based quantification of AS events has been the
main approach in the RNA splicing field and is also the focus of
the work presented here. Some of the reasons for this focus on
PSI quantification in the RNA splicing field include the ability to
more accurately and easily quantify local AS events from junction
spanning RNA sequencing reads, the ability to capture complex
and un-annotated (de-novo) splice variants which are particularly
relevant for disease studies, and the ability to validate and
manipulate such AS events using RT-PCR and mini-gene
reporter assays17.

However, in contrast to the common usage of PSI quantifica-
tion methods for the study of RNA splicing, there is a clear lack of
tools for modeling known and unknown confounding factors in
PSI-based splicing analysis. We suspect this scarcity of tools
reflects a general lack of awareness of the effect of confounders on
RNA splicing quantifications. Specifically, we were not able to
find any previous work that quantitatively assessed the effect of
confounders on splicing analysis and compared it to the effect on
gene expression.

One challenge with correcting for confounders in RNA splicing
analysis based on PSI estimates, is that the tools designed for
correcting expression estimates are not well suited for this task.
Local splicing variations (LSV) are typically quantified from
junction reads, a subset of exon-mapped reads spanning across

introns. When junction reads from an exon map to two or more
alternative splice sites up/downstream, the percent splice inclu-
sion (PSI) of each of these splice sites is quantified as the ratio of
junction reads mapping to that splice site over the total number
of junctions reads mapped to all splice sites at that locus. Simi-
larly, between samples or groups of samples, the delta PSI (dPSI)
quantifies the extent of changes in PSI, or differential splicing.
Consequently, alternative splicing (AS) quantification is distinct
from that of gene or transcript expression: rather than real values
or log fold change, PSI values are in the range of 0 to 1, or −1 to
+1 for dPSI. LSV PSI quantification also suffers from different
biases and challenges than those typical in expression estimates.
For example, in typical RNA-Seq experiments many LSVs suffer
from low coverage in terms of junction spanning reads, which in
turn limits the ability to quantify changes in PSI associated with
those. On the other hand, issues such as effective transcript length
or 3′ bias in read coverage do not play a major role in PSI
quantification as those can benefit from the built in normalization
between the reads associated with an LSV’s junctions.

Most previous work involving PSI-based splicing analysis and
confounding factors utilized pipelines originally built for QTL
analysis. For example, Raj et al.18 quantified variations in intron
cluster usage using LeafCutter19 and then applied fastQTL20 to
the data matrix. This analysis implicitly assumes gaussian dis-
tributions, standardizes the data, and then corrects for con-
founders such as age or gender. However, not only do PSI values
not follow a Gaussian distribution, but the corrected values are
commonly negative or greater than one, losing their interpreta-
tion as splicing fractions. Furthermore, these pipelines use only
point estimates for PSI, losing read coverage information which is
crucial for controlling false positives in differential splicing
analysis21. Finally, while some software allow users to specify
confounders for differential splicing analysis16,19,21,22, we are not
aware of any tool that is able to correct for both known and
unknown confounders, outputting corrected junction spanning
reads for both supervised (e.g., differential splicing) and unsu-
pervised (e.g., clustering) splicing analysis tasks.

In order to address the lack of tools for correcting confounders
in RNA-Seq based splicing analysis we developed MOCCASIN
(Modeling Confounding Factors Affecting Splicing Quantifica-
tion) algorithm, which operates by jointly adjusting the estimated
read-rate for the junctions in each LSV. At its core, the MOC-
CASIN model is notably simple: read rates across samples are all
scaled to the median of the total read rates across all junctions in
the matching LSV. As a result, adjusting a junction’s read rates
across samples adjusts its respective PSI across samples, up to a
scaling factor. Optionally, read rates can be log scaled to capture
log linear effects which have theoretical support23 though we
show that in MOCCASIN’s model formulation a simple linear
model performs well. Next, each junction’s read rates are fit, using
vanilla ordinary least squares regression (OLSR) to a linear
combination of factors, which may include both known and
unknown (learned) factors. The unwanted factors of variations
are then removed, leaving corrected read rate per junction which
are then renormalized and scaled back to the original
coverage level.

The simplicity of the MOCCASIN model allows it to be highly
efficient in both memory and compute time, while still being able
to effectively correct the effect of confounders on splicing quan-
tification from RNA-Seq experiments. MOCCASIN is imple-
mented in python as an open source package. MOCCASIN takes
advantage of specific features characteristic to MAJIQ’s24 LSV
quantification (see Methods), but it also implements a general
API so other PSI quantification algorithms can easily employ it.
We evaluate MOCCASIN’s performance on both synthetic and
real datasets under a variety of settings, demonstrating that it
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works effectively to eliminate false positives and recover true
biological signals diminished due to confounders.

Results
Confounders can have a strong effect on RNA splicing analysis.
First, we set out to assess the effect of confounders on both
expression and splicing analysis in two large and highly used
datasets, TARGET (Therapeutically Applicable Research to
Generate Effective Treatments initiative) and ENCODE25, each
with hundreds of samples. The ENCODE dataset comprises 236
and 238 shRNA knockdown experiments performed in K562 and
HepG2 cell lines, respectively, with many of the knockdown
experiments targeting RNA binding proteins. The ENCODE
experiments were done in 61 distinct batches, encompassing a
total of 122 control and 978 knockdown RNA-Seq samples. The
TARGET dataset comprises samples from 250 and 329 pediatric
patients with B and T Cell of origin acute lymphoblastic leuke-
mias (ALL), respectively. Samples were taken at primary diag-
nosis and/or after relapse and sequenced in multiple batches. See
Supplementary information for more details about both datasets.

As shown in Fig. 1 we found the effect of confounders on
splicing analysis is at least as large as the effect on expression
analysis. Specifically, in the TARGET’s leukemia dataset and
ENCODE’s shRNA knockdown (KD) dataset the batch labels
were associated with 15.9% and 46%, respectively of the total
splicing variations as measured by R2 (see “Methods”) compared
to 6.7% and 39.8% for expression. Indeed, Van Nostrand et al.
noted such batch effects for ENCODE26, but this effect was not
quantified and we are unaware of a previous publication
reporting batch effect associated with the sequencing machine
for the TARGET dataset. Importantly, batch effects are not
restricted to such large consortium data. We observed similar
results for mouse tissue samples previously used to study
expression batch effects by Peixoto et al4. (See Supplementary
information and Supplementary Fig. 1).

MOCCASIN effectively corrects the effect of known and
unknown confounders in RNA splicing analysis. In order to
address the need for correcting confounding factors in splicing
analysis we developed MOCCASIN. Briefly, MOCCASIN input
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Fig. 1 Batch effects impact both gene expression and splicing analysis. Uniform manifold approximation and projection (UMAP) of gene expression
analyses (a, c) and splicing analysis (b, d) for TARGET (top, N= 870) and ENCODE (bottom, N= 489). Colors indicate batch identity. Numbers in red
represent percent of total variation (R2) associated with batch in each dataset. Shapes mark samples from the same patient (TARGET, patient TARGET-10-
PANKAK) or experiment type (ENCODE, U2AF2 KD) which cluster by batch. TPM, transcripts per million; FC, Fold change; dPSI, delta percent splice
inclusion.
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consists of two elements. One is a matrix R with estimated read
rates Rmk for each junction m 2 ½1¼M� in each sample
k 2 ½1¼K�. For many PSI quantification algorithms Rmk is
simply the total junction spanning reads in experiment k that
support junction m. The junctions represented in the matrix R are
assumed to be grouped into LSVs, with a separate data structure
given as input and identifying each junction row m with its
matching LSV l. The second input element for MOCCASIN is a
design matrix for the RNA-Seq experiments, allowing the user to
specify a set of variables of unwanted variations (e.g., batch ID)
and variables of interest (e.g., tissue type). In addition, MOC-
CASIN also allows users to specify a number of unknown factors
of variations to be learned from the data using a factor analysis
approach similar to that used by RUV7 (see “Methods”). The set
of read rates Rmk are scaled across all samples; fit to the variables
of wanted and unwanted variations using OLSR; adjusted to
remove the unwanted sources of variations; then scaled back to
the original total read rate per LSV in each sample such that
MOCCASIN outputs a “cleaned” read rates matrix (see methods
for more details). The resulting corrected read rates matrix can
then be fed into any downstream algorithm involving tasks such
as PSI quantification for clustering analysis or detection of dif-
ferentially spliced events. Specifically, MOCCASIN was designed
to work in conjunction with MAJIQ but other algorithms for PSI
or dPSI quantifications can also be used via MOCCASIN’s API.

To assess the effectiveness of MOCCASIN we first created a
“realistic” synthetic data, using BEERS27 to simulate a total of 16
real samples of RNA-Seq from mouse tissues28 (Aorta and
Cerebellum). Simulating real samples allowed us to capture
realistic expression levels and variability between samples in and
between the original tissue groups (see “Methods”). After the
original samples were simulated, we introduced a synthetic batch
effect to half of the samples denoted as batch B. Specifically,
G2 2; 5; 20 percent of randomly chosen genes in batch B were
perturbed by reducing the TPM of their most highly expressed
isoform by C 2 2; 10; 60 percent. Next, we randomly selected
another of the gene’s isoforms and increased its expression by the
same amount, thus maintaining the gene’s overall original TPM
(see methods for additional details on the simulation process).
Finally, to avoid introducing additional sources of variations,
quantifications of PSI and dPSI were performed with the same
settings of MAJIQ before and after applying MOCCASIN to
assess its effectiveness for batch correction.

Figure 2 summarizes the evaluations of MOCCASIN on the
above synthetic data. Figure 2a shows the cumulative distribution
of the changes in PSI per LSV due to the injected batch effect (G
= 20% and C= 60%) compared to the ground truth unperturbed
data, either before MOCCASIN (blue), or after MOCCASIN
where we vary the total number of input samples from 4 (purple)
to 8 (brown), 12 (yellow), or 16 (orange). For example, we see
that the number of LSVs with dPSI > 0.2 drops from 1229, (~6%
of total LSVs, blue line) to 345-151 (~1–2%, purple, brown,
yellow, and orange lines for 1, 2, 3, or 4 samples per batch and
tissue combination) i.e., up to 88% reduction in the number of
highly perturbed LSVs.

While the overall accuracy in PSI correction as captured by
Fig. 2a is important, it still leaves open the question of how does
the batch correction affect the accuracy of detecting differentially
spliced LSV for the signal of interest. To address this question,
Fig. 2b shows the batch effect on the number of detected
differentially spliced LSV (y-axis) as a function of the difference’s
significance (x-axis, Student’s t test p-value, see “Methods”). Here,
with G= 20% and C= 60%, we see the batch injected data (blue)
compared to the “ground truth” data before batch injection
(green) causes inflation of both batch-associated differences (Fig.
2b), as well as false positives for the tissue signal (Fig. 2c).

Applying MOCCASIN (orange or gray) effectively controls both
the batch signal (Fig. 2b) and the false positives for the biological
signal (Fig. 2c) with as few as 2 input samples per tissue/batch
(see Supplementary Fig. 2) with only a moderate loss of true
biological signal (false negative) due to over correction at the
moderate p-value levels. To better quantify these effects across a
range of settings we applied MAJIQ’s Bayesian dPSI model to
report all LSVs for which the posterior probability of a PSI change
of above 20% is at least 95% (P(|dPSI|>= 20%) >= 95%). This
threshold is commonly used to detect splicing changes that are
considered biologically significant, of high confidence, and can be
validated using orthogonal approaches such as RT-PCR.
Figure 2d, e show that small perturbations of C= 2% or even
C= 10% have little effect on the false positive rate (FPR) with
respect to the original batch signal (Fig. 2d) and the false
discovery rate (FDR) with respect to the tissue signal (Fig. 2e).
These results are to be expected given the dPSI thresholds set for
MAJIQ, reflecting its robustness to small perturbations below the
specified detection threshold. However, the picture changes
dramatically when the injected signal reaches C= 60%, with
both FPR for batch signal and FDR for tissue signal climbing
proportionally as G increases from 2% to 5% and 20% (blue).
Subsequently, applying MOCCASIN (orange) effectively controls
for the batch effect and perhaps most importantly maintains an
empirical FDR of 6–8%, close to the Bayesian estimate of 95%
confidence. We also found that using known batch covariates or
treating those as unknown and letting MOCCASIN discover
and correct them performed similarly (gray), and this result was
not sensitive to the number of unknown confounders used
(compare U1, U2, U3 in Supplementary Fig. 3). See Supplemental
Information for additional plots for other statistics and other
settings for batch effects.

As the last component of evaluations using synthetic data, we
assessed the effect of MOCCASIN’s batch correction on down-
stream unsupervised clustering. Figure 2f shows that the original
data clusters by tissues (left), by batch when the batch signal was
injected (middle, G= 20 and C= 60), and again by tissue after
MOCCASIN is applied (right). Similar results are observed when
MOCCASIN is configured to identify an unknown confounder
(Supplementary Fig. 4).

MOCCASIN boosts biological signals in TARGET and
ENCODE datasets. Next, we applied MOCCASIN to the TAR-
GET and ENCODE datasets described above, each of those
representing highly used datasets with a different set of challenges
for confounders correction. In the case of ENCODE, there is a
high number of batches (61), and each batch consists of RNA-
Seq experiments in one of two cell lines (HepG2 and K562). Every
KD experiment had 2 biological replicates within the same batch,
and each batch had its own two biologicial replicate controls (the
matching cell line without any KD perturbation). After some
experimentation we converged to a procedure where MOCCA-
SIN was run separately for each cell type, removing variation due
to the 29 and 32 batch identifiers in the HepG2 and
K562 samples, respectively. The result of this correction proce-
dure was that variance explained by batch dropped from 46% as
shown in Fig. 1d to 4.3% as shown in Fig. 3a, whereby a UMAP
analysis shows no batch-associated clustering of samples. Next,
taking advantage of the fact U2AF2 experiments were repeated in
two batches (9 and 36), we contrasted the differential splicing
detected in those batches before and after MOCCASIN’s cor-
rection. We identified 2595 and 1897 U2AF2 KD-induced
changes in splicing (|dPSI|>= 0.1, p-value < 0.05) in batches 9
and 36, respectively, of which only 773 were identified in both
batches (Fig. 3b, left). After applying MOCCASIN (Fig. 3b, right)
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to model and remove batch-associated variation, the overlap
between differentially spliced events upon KD of U2AF2 in batch
9 and 36 increased from 773 to 1048, the overall Pearson corre-
lation of dPSI between batches increased from 0.71 to 0.79, and
the total number of detected U2AF2 KD-induced changes
increased by 12.2% and 8.1% for batches 9 and 36, respectively.

The TARGET dataset introduced another set of challenges for
correcting the effect of confounding variables on PSI quantifica-
tions. First, we identified a strong batch effect associated with the
sequencing platform (HiSeq 2000 vs 2500), which to the best of
our knowledge was not reported before. Our initial analysis was
successful in controlling for the unwanted variation associated
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Fig. 2 Removal of batch effects from simulated RNA-Seq data with MOCCASIN. RNA-Seq samples from mouse Aorta and Cerebellum were simulated
using BEERS while injecting G% of the genes in half the samples with a batch effect of C% expression change of the main isoform (see main text). a
Cumulative distribution of the difference (|dPSI|) from simulated ground truth after batch signal injection (G= 20%, C= 60%) either before MOCCASIN
(blue) or after correction with increasing numbers of samples for each of the four batch/condition combinations: 1 × 4 (4 total, purple), 2 × 4 (8 total,
brown), 3 × 4 (12 total, yellow), and 4 × 4 (16 total, orange). All plots are derived from the same representative sample (SRR1158528) to maintain a fixed
base for comparison, with similar plots observed for other perturbed samples (data not shown). Total number of LSVs: 21566. b, c The number of LSVs (Y-
axis) detected as differential (|E(dPSI)| > 0.2) for the batch 1 (N= 4) versus batch 2 (N= 4) signal (b, left) and the aorta (N= 4) vs cerebellum (N= 4)
signal (c, right) across a range of increasingly significant p-values (X-axis, Student’s t test, −log10 scale). Number of samples used is 4 per batch/tissue
combination (same as in the orange line in a). The green points (“Ground Truth”) are from the simulated data with no batch signal injection and the blue
points (“Before MOCCASIN”) are from the same data after batch signal injection (G= 20%, C= 60%). Both blue and green points serve as reference
points for MOCCASIN correction of the batch signal. Orange and gray represent, respectively, the results after MOCCASIN correction when the batches
are known or unknown. d, e Assessing false positive rate (FPR) for the batch signal (d, left) and false discovery rate (FDR) for the tissue signal (e, right) for
a range of G values (2, 5, 20%) and C effect size (2, 10, 60%). Number of samples same as in (b, c). Here positive events where considered as those
changing by at least 20% with high confidence by MAJIQ (P(|dPSI| > 0.2) > 0.95). Under these definitions small effect sizes (C= 2,10%) represent
perturbations that are not expected to affect the positive event set much. f Heatmaps of E(PSI) from simulated data without batch effect (ground truth,
left), with simulated batch effect (G= 20%, C= 60%) without correction (middle), and after applying MOCCASIN with 1 known confounding factor
(right). Each column is a sample, and each row is an LSV (N= 4941). The colored bars above the samples denote the sample’s tissue (8 aorta samples in
purple, and 8 cerebellum samples in green) and batch (8 batch 1 sample in red and 8 batch 2 samples blue).

Fig. 3 Batch correction of TARGET and ENCODE datasets. a UMAP plot for ENCODE (N= 489) as in Fig. 1 but after applying MOCCASIN. U2AF2
knockdowns (square and circle) now cluster together, percent of total variance (R2) associated with batch drops to 4.3% (red text) b Pearson correlation of
significant splicing changes upon U2AF2 KD (dPSI > 0.2) between batches increases from R= 0.71 (top left) to R= 0.79 after MOCCASIN (top right).
Similarly, the number of significantly changing events (P(|dPSI | > 0.2) > 0.95) in each batch and the overlap of these events between batches increases
after MOCCASIN correction (c, compare bottom left and right). c UMAP plot for TARGET (N= 870) as in Fig. 1 but after applying MOCCASIN without
specifying a cell type (top left), after adding an unknown confounder (bottom left), and when using a cell type specific model after inferring missing cell
type labels (right). TARGET technical replicates P25a-c cluster together (square, circle, and triangle), and R2 drops to 0.3% (red text). d
Pearson correlation of significant splicing changes between primary and relapse samples from the same patient (TARGET-10-PANKAK) increases from
R= 0.87 (top left) to R= 0.97 (top right) after correcting for the sequencing platform. Note that since only the HiSeq2500 samples are corrected by
MOCCASIN, only the set that includes those (cyan) is affected. Accordingly, the total number of significantly changing events (P(|dPSI| > 0.2) > 0.95)
drops for the cyan set from 18908 (bottom left) to 16100 (bottom right) but the overlap with the other set increases (11360 to 13290).
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with the sequencing platform, dropping the amount of variance
explained by it, from 15.9% to 0.4% (compare Fig. 1b to Fig. 3c).
However, clear structure was still evident in the data. Initially, we
were able to successfully remove that structure by adding one
unknown confounder to the MOCCASIN model (Fig. 3c, bottom
left plot). However, the amount of variance associated with the
unknown confounder (9.8%) motivated us to search for a
biological explanation for it. Indeed, we found that many (but
not all) samples were annotated by cell type, a label we originally
missed. We then inferred the missing cell type labels based on the
initial embedding and performed cell type specific corrections,
yielding the corrected data UMAP shown in Fig. 3c (right plot).
Finally, we assessed the effect of MOCCASIN on known biological
signals in TARGET by comparing a within-batch analysis (same
sequencer) to a mixed-batch (multiple sequencers) before and
after correction. We found that splicing variations in TARGET
data corrected by MOCCASIN correlated better (Fig. 3d, top:
Pearson correlations increased from 0.87 to 0.97) and overlapped
more (Fig. 3d, bottom: overlap increased by 17%) when detecting
patient-specific primary ALL diagnosis versus relapse-associated
splicing differences (P(|E(dPSI)|>= 0.1)>= 0.95). In summary,
our analysis of two large public datasets demonstrate both the
severity of confounder effects on splicing analysis as well as the
ability to effectively correct those using MOCCASIN while
handling different sources of variations and experimental designs.

Discussion
While the issue of confounding factors’ effect on gene expression
analysis has received much attention, the equivalent effect of
confounders on RNA splicing analysis has not been well studied.
Here we use two large public datasets to show the magnitude of
confounders’ effect on RNA splicing quantification can be at least
as big as that observed for gene expression analysis. We develop
MOCCASIN, a dedicated tool to correct for both known and
unknown confounders in RNA splicing PSI-based analysis, and
demonstrate its effectiveness on both synthetic and real data. We
have also made all code and data available. Specifically, in addi-
tion to correcting ENCODE HepG2 data (Fig. 3), we also cor-
rected the K562 data (Supplementary Fig. 5). The corrected
HepG2 and K562 ENCODE dataset (See Supplementary Infor-
mation) should serve as a highly valuable resource as it offers
quantification of both complex and de-novo splicing variations
which were not available before, as well as MOCCASIN batch
corrections. Similarly, the synthetic data generated for this study
(see Supplementary Methods) can serve as a benchmark for
future tool development.

While we focused here on large public datasets it is important
to note similar observations can be made in much smaller data-
sets. For example, the data used in the development of RUV for
expression correction10, exhibited strong batch effects in splicing
analysis as well (see Supplementary Fig. 1). Another important
point to make is with respect to scalability. Nowadays datasets
can easily involve hundreds or even thousands of samples,
requiring efficient algorithms. This problem is further com-
pounded by the fact that the number of junctions in the human
transcriptome is typically an order of magnitude larger than the
number of genes. Consequently, we chose to utilize a relatively
simple model which appears to perform well while still scaling to
large datasets as those used here. For example, processing the
TARGET dataset consisting of 885 samples with 40 threads and
30 GB of RAM took us 67 h with much of that execution time
spent on I/O and not the actual MOCCASIN correction algo-
rithm (See Supplementary Fig. 8 and the Supplementary infor-
mation for further details).

While the simplicity of MOCCASIN enables efficient execu-
tion, the underlying model has several limitations that should be
noted. First, previous work points to nonlinear modeling effects
on read rates and consequent PSI23. While in our testing a linear
model after a smoothed to zero log (STZL) transformation of the
read rates did not improve accuracy (Supplementary Figs. 9, 10) it
is possible such a transformation, or other nonlinear models
would prove advantageous in other settings. Regardless, the basic
MOCCASIN model is limited by the fact that the confounders
design matrix has to be full rank. This limitation is corroborated
by the fact algorithms that quantify PSI for alternative splicing
events typically rely on junction spanning reads and can thus be
more sensitive to low coverage, leading to missing values in the
data matrix. MOCCASIN handles this issue by checking the
design matrix is full rank given the observation for each such
splicing event, and reports back which event has been corrected.
Future work introducing more elaborate nonlinear models, mixed
effects models, and models which share information across the
corrected LSVs may address some of current modeling
limitations.

Beyond the modeling assumptions, there is also inherent lim-
itation in outputting a single “corrected” version of the original
RNA-Seq data. Such output by itself does not include information
about the credible interval for the underlying estimated para-
meters for confounders’ effect, and consequent possible variability
in the “corrected” output. This issue has already been noted for
methods correcting gene expression and downstream analysis
such as differential expression29. In the case of MOCCASIN, the
model enables users to specify multiple estimates for the read
rates per junction, which results in multiple corrected “versions”
of the read rates. This feature enables MOCCASIN to take
advantage of MAJIQ’s model which outputs multiple estimates
for read rates per junction, and then combines those into pos-
terior probabilities for PSI and dPSI estimates. However, while
this MAJIQ feature was designed to accommodate for the
uncertainty in PSI estimates it does not directly model uncer-
tainty in confounders coefficients, leaving the modeling of such
uncertainty as another future direction to improve upon
MOCCASIN’s model.

Another direction for future investigation is the detailed
characterization and synthetic modeling of confounder effects on
PSI estimates. For example, in this study we generated synthetic
batch effects by reducing the major transcript for a given gene by
a certain percentage and increasing another transcript accord-
ingly to maintain the same level of gene expression. This
approach was motivated by previous work that showed that
changes between cellular conditions usually increase one splice
junction in an LSV while reducing another. Also, recent work
demonstrated that PSI can be modeled as the result of factors
affecting read rates via an exponential function23. However, the
landscape of confounders’ effects on splicing is yet to be explored.
Specifically, while this study included large scale quantification of
confounders effects on PSI and dPSI estimates, we still lack good
characterization of these effects. Do different confounders
observed in different studies cause different effects? How are
these effects distributed between different types of alternative
splicing events? Such detailed characterization will help inform
better correction algorithms as well as more realistic simulations.

In conclusion, we believe much future work remains to fully
characterise and hopefully better model confounder effects on PSI
quantification from RNA-Seq. Nonetheless, we hope that the
combined code, data, and analysis we provided here will serve as
a valuable resource for the research community and shed much-
needed light on the need to control for confounders in RNA
splicing analysis.
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Methods
Simulated data generation from real RNA-Seq samples. The mouse tissue
simulated data are based on the real mouse cerebellum and aorta data from Zhang
et al.28. We used transcript-level TPM quantifications from these data as the
empirical distributions for simulating RNA-Seq reads with the Benchmarker for
Evaluating the Effectiveness of RNA-Seq Software (BEERS)27. For all BEERS
simulations we used the same GENCODE release M21 gene models30 for transcript
quantification, and the sequence from build GRCm38.p6 of the mouse reference
genome (downloaded from the GENCODE website). Briefly, we directly converted
the table of TPM values for each input sample into a BEERS feature quantification
file so we could simulate RNA-Seq data with the same expression distributions as
the input samples. Next, we used BEERS to simulate 30M paired end RNA-Seq
reads for each input sample, with uniform coverage across the length of each
expressed transcript and no intronic expression. BEERS introduced polymorph-
isms and errors into the resulting data with the following parameters: substitution
frequency= 0.001, indel frequency= 0.001, error rate= 0.005. The BEERS simu-
lator generated FASTQ files containing the simulated read pairs, a listing of the
true alignments and source transcript for each read pair, and the true expression
counts for each transcript in the simulated sample.

Simulation of batch effect. Batch effects were introduced to the transcript level
TPMs of four aorta and four cerebellum samples. The first four of the aorta
samples and the first four of the cerebellum samples were defined as “batch 1”. The
last four of the aorta samples and the last four of the cerebellum samples were
defined as “batch 2.” Batch effect perturbations were only ever introduced to the
batch 2 samples and batch effects were restricted to genes with at least two protein
coding transcripts and at least one transcript with ≥10 reads per kilobase of
transcript length in every sample. The procedure to introduce batch effects is as
follows: first, the most abundant protein coding transcript per gene was identified
as the transcript having the maximum over all transcripts of the minimum reads
per kilobase over all samples. This definition ensures the selected transcript is not
zero in any sample. Then, for a given gene a batch effect was introduced by (1)
selecting a transcript uniformly at random (excluding the most abundant tran-
script) and (2) reducing TPM of the most abundant transcript by a factor of “C%
Change in Isoform TPM” and correspondingly increasing the TPM of the ran-
domly selected transcript, thus maintaining the overall TPM of the gene and not
breaking the definition of TPM (sum of all TPMs in a sample is one million). The
“C% Change in Isoform TPM” factors included 2%, 10%, and 60%. In addition to
introducing three different levels of percent changes in isoform TPMs, we also
varied the percent of genes batch-effected. We introduced batch effects to G= 0%,
2%, 5%, or 20% of all genes with protein coding transcripts.

MOCCASIN algorithm. MOCCASIN adjusts read rates representing evidence for
RNA splicing events in order to remove confounding variation. The two main
inputs provided by the user are the read rates matrix (dependent variables) and the
design matrix which lists the confounding factors and covariates. The read rate
input data R is a matrix such that each entry Rmk represents the read rate for a
splice junction m 2 ½1¼M� in sample k 2 ½1¼K�. In the simplest case these read
rates would simply be the number of junction spanning reads supporting that
junction in an experiment. The design matrix specifies which experiment k belongs
to which independent variable. We break the design matrix into two groups,
corresponding to confounders C and variables-of-interest/non-confounders V. In
the case when the known confounders are supplemented with additionally learned
factors of unwanted variation (see below) the columns of C are partitioned into
known N and unknown U confounders.

MOCCASIN considers the fundamental splicing unit of interest to be a local
splicing variation (LSV), where each LSV refers to a collection of splice junctions with
either a common source or target exon17,31. Hence, the junctions represented in the
read rate table are assumed to be grouped into LSVs, with a separate data structure
given as input and identifying each junction row m with its matching LSV
SðmÞ ¼ l 2 ½1¼ L�. We note though that other definitions of alternative splicing
events can be used (e.g., intron clusters as in ref. 19), under the assumption that the
input elements represent read rates of entities (e.g., splice junctions) that belong to
groups such that the relative fraction of each such entity (i.e., PSI) need to be adjusted.

For each LSV l and sample k, MOCCASIN first computes the total read rates
over junctions in the LSV ðTl;k ¼ ΣmRm;ks:t:SðmÞ ¼ lÞ. Then the total read rate per
LSV in each sample is scaled to the median total read rates for that LSV across all
samples, such that the scaled read rates per LSV maintain the same PSI:

T̂ l ¼ mediankTl;k

ðdRm;kÞ ¼ Rm;kΩl;k

Where Ωl;k ¼ T̂l
Tl;k

is the scaling factor. After scaling, a function F() over the read

rate ðdRm;kÞ is modeled as a linear combination of covariates with homoscedastic
noise:

FðdRm;kÞ ¼ αm þ Nk � γm þ U k � δm þ Vk � ηm þ ϵmk ð1Þ

Where αm is the intercept for junction m; γ; δ; ηare the coefficients
corresponding to N, U, V respectively; and ϵmk � Nð0; σ2Þ is assumed to be
homoscedastic gaussian noise over the scaled read rates. MOCCASIN includes two
implementations for the function F. The simpler default function is unity F(x)= x
which translates to a linear model over the scaled read rates. The second is a
smoothed towards zero log (STZL) transformation:

FðxÞ ¼ lnðxÞs:t:x > 2 ð2Þ

FðxÞ ¼ ax2 þ bxs:t:0≤ x ≤ 2

F�1ðxÞ ¼ exs:t:x ≥ lnð2Þ

F�1ðxÞ ¼ 1
2a

�� bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 4ax
�

q

s:t:0≤ x < ln ð2Þ

Where:

a ¼ 1
4
ð1� lnð2ÞÞ

b ¼ lnð2Þ � 1
2

The STZL transformation has some theoretically desirable properties. It allows
for a log linear model where the effect of confounder has a multiplicative effect on
read rates, inline with recently suggested models for elements affecting PSI23.
Similar to arcsinh used for gene expression, variance stabilization32 STZL avoids
exploding negative values for low read rates but unlike arcsinh does not cause
variable deviation from the theoretically desirable log transformation for high read
rates. See Supplementary Fig. 6 for an illustration of STZL and Supplementary
Figs. 8 and 9 for a comparison between the default linear model and STZL.

The simple read rate model defined above allows MOCCASIN to derive
estimates of α̂m ,γ̂m,δ̂m ,η̂m through simple OLS regression which can be easily
parallelized across LSVs. The corrected read rates R*

m;k are then computed as:

R0
m;k ¼ F�1ðCðFðdRm;kÞ � Nk � γm � Uk � δmÞÞ;T 0

l;k ¼ ΣmR
0
m;ks:t:S mð Þ ¼ lÞ ð3Þ

R*
m;k ¼

Tl;k

T 0
l;k
R0

m;k

Where C(x)= x if x > 0 otherwise C(x)= 0 is a simple clipping function to avoid
too low (negative) read rates after confounders effect removal. We found clipping
to affect approximately 7% of the junctions in our tests and it did not seem to have
a significant effect on the model accuracy compared to non-clipped junctions (see

Supplementary Fig. 6). We also note that the normalization factor
Tl;k

T 0
l;k
is set to

recover the same total level of read rates per LSV i.e. T*
l;k ¼ Tl;k . The adjusted read

R*
m;k rates are reported back as the output for any downstream algorithm.
Finally, a few additional elements of the MOCCASIN algorithm are worth

noting:

If an LSV is not observed in a specific sample it is not adjusted.
In order for MOCCASIN to be able to perform a correction the design matrix
needs to be full rank.
Even when the design matrix is full rank it might not be full rank for specific
LSV due to missing observations (see above). To account for that,
MOCCASIN’s output includes a list of all the LSV it corrected y/n.
When MOCCASIN is applied to MAJIQ’s output, every LSV has multiple read
rate estimates for each of its associated junctions. MOCCASIN is then applied
to each of those read rates estimates independently, resulting in a set of
corrected read rates per junction, per LSV. These sets are combined together by
the MAJIQ algorithm to output posterior probabilities for PSI and dPSI as
described previously17.
In order to learn unknown confounders, denoted by the matrix U above, we
utilize a procedure similar to the one used by RUV7 - See supplementary
methods for details.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The TARGET results published here are in whole or part based upon data generated by
the Therapeutically Applicable Research to Generate Effective Treatments initiative,
phs000218. The TARGET data used for this analysis were accessed under Project #10088:
Alternative splicing in pediatric cancers (request 41466-5). The SRA toolkit was used to
download sra files for the TARGET dataset and simulated data was based off of data from
ref. 28 (GEO accession GSE54652). Simulated data generated for this manuscript with
and without batch effects are available at GEO accession GSE162664. Mouse RNA-Seq
data used for Supplementary Fig. 1 are available at GEO accessions GSE44229 and
GSE63412. The ENCODE project fastqs were downloaded from www.encodeproject.org
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(See Supplementary Data 1 for a list of file accessions used). Data and scripts to
reproduce figures are available in a Zenodo repository (doi:10.5281/zenodo.4294189).

Code availability
MOCCASIN: https://bitbucket.org/biociphers/moccasin/. Data and scripts to reproduce
figures are available in a Zenodo repository (https://doi.org/10.5281/zenodo.4294189).
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