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Replicate sequencing libraries are important for
quantification of allelic imbalance
Asia Mendelevich 1,2,8✉, Svetlana Vinogradova 2,8, Saumya Gupta 2,3, Andrey A. Mironov4,5,

Shamil R. Sunyaev6,7 & Alexander A. Gimelbrant 2,3✉

A sensitive approach to quantitative analysis of transcriptional regulation in diploid organisms

is analysis of allelic imbalance (AI) in RNA sequencing (RNA-seq) data. A near-universal

practice in such studies is to prepare and sequence only one library per RNA sample. We

present theoretical and experimental evidence that data from a single RNA-seq library is

insufficient for reliable quantification of the contribution of technical noise to the observed AI

signal; consequently, reliance on one-replicate experimental design can lead to unaccounted-

for variation in error rates in allele-specific analysis. We develop a computational approach,

Qllelic, that accurately accounts for technical noise by making use of replicate RNA-seq

libraries. Testing on new and existing datasets shows that application of Qllelic greatly

decreases false positive rate in allele-specific analysis while conserving appropriate signal,

and thus greatly improves reproducibility of AI estimates. We explore sources of technical

overdispersion in observed AI signal and conclude by discussing design of RNA-seq studies

addressing two biologically important questions: quantification of transcriptome-wide AI in

one sample, and differential analysis of allele-specific expression between samples.
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RNA sequencing (RNA-seq) is a widely used technology for
measuring RNA abundance across the whole
transcriptome1. In samples from humans and other diploid

organisms, comparison of the activity of the maternal and
paternal alleles is an especially informative approach to under-
standing regulation of gene expression. The two parental copies
of a gene share the trans-regulatory environment of the same
nucleus, making allelic imbalance (AI) in expression specifically
reflective of the cis-regulatory mechanisms2,3. This has led to use
of AI analysis in a growing number of studies of regulatory
variation4–8. In addition to genetic mechanisms, allele-specific
analysis of the transcriptome can reveal epigenetic gene regula-
tion in cis, usually associated with either imprinting9, X-
chromosome inactivation10, or autosomal monoallelic
expression11–15.

For accurate quantitative analysis of RNA-seq, it is necessary to
separate biological signal from technical variation (noise). A
nearly universal practice in RNA-seq studies of AI is to use one
technical replicate, i.e., generate a single sequencing library per
sample. We found only two publicly available datasets with
technical replicates; one study produced seven RNA-seq libraries
from each of five human cell lines16 and the other, two technical
replicates from one human cell line17. In experiments without
technical replicates, accounting for technical noise relies on
assumptions about its properties. The de facto standard is the
simple binomial test with correction for multiple
hypotheses5,18–20; there are also methods that incorporate over-
dispersion terms into one-replicate analysis21,22. For analysis of
biological replicates, pooling or averaging data is usually
employed (e.g.,17,23).

We asked if a single technical replicate provides sufficient
information to quantify contribution of technical noise to the
observed AI signal. Our analyses show that it is insufficient,
unless very restrictive assumptions are made about the true
underlying AI signal or the exact characteristics of the noise.

Furthermore, we performed an experimental assessment of
technical noise in AI analysis of RNA-seq data, by producing
multiple replicate libraries from the same RNA, varying methods
of library construction and amount of RNA input. In these and
publicly available datasets, we found that noise can greatly vary
between experiments, and thus its properties cannot be assumed
to be uniform.

In this work, we devise an approach to estimate technical noise
based on the comparison of two or more replicate RNA-seq
libraries, and implement it in a software tool, Qllelic (github.com/
gimelbrantlab/Qllelic). Its performance favorably compares both
with the simple binomial test with correction for multiple
hypothesis testing5,18–20, and methods that incorporate over-
dispersion terms into one-replicate analysis21,22. It also performs
better on data with biological replicates than pooling or aver-
aging, although there are limitations involved in the use of bio-
logical replicates without technical ones. Finally, as a practical
guide, we outline typical use cases for application of Qllelic for
allele-specific analysis of RNA-seq data.

Results
One technical replicate in RNA-seq is insufficient for estima-
tion of AI technical noise. For accurate analysis of RNA
sequencing data, biological signal should be separated from the
experimental noise. One obvious source of technical variation is
sampling due to limited sequencing depth; this variation can
usually be accounted for using binomial distribution5,24. Many
existing approaches to AI analysis also incorporate an additional
component of noise, extra-binomial overdispersion21,25,26.

In some highly stylized models of the underlying “true”
distribution of AI signal, a single RNA-seq library can provide
sufficient information for separating noise and AI signal. An
example of such a model is a discrete distribution of AI values,
such that all transcripts are either exactly 50:50 biallelic or
completely biased towards one of the alleles (see Supplementary
Note S1). More realistic prior models of true distribution of AI
signal and noise are called for when addressing more quantitative
questions, such as differential AI analysis, rather than classifica-
tion of genes into discrete categories like biased/unbiased. For the
model of the true AI signal, a natural extension of the discrete
trimodal distribution is making it continuous. The resulting bell-
shaped distribution with fat tails resembles a typical observed
distribution of AI values in transcriptome analysis (see Supple-
mentary Fig S13). Such distribution of true AI signal can be
modeled as a beta-binomial distribution. Technical noise is often
modeled as a beta-binomial distribution incorporating both
sampling noise and overdispersion21,22,25,27.

Even under this simple continuous model, an observed distribu-
tion of AI values could result from different parametrizations of the
beta-binomial distributions describing true AI signal and noise
(Fig. 1a). Simulation analyses (Supplementary Note S1) show that
such parametrizations, assigning very different amounts of noise
(Fig. 1a), cannot be distinguished by the Mann–Whitney–Wilcoxon
and Kolmogorov–Smirnov tests (Supplementary Note S1). Here,
noise incorporates all sources including technical noise from library
preparation and measurement, and biological variation.

For two additional classes of models, we analytically show
(Supplementary Note S1) that multiple parametrizations may
result in observationally equivalent distributions. In one such
class, both true signal and noise are normally distributed. In
another, noise is described by either beta-binomial or binomial
distribution, and true AI values are described as a mixture of
three Dirac delta functions or Beta mixture, respectively.

These observations strongly suggest that, unless models are
very restrictive, RNA-seq data from a single technical replicate is
insufficient to achieve definitive parametrization of technical
noise and true AI signal.

In the rest of the paper, we describe and experimentally test a
method to account for technical noise and accurately estimate AI
using RNA-seq data from two or more technical replicates.

Datasets used. There are two principal variables involved in the
generation of RNA sequencing libraries: (a) different protocols
can be used; and (b) with a given protocol, library preparation can
start with different amounts of RNA. To probe these two vari-
ables in a compact way, we generated three sets of poly-A enri-
ched RNA-seq libraries from the same total RNA extracted from
the mouse kidney. To increase the fraction of allele-specific reads,
we used RNA from a polymorphic F1 mouse cross (129S1 × Cast/
Ei) with genome-wide density of single nucleotide polymorph-
isms (SNPs) of ~1/118 bp, about 10-fold higher than in humans.

Each set (“experiment”) consisted of six libraries prepared in
parallel. Libraries for experiment 1 (“NEBNext (100ng)”) were
prepared using a protocol for large amounts of input RNA (100 ng
of total RNA, see details in Methods). Experiments 2 and 3 featured
libraries prepared using SMART-Seq v4 Ultra Low Input RNA Kit
(Clontech) with amounts of input total RNA bracketing the
recommended range—10 ng and 100 pg, respectively (“SMARTseq
(10ng)” and “SMARTseq (0.1ng)”). Information on these sequen-
cing data is summarized in Supplementary Table S1.

We also analyzed published datasets. Information on these is
summarized in Supplementary Table S1, with further details on
their analysis listed in Supplementary Table S2 (human
samples16) and Supplementary Table S3 (mouse samples28).
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Variation in the AI estimates across replicate RNA-seq
libraries. To assess the consistency of AI estimates, we applied
a uniform statistical test across technical replicates and experi-
ments to construct an “AI discordance map” for replicate pairs
(Fig. 2a). For each gene in either of the replicates being compared,
we tested the null hypothesis of a perfectly biallelic expression (H0

of AI= 0.5) using a binomial test. Genes with the H0 rejected
(with P= 0.05, after the conservative Bonferroni correction for
multiple hypothesis testing29) are classified as having AI bias; the
rest are classified as showing no bias. Only the genes with dis-
cordant calls in the two replicates are shown on the resulting
map, with a separate highlight for genes showing the opposite
bias in the two replicates. This statistical procedure, widely used
in studies of AI5,18–20 yields a large number of discordant calls
between technical replicates (Fig. 2b). Note that the discordant
genes as a whole are not limited to the boundary determined by
the binomial test, suggesting that the pure binomial noise is not a
close fit to the experimentally observed dispersion of AI values
(see Supplementary Note S2).

It is known that in RNA-seq there is “overdispersion”—more
signal dispersion than would be expected from an assumption of
binomial noise30–32. To account for overdispersion, some within-
replicate analysis is suggested (approaches include comparing sets
of reads sampled without replacement from the same read pool17

or bootstrapping30). Indeed, sampling without replacement
(which is equivalent to sequencing two aliquots from the same
library) is more discordant than binomial sampling within one
replicate (Supplementary Fig. S1), suggesting that this procedure
captures some overdispersion. However, distinct replicates within
the same experiment are much more discordant than sampling
without replacement shows (Fig. 2c), and they reveal additional
noise not detectable by analysis within a single library.

Importantly, the concordance dramatically differed across
experiments (Fig. 2b, left to right), while similar for pairs of
replicates within the same experiment: 49.2%± 4.7 (s.d.) for
experiment 1 (52.3% ± 1.3 when one outlier replicate was removed),
61.8% ± 0.6 for experiment 2 and 38.3% ± 1.0 for experiment 3
(Fig. 2e, left). RNA abundance values (non allele-specific) appear to
agree much better between replicates, even only counting reads
covering SNPs (Supplementary Fig. S2); greater variation in AI
values can be ascribed to these values being proportions and thus

amplify small variations. In addition to our datasets, we assessed
publicly available data, showing variability in overdispersion in
those experiments16,28 (Supplementary Tables S2 and S3). When
multiple replicates were available, we also observed that the
overdispersion assessed in pairs of replicates was similar for all
replicates within an experiment.

We thus conclude that AI overdispersion observed in RNA-seq
data is experiment-specific.

Estimation of AI overdispersion from observed and modeled
data. In order to quantify the experiment-specific overdispersion
between a pair of replicate libraries, we assess how its experi-
mentally observed value differs from the expected value in a fitted
model. Rather than fit parameters for all levels of coverage using a
combination of negative binomial and beta-binomial distribu-
tions (as in21,25–27,33), we bin genes by total allelic coverage and
use this discretized model for further analysis (Fig. 3).

In analyzing each bin, we use a continuous distribution of AI
values between the extreme allelic biases, rather than a trimodal
classification (AI= {0, 0.5, 1}) typically used in beta-binomial
models of allelic overdispersion25,26,33. To fit the experimentally
observed AI distribution, we use a mixture beta distribution,
which should be a better fit for an AI distribution with heavy tails
(Fig. 3a). To gauge the experimentally observed dispersion, we
perform quantile analysis of the distribution of ΔAI values within
the coverage bins, where ΔAI is a difference between two
replicates in AI values for a gene (Fig. 3b).

To estimate the overdispersion, the observed quantile values
are normalized on the expected ones. Note that genes with
different AI have different impacts on the overall signal
dispersion (see Supplementary Note S3). Thus, the distribution
of AI in each specific bin should be accommodated in the model.

To model the expected distribution of ΔAI in each coverage bin
and compute the corresponding quantiles, we perform the
following procedure. In each bin, actual distribution of AI for
genes is fit using a beta-binomial mixture model (Fig. 3c, top).
Using fitted parameters from that model, we then simulate two
RNA-seq replicates (Fig. 3c, middle). The expected distribution of
ΔAI comes from an assumption of binomial sampling of alleles in
these two simulated replicates. Finally, we calculate the quantiles

Fig. 1 Different combinations of signal and noise parameters result in indistinguishable observed distributions of AI values. a Two simulated
parametrizations (left) of true AI signal (AItrue; solid line) and noise (dashed line) that combine to produce overlapping observed AI values (right; red and
blue, respectively). These and similar observations are indistinguishable by Mann–Whitney–Wilcoxon and Kolmogorov–Smirnov tests; see Supplementary
Note S1. AI distributions are shown for allelic coverage 100. Noise distribution shown at AItrue= 0.5. Both signal and noise are modeled using beta-binomial
distributions; the following parameters are shown: [ρSignal= 0.001, ρNoise= 0.1] and [ρSignal= 0.1, ρNoise= 0.001]; simulation sample size 500,000. Other
coverage levels and combinations of ρ values are shown in Supplementary Note 1. b Quantile–Quantile (QQ)-plot for distributions set by parametrizations 1
and 2 from panel (a). Quantiles were taken from 0 to 1, with step 0.01.
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Fig. 2 Allelic imbalance values vary between technical replicate libraries and RNA-seq experiments. a Explanation of AI discordance map. Type of
discordance: orange–no bias in RNA-seq replicate A, bias in B; purple--no bias in B, bias in A; red/white circle--bias in both, in opposite directions. b AI
discordance maps for representative pairs of technical replicates for three different experiments, all prepared from the same total RNA (see Methods and
Supplementary Table S1). Significant bias: H0 of AI= 0.5 for each gene rejected by two-sided binomial test at p= 0.05 with Bonferroni correction. Colors
as in (a). All comparisons, here and elsewhere, sample 30M uniquely mapped reads per replicate, unless noted otherwise. c Replicate RNA-seq libraries
prepared from the same RNA compared to subsets of reads from the same library. Euler diagrams show genes with significant AI bias. Colors as in (a);
percentages show fraction of all discordant genes. Data: RNA-seq from 129 × CastF1 mouse, replicates 1 and 2 from Experiment 3 (see Supplementary
Table S1). d Quality Correction Coefficient (QCC), a measure of AI overdispersion defined in this work, calculated (see Fig. 3) for all 15 pairs of replicates
within each of Experiments 1 (blue), 2 (red), or 3 (green). Notice general consistency of QCC values within experiments, and sensitivity to one outlier
replicate in Experiment 1. e Fraction of concordantly biased genes [cf. grey area in (c)] for all 15 pairs of replicates within Experiments 1-3. Left: two-sided
binomial test. Right: two-sided proportional test with QCC correction. Boxplot elements–center line: median; box: upper and lower quartiles; whiskers: 1.5 x
interquartile range; points: outliers. f Same as (b), except H0 tested using proportional test with QCC correction. g Application of QCC increases
concordance between replicates and between experiments. Colors as in (c). Top row: comparison of two individual replicates [replicates 2 and 3;
Supplementary Table S1], 30M reads each; H0 test: two-sided binomial with Bonferroni correction. Middle and bottom rows: comparison of pooled pairs of
replicates [replicates 2+ 4 vs 3+ 5; Supplementary Table S1], 30M reads per replicate. Middle: two-sided binomial test with Bonferroni correction.
Bottom: two-sided proportional test with QCC correction.
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for the expected ΔAI distribution (Fig. 3c, bottom), and find the
ratio of the observed to expected quantiles.

This ratio of observed to expected ΔAI quantiles appears to
be a constant, with some random fluctuations (for the two
replicates shown in Fig. 3d, this ratio is 1.73 ± 0.18). This

constant depends on the experiment. Idealized Poisson
sampling corresponds to no overdispersion and the constant
value of 1; in experimental observations we expect this value to
be ≥1. We call this fitted experiment-specific quantity the
Quality Correction Coefficient (QCC).
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Application of QCC increases concordance between replicates.
Once the QCC value is calculated for a pair of replicates, it is
straightforward to use it to correct for the extra-binomial var-
iation. To account for the widening of AI distribution, allelic
counts are divided by QCC2 and used as input for proportional
test, which allows us to perform the analysis on non-integer
values (see Methods for details). All the “QCC-corrected"
analyses described below also incorporate Bonferroni correc-
tion for all analyzed genes to account for multiple hypothesis
testing.

QCC values reflect the “quality" of the data, in the sense of
concordance of AI calls between replicates: experiments with
lower concordance lead to higher QCC values (cf. Fig. 2d with
Fig. 2b and e). QCC values are similar for all pairs of replicates
within the experiment (Fig. 2d), strongly suggesting that QCC
reflects an experiment-specific property.

QCC correction leads to increased concordance between
replicates within each experiment and between experiments
(Fig. 2e), indicating that QCC accounts for much of the
experiment-specific overdispersion. Note that one of 6 replicates
in Experiment 1 appears to be an outlier, with higher QCC values
when compared with all other replicates. After QCC correction
this difference in concordance is greatly diminished.

Notice that after the QCC correction, the discordant calls are
much fewer in number, and these numbers are much closer to
each other across experiments (Fig. 2f). Furthermore, these
discordant calls are distributed close to the boundary between
significant and insignificant bias determined by the QCC-
corrected statistical test (cf. Figs. 2f and 1b), suggesting a better
agreement of noise expectations with the observed data (see
Supplementary Note S2). QCC correction reduced the number of
genes called as imbalanced, while greatly increasing concordance
between the pairs of replicate libraries (Fig. 2g). More noisy
datasets (e.g., Experiment 3) showed greater reduction in the
number of genes called imbalanced (Fig. 2g and Supplementary
Fig. S3c), as should be expected when the confidence in these data
is (appropriately) lowered.

Note that we apply QCC correction after pooling SNP counts
from both replicates, to take advantage of the available data.
Importantly, the improvement in the concordance level is due
primarily to the use of the QCC correction computed from two
technical replicates, rather than the fact of pooling the data from
replicates (Fig. 2g).

Application of QCC improves differential AI analysis. All
analyses we discussed so far focused on a binary classification of
genes into biased or unbiased, depending on testing of the H0 of
AI= 0.5. A more informative question is the quantitative
description of AI for a gene (or another region of interest), which

includes its AI point estimate and confidence interval (CI) for the
true proportion. Accounting for the sample-specific AI over-
dispersion enables more accurate differential analysis of AI when
comparing two or more samples.

Our dataset allows us to provide definitive analysis of false
positive (FP) rates: since we know the data came from exactly the
same RNA, we expect zero differential calls after correction on
multiple testing, so any differences deemed significant are FP.
With analysis done under binomial assumptions (with Bonferroni
correction for multiple testing), comparisons across replicate
RNA-seq libraries and across experiments show hundreds of
genes with significant differential AI (Fig. 4a, left). This is also the
case when applying some existing tools on the same data21,22

(Supplementary Fig. S4). By contrast, QCC correction completely
removes such false positives from within-experiment compar-
isons (Fig. 4a, right). The number of false positives in across-
experiment comparisons using QCC correction is dramatically
decreased but not reduced to zero (Fig. 4a). This suggests that
QCC-corrected AI values can be used to compare AI across
experiments, but systematic technical differences in protocols can
still lead to some FP calls.

We also asked to what extent QCC correction is a better fit to
the observed error distribution than the binomial assumption. We
calculated the number of FP calls by testing whether point AI
estimates from six pooled replicates are contained within the CI
of the AI estimates calculated in the three following ways. Fig. 4b
shows the FP rates for CIs obtained from one replicate under
binomial assumption (left); pooled pairs of replicates under
binomial assumption (middle); and QCC-corrected from pairs of
replicates (right). The expectation (see Supplementary Note S4) is
that after the Bonferroni correction, there should be close to zero
FPs. Among tested approaches, only the QCC correction greatly
decreased FP. Other tools also showed a large number of FP calls
in this analysis (Supplementary Fig. S4b, c).

We then asked whether this decrease in FPs was due to overly
conservative noise correction. Fig. 4c, d shows that the computed
QCC value is near the point where FP rate reaches the plateau of
0, but not much higher. This suggests that the precision/recall
tradeoff is close to optimal (see also Supplementary Fig. S11d).
The tradeoff between false positives and signal in differential AI
analysis is explored in detail in Supplementary Note S5. In that
Note, we perform power analysis and show that any cost when
using QCC-corrected test can be compensated with additional
sequencing. By contrast, cost in false positives from lack of
adjustment for technical overdispersion cannot be reduced by
additional coverage.

We conclude that for differential AI analysis, lack of
overdispersion correction is likely to result in a very large
number of false positives, while QCC correction removes these

Fig. 3 Derivation of Quality Correction Coefficient from observed and modeled AI differences between technical replicates. a–c Finding observed
distributions of gene-level AI differences between replicates (ΔAI). a Distribution of point AI estimates for genes with allelic coverage over 10 in six pooled
replicates (180M reads total) of Experiment 2. b Calculation of the observed distributions of AI differences between two replicates. After sampling an equal
number of reads from two technical replicates, AI is calculated for each gene. Plotted is ΔAI against mean SNP coverage in linear (top) or log (bottom)
scale. Genes are binned by log coverage (an example bin is shown). Quantiles are calculated per bin. Here and elsewhere, three example quantiles are
shown: 0.65 (red), 0.8 (green), 0.95 (orange). c Distribution of the observed ΔAI values in a bin. Example quantiles are shown. d–e Calculation of the
expected distributions of AI differences between replicates. d Top: AI for each gene is calculated after pooling SNP counts from both replicates. Note that
we use mean SNP coverage, so the bins contain the same genes in both replicates. Bottom: For each coverage bin, distribution of AI values is fitted with a
mixture of two symmetric beta-binomial distributions (red and blue curves). e Distribution of the expected ΔAI values in a bin. To generate expected ΔAI:
we generate a simulated sample of 5000 genes, with the distribution of exact allelic imbalance values (ξ) according to the fitted parameters; from these
genes, we then simulate two replicate datasets, with SNP coverage according to the bin, and sampling from binomial distribution; finally, we calculate the
simulated ΔAI for each gene and find quantiles for their distribution. f Ratios of observed and expected values for the example ΔAI quantiles. Fitted black
line defines Quality Correction Coefficient. Boxplots (right) summarize values for all coverage bins (left). Boxplot elements (right)--center line: median;
box: upper and lower quartiles; whiskers: 1.5 x interquartile range; points: outliers.
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very effectively. Our analyses of the real and simulated data also
suggest that QCC correction is not dramatically overconservative.

Sources of AI overdispersion: data analysis. To identify possible
sources of AI overdispersion, we considered different stages of an
RNA-seq experiment (Supplementary Fig. S5a): (1) steps from the

biological object up to and including RNA isolation; (2) genera-
tion of sequencing library from RNA; (3) the library sequencing
process itself; (4) processing of sequencing data, from read
alignment to statistical analysis of allelic imbalance.

Contributions from step 1 were excluded from our experiments
by design: all 18 replicate libraries were prepared from the same
mouse kidney total RNA. Taking bulk aliquots of purified RNA
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can be considered a fair Poisson sampling process (unlike in
single-cell experiments, where there are additional sources of
noise such as transcription bursts34,35).

Data analysis (step 4) includes multiple sub-steps, and we can
assess their contributions to AI overdispersion (Supplementary
Fig. S5b, c, Supplementary Fig. S4). First, we note that these steps
taken together are not a major contributing factor to variability
between experiments, since input of identical data results in
consistent AI and QCC values (modulo noise from simulation
procedures).

Note that the procedures used for allele counting can by
themselves contribute to AI overdispersion. For example, several
popular tools for RNA-seq analysis (including Kallisto36,
Salmon37 and RSEM38) use not just the reads that overlap SNPs,
but allow distribution of the rest of the reads between the two
alleles. Such haplotype assignment should lead to a linear increase
in coverage but a quadratic increase in standard deviation, and
thus an increase in overdispersion. Application of one such tool36

illustrates the systematically higher overdispersion compared to
the use of SNP-overlapping reads only (Supplementary Fig. S6).

We assessed the contribution of the QCC calculation
procedure to estimated AI overdispersion. On simulated total
allele counts with known overdispersion, the QCC values were as
expected (Supplementary Fig. S7; denoted as i in Supplementary
Fig. S5c), suggesting that the QCC calculation by itself contributes
little to the noise. A related analysis starting with random
binomial sampling from one replicate’s sequencing data (ii in
Supplementary Fig. S5c) should show only overdispersion related
to the allele counting and QCC calculation process. It yielded
QCC values of 1.01–1.04 (Supplementary Fig. S8b), i.e., also close
to no overdispersion (QCC ~ 1.0).

Note that when we randomly divide paired reads from the
same run into two equal parts (cf. Fig. 2c, center), these “half-
replicates" are not in a binomial relationship with each other. In
these comparisons (iii in Supplementary Fig. S5c), QCC values
ranged from 1.45 to 1.48 (Supplementary Fig. S8), reflecting the
dispersion that came in the data from one sequencing run of a
single library.

It is well documented that (non-allele-specific) counts in RNA-
seq show extra-binomial overdispersion30–32. We asked how this
“abundance overdispersion" is related to the AI overdispersion
quantified by QCC. Abundance overdispersion can be seen in all
three experiments: the log-linear fit lines are above the expected
Poisson dispersion (Fig. 4d, left). Moreover, overdispersion was
different for the three experiments. Strikingly, when dispersion
values for each gene were divided by QCC squared, the regression
lines for all experiments nearly coincided with each other and
with the Poisson expectation (Fig. 4d, right). Accordingly,

abundance overdispersion was correlated with QCC values
(Fig. 4e). In simulations, QCC was also very strongly correlated
with set overdispersion values (Supplementary Fig. S7). Based on
these analyses, we hypothesize that abundance overdispersion
and AI overdispersion result from largely the same processes.
While the correlation between abundance overdispersion and AI
overdispersion in these examples was strong, calculation of the
QCC correction is a more robust procedure that does not depend
on this correlation holding for all experiments and any data
processing procedure.

Sources of AI overdispersion: experimental. Analysis of two
sequencing runs with the same library (iv in Supplementary Fig.
S5c) yielded QCC values similar to in silico sampling from within
the same library (Supplementary Fig. S8), suggesting that an
additional sequencing run is similar to having more reads in the
original run (compare ii and iv in Supplementary Fig. S5c). This
is consistent with only a small contribution, if any, from the
sequencing process to variation of AI overdispersion between
replicates. For a more certain conclusion, a greater number of
experiments would be needed.

QCC was much greater for between-replicate comparisons
than for half-replicate comparisons (v in Supplementary Fig. S5c),
showing that there is additional noise coming from each replicate.
Note that this underscores the point that analysis within a single
replicate does not allow one to correctly account for
overdispersion.

With biological noise (step 1) excluded by design and steps 3
and 4 eliminated, only library preparation (step 2) remains as a
major source of the AI overdispersion. This is reinforced by the
observation that different procedures (overall protocols or
adjustments made for different starting amounts of RNA) in
our Experiments 1–3 produced libraries with greatly varied QCC
values, while technical replicates within each experiment are
similar to each other (see Fig. 2d).

Generation of RNA-seq libraries involves multiple steps, from
reverse transcription and cDNA fragmentation to library
amplification, and these steps can substantially vary between
protocols. Detailed analysis of specific protocols is outside the
scope of this work. However, one common concern in deep
sequencing experiments is the impact of PCR amplification
artifacts39–41.

To assess the impact of amplification artifacts on AI
overdispersion, we compared the results of data analysis
before and after removing duplicate reads. Deduplication did
not reduce QCC values to ~1, and in some cases, led to an
increase in QCC (Supplementary Fig. S9) showing that other
sources of noise were major contributors to AI overdispersion.

Fig. 4 QCC enables differential AI analysis and is correlated with abundance overdispersion. a Number of genes with apparent differential AI in the
same biological sample (false positives) before (left) and after QCC correction (right). Within each of three experiments, all 45 pairwise comparisons were
performed. For comparisons between experiments, 45 sets of pairs were randomly chosen from 225 possible combinations. QCC values were calculated
for each pair, and genes with significantly different AI in each set were identified. Experiments : 1 (blue), 2 (red), or 3 (green). Boxplot elements everywhere
as in Fig. 2. Two-sided test was used here and in (b), (c), (d). b Impact of QCC on false positive (FP) rate. FPs are defined as genes for which the point AI
estimate from all pooled replicates is not within CI from one replicate (left), two pooled replicates (center), and two replicates with QCC correction (right).
Outlier from Experiment 1 (replicate 1) was removed from this analysis. All individual datapoints are shown in black. c, d Calculated QCC value (contained
within the color bar) are close to optimal balance between FP and signal. c Number of FP genes (differential expression AI in the same biological sample)
calculated for different potential values of QCC for all 45 possible combinations of two pairs of replicates from Experiment 3. d FP rate (as in (b)) for
different possible QCC values calculated for all possible pairs of replicates in Experiment 3. a–d Note that the unit of comparison is composed of two
technical replicates in both the binomial test and the QCC test. e Differences between experiments in abundance overdispersion are proportionate to QCC.
Left: Abundance overdispersion for each experiment can be fitted as log-linear regression (solid lines) above expected Poisson dispersion (dotted line).
Right: same after overdispersion was divided by QCC2. The outlier replicate from Experiment 1 was removed for (e) and (f). f Correlation of QCC and
abundance overdispersion. QCC values are the same as in (e). Abundance overdispersion for each experiment calculated as exponent of intercept of log-
linear regression (see (e)) between mean and dispersion of total counts: Left: for all replicates in an experiment; Right: for all possible pairs of replicates.
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Deduplication can lead to loss of large amounts of legitimate
data, and may have other undesirable impacts, such as
distorting signal distribution in the biological sample39–41.
Thus, from a practical standpoint, read deduplication has
limited utility, and its impact on AI overdispersion is
accounted for in the QCC analysis. Note that in paired-end
RNA-seq data, the length of cDNA fragment creates unique
molecular identifiers (UMI)42. Thus, the results of deduplica-
tion in paired-end data (Supplementary Fig. S9d) suggest that
the use of UMIs does not remove all AI overdispersion.

Taken together, these observations suggest that library
generation is the most likely source of experiment-specific AI
overdispersion, while PCR duplicates are at most partially
responsible for this technical variability.

Discussion
We presented analytical and computational analyses showing
that, unless very restrictive models of AI signal (or noise) are
used, data from a single RNA-seq library is insufficient for reliable
quantification of the contribution of technical noise to the
observed AI signal (see Fig. 1 and Supplementary Note S1). To
gauge variation in experimental noise, we generated 18 RNA-seq
libraries prepared from the same RNA using two different pro-
tocols and three different starting amounts of total RNA. Analysis
of this data and smaller existing datasets showed that technical
noise can vary several-fold between experiments, demonstrating
that an assumption of a uniform noise model for all RNA-seq
experiments would be incorrect.

To account for technical noise and thus enable accurate esti-
mation of AI from RNA-seq data, we developed a computational
approach that compares two or more technical replicates and
implemented it in a software package, Qllelic (github.com/
gimelbrantlab/Qllelic). This approach is conceptually simple; it is
equivalent to the binomial test with the number of allelic counts
reduced by QCC squared, where QCC is quality correction
coefficient calculated from comparison of technical replicates.
Despite its simplicity, Qllelic fits the observed data well (see
Fig. 2f and goodness-of-fit analyses in Supplementary Figs.
S10–S13). Application of Qllelic reduces false positive rates due to
technical variation close to zero, while preserving detectable AI
signal (see Fig. 4c, d, Supplementary Fig. S11d and Supplemen-
tary Note S5).

This approach performed much better than binomial test with
correction for multiple hypothesis testing (widely used in pub-
lished studies, e.g.,5,18–20) and methods that incorporate over-
dispersion terms into one-replicate analysis21,22 (Supplementary
Fig. S4). It is worth noting that fitting an experiment-wide
overdispersion parameter (ρ) in a beta-binomial model (e.-
g.,21,26,27) implies that overdispersion increases with gene cov-
erage (Supplementary Fig. S14). By contrast, we found that in
experimental data, overdispersion appears to be near constant
across all coverage levels (see Fig. 3d), consistent with the
QCC model.

Importantly, use of the QCC/Qllelic approach enables robust
differential analysis of AI. It also simplifies such analysis across
studies and experiments––QCC values can be precomputed,
making differential AI analysis fast and convenient. While our
analyses focused on genes, experiment-specific AI overdispersion
is evident at single SNP level (Supplementary Fig. S15).

Below, we outline two typical use cases for allele-specific
expression analysis using technical replicates for noise correction.

Use case 1 is estimation of AI and confidence intervals in one
sample. To be of analytical use, point estimates of AI should be
accompanied by the CIs. A worked example (Supplementary

Note S6) demonstrates the procedure of allele counting and
Qllelic analysis to estimate experimental error using two or more
technical RNA-seq replicates. This procedure also incorporates
testing of a specific null hypothesis (e.g., H0 : AI= 0.5, p= 0.05);
Bonferroni correction for the multiple hypothesis testing is
applied to the whole list of genes with AI and CI estimated. The
tested AI value could be the same for all genes (e.g., AI= 0.5) or
could be separately specified for each gene.

If more than two technical replicates are available, QCC values
are first calculated for all pairwise comparisons (see Methods).
This helps identify outlier replicates, if any, which can be
removed. The replicate data are pooled to determine point AI
estimates, with the mean of all the pairwise QCC values used as
the experiment-specific QCC. Note that all replicates should be
sampled to the same depth, determined by the replicate with the
lowest number of reads; to avoid extrapolation, the safe option is
to discard the extra reads from other replicates.

Use case 2 is differential AI analysis between two samples.
Knowledge of AI point estimates and the width of the AI dis-
tributions enable pairwise differential AI analysis. To test for
differential AI at a specified level of confidence, we use the pro-
portional test (see Methods; note that requiring that two CIs do
not intersect is a much stricter test than the confidence level of
each of the CIs). A worked example comparing two clonal cell
lines from 129 × CastF1 mice is in Supplementary Note S6.
Additional conditions can be applied, such as a minimal AI dif-
ference in the point estimates.

Insufficiency of a single technical replicate for noise estimation
in AI analyses implies that there is a significant uncertainty
regarding interpretation of existing datasets. Very few published
RNA-seq studies incorporate any technical replicates. In the
Geuvadis study using human cells16, five samples out of 462 had
technical replicates, with pairwise QCC values ranging from 1.04
to 1.21, lowering the number of genes called imbalanced up to
1.5-fold (Supplementary Table S2). Considering that over-
dispersion can substantially vary even within a series of replicates
(see Experiment 1 in Fig. 2), caution should be exercised when
analyzing point AI estimates when QCC cannot be established
with certainty, as in any studies without technical replicates.

To illustrate the impact of variation in experiment-specific
overdispersion on interpretation of existing datasets, consider
data from a randomly chosen individual from the GTEx study5

(Supplementary Fig. S16). A binomial test, which was performed
in that study, assumes QCC= 1 and would identify 121 genes
with rejected null hypothesis (AI= 0.5) for liver and 96 such
genes for lung sample. In the absence of replicates, the actual
QCC for this experiment is not known, but at QCC= 2, there
would be 28 and 20 such genes, and at QCC= 3, respectively 19
and 11. In other words, the extent of variation in the range that
we observed using popular commercial kits for library prepara-
tion can affect the results of a simple analysis by an order of
magnitude.

We assessed computational and experimental steps to identify
possible sources of technical overdispersion. Computational
procedures for counting allelic reads can influence analysis both
in ways that do not affect overdispersion (e.g., reference bias in
mapping), and in ways that increase overdispersion. The counting
procedure (see Methods) we use to generate input for Qllelic
controls for reference bias by mapping reads to two synthetic
parental pseudogenomes with SNP (but not indel) substitutions.
Note that this simple procedure assumes all SNPs in a gene
produce independent counts, which is incorrect when two or
more SNPs are within the same read (or read pair). While this
issue has no large effect on the main focus of this work, differ-
ential AI analysis and variation in overdispersion between
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replicates, we note that allelic counts generated by approaches
that aim to address this problem21,43 can also be used as input for
Qllelic.

The experimental process of the sequencing library generation,
but not sequencing process itself, appears to be the principal
contributor to extra-binomial overdispersion estimated via the
QCC value. Intriguingly, computational deduplication of reads
(removal of potential PCR amplification artifacts) did not elim-
inate or sometimes even reduce overdispersion (see Supplemen-
tary Fig. S9), leaving open the question of the specific molecular
process responsible. While there appear to be systematic differ-
ences between protocols (compare Expts. 1, 2, and 3), variation
between experiments done with the same protocol can still be
substantial (e.g., see outlier in Expt. 1 and differences in QCC in
Supplementary Fig. S8b, c). It is thus advisable to have control for
each sample.

Some tools for RNA-seq analysis36–38 can perform haplotype
assignment of non-allele-informative reads (i.e., reads not cov-
ering a SNP are counted towards one or the other allele). This
procedure leads to a large increase in the AI overdispersion (see
Supplementary Fig. S6) and should thus be avoided.

Use of biological replicates is much more common in RNA-seq
studies, especially when multiple congenic individuals (e.g., mice)
are available. Biological replicates can formally be used to calculate
QCC values. For example, in a study of allele-specific expression in
mouse cells28, application of Qllelic analysis to the two samples
with available biological replicates yielded QCC of 1.51 and 1.56
(Supplementary Table S3). This procedure provides a better
account for combined biological and technical variation than
pooling or averaging of data across the replicates (see Fig. 2g).

However, such use of biological replicates has significant
drawbacks. First, the application of QCC to biological replicates
relies on the assumption that the variation between these repli-
cates is uniformly distributed across the transcriptome, as it is for
technical replicates. If this assumption is incorrect and there are
actual differences between the biological replicates (e.g., a gene
shifts AI from 0 to 1), estimates of overdispersion might lead to
unpredictable errors. Furthermore, without technical replicates it
is impossible to separate biological variation from technical noise.

Methods
RNA and library preparation. Total RNA was isolated using Trizol from a freshly
collected kidney tissue of an adult female mouse of 129S1 x Cast/Ei F1 background
(F1 breeding was performed at the DFCI mouse facility, with parent animals
obtained from the Jackson Laboratories. All animal work was performed under
DFCI protocol 09-065, approved by the DFCI Institutional Animal Care and Use
Committee. Animals were housed in accordance with Guide for the Care and Use
of Laboratory Animals). RNA integrity was assessed using Bioanalyzer, and it was
quantified using the Qubit device. Aliquots of this total RNA prep were used to
prepare three sets of replicate libraries, all starting with polyA RNA isolation: six
libraries with NEBNext kit, starting each with 100ng; six libraries using SMARTseq
v4 kit starting with 10 ng RNA; and the same, with 0.1 ng RNA. All libraries were
prepared at the DFCI sequencing facility according to the manufacturers’
instructions. All sequencing was done on HiSeq 2500 machine at the DFCI
sequencing facility.

For data analysis example discussed in Use Case 2, Abelson lymphoblastoid
clonal cell lines Abl.1 and Abl.2 of 129S1 × Cast/Ei F1 background14 were cultured
in RPMI medium (Gibco), containing 15% FBS (Sigma), 1X L-Glutamine (Gibco),
1X Penicillin/Streptomycin (Gibco) and 0.1% β-mercaptoethanol (Sigma). Total
RNA was extracted from cells using a magnetic bead-based protocol using Sera-
Mag SpeedBeads (GE Healthcare). Isolated total RNA was DNase-treated with RQ1
DNase (Promega). RNA sequencing libraries were prepared using SMARTseq v.4
kit (Takara) starting with 10 ng total RNA for each replicate. Sequencing was
performed on HiSeq4000 platform at Novogene, Inc.

Additional data sources. Geuvadis dataset includes RNA-seq data on LCLs
established from 462 individuals from five populations16. FASTQ files for paired-
end reads (2 × 75 bp) for five individuals (HG00117, HG00355, NA06986,
NA19095, NA20527), each with 7 replicates, were downloaded from 1000 Gen-
omes project [ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/]. Allelic count data

(processed using standard GTEx pipeline) for a randomly selected individual
GTEX-11NUK from the Midpoint phase of the GTEx project were downloaded
from dbGaP [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000424.v7.p2]. We also used RNA-seq data from mouse neuronal
progenitor cells (GSE54016) [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE54016].

AI estimation pipeline. AI estimation tools described here are implemented in two
parts. Data processing steps from read alignment to allelic counts were based on
the ASEReadCounter tool in the GATK pipeline24. It was re-implemented using in
part Python scripts developed by S. Castel (github.com/secastel/allelecounter), and
denoted as ASEReadCounter* (github.com/gimelbrantlab/asereadcounter_star).
Calculation of QCC, estimation of confidence intervals and differential AI analysis
are implemented in Qllelic tool set (github.com/gimelbrantlab/Qllelic).

Reference preparation. Two custom parental genomes (“pseudogenomes"44,45; see
ASEReadCounter* at github.com/gimelbrantlab/asereadcounter_star) were used
for mapping as reference. For 129S1 × Cast/Ei F1 cross mouse samples, alleles are
determined with maternal and paternal strain genomes and strain-specific variants;
for human data (Geuvadis project16) phased SNP variant calls were used.
Respective allelic variants from Single Nucleotide Polymorphism database 142
(dbSNP14246) or 1000 Genomes Project phase 3 structural variant call-set were
inserted into the reference genome (GRCm38.86 or hs37d5, 1000 genomes, phase
2), to obtain a pair of “parental" reference genomes for further analysis (for worked
example see Supplementary Note S6). For each organism, we also created a vcf file
with one allele considered as a reference (maternal 129S1 or first phased allele) and
the other as an alternative allele. Only heterozygous sites were used in the
downstream analysis.

Calculation of allelic counts. Alignment: RNA-seq reads were aligned with STAR
aligner (v.2.5.4a)47 on each of two pseudogenomes, with default threshold on
quality of alignment. Only uniquely aligned reads were taken into further con-
sideration (–outFilterMultimapNmax 1 parameter was applied).

Allele assignment: Reads that were present in only one of the alignments, and
reads that had better alignment quality for one of the alignments, were assigned to
the corresponding allele read group and marked respectively. The remaining reads
(not overlapping heterozygous SNP positions) were not used downstream. This
procedure is based on Python scripts by S.Castel.

Read deduplication: When applied, Picard (v.2.8.0; broadinstitute.github.io/
picard) MarkDuplicates was used.

Library subsampling: To ensure that all aligned counts belong to similar
distributions, BAM files corresponding to the same experiment were subsampled to
the same size using a custom bash script with randomness generated using the
shuf command.

Allelic counting for SNPs: Given a vcf file with heterozygous positions
(discussed under Reference preparation), coverage over each SNP was calculated
using samtools mpileup (v.1.3.1) and parsed to obtain the table with allelic
counts. This procedure is based on Python scripts by S.Castel.

Allelic counting for genes: All exons belonging to the same gene were merged
into a single gene model based on GTF file (RefSeq GTF files, GRCm38.68 and
GRCh37.63, were downloaded from Ensemble ftp://ftp.ensembl.org/pub/release-
68/gtf/48), excluding overlapping regions that belong to multiple genes. Phased
allelic counts for all SNPs within the whole gene model were summed:

Mg ¼ ∑
SNP2g

MSNP

Cg ¼ ∑
SNP2g

MSNP þ PSNP

ð1Þ

Unless specified otherwise, only genes with ≥10 total counts were used for further
analysis.

Allelic Imbalance estimates: Estimates for AI for a gene g were obtained as a
proportion of maternal gene counts (Mg) to total allelic gene counts:

AIg ¼
Mg

Cg
ð2Þ

Additional tools for AI calculation. We used three tools in our comparative ana-
lyses: Qllelic (v0.3.2), MBASED (v1.20.0) and GeneiASE (v1.0.1). For uniformity,
input for comparisons was pre-processed in the same way for all tools. In case of
real data, the same genes were filtered so the data will satisfy all the tools
requirements on SNP numbers and SNP coverages (see Supplementary Fig. S4).
The default parameters of all the tools were used in analyses (see Supplementary
Figs. S4, S7b):

1. One-sample analysis: For Qllelic: default parameters of PerformBin-
TestAIAnalysisForConditionNPoint() function. For MBASED:
runMBASED function with isPhased= TRUE, numSim= 10000, and
the rest set to default values. For GeneiASE: default parameters of
geneiase -t static

2. Two-sample analysis: For Qllelic: default parameters of PerformBin-
TestAIAnalysisForTwoConditions() function. For MBASED:
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runMBASED function with isPhased= TRUE, numSim= 10000, and
the rest set to default values. For GeneiASE: default parameters of
geneiase -t icd

Calculation of quality correction constant for 2 replicates. As gene coverage is
an essential parameter of proportional beta-binomial model of allelic imbalance, we
started with the standard procedure of splitting genes into bins by coverage to
discretize our model.

Bin boundaries were defined as rounded up powers of the base b= 1.05:
�C ¼ fdb1e; db2e; db3e; ¼ g. Note that QCC calculations do not strongly depend
on the exact bin size, see Supplementary Fig. S7. Each gene g was assigned to a bin
according to the mean of its counts C1g and C2g from two technical replicates:

8g : C1g þ C2g

2
2 Bi ¼ ð�Ci�1; �Ci� ) g 2 Gi; ð3Þ

then each bin Bi, containing set of genes Gi, was processed separately.

Fitting AI distribution as beta-binomial mixture. To fit the parameters of a mixture
of two proportional beta-binomial distributions, representing observed AI from the
pooled replicate in each coverage bin Bi:

ai �
Beta�Bin ð2�bCi ;α1i ;α1iÞ

2�bCi

; with probabilityω1i

Beta�Bin ð2�bCi ;α2i ;α2iÞ
2�bCi

; with probabilityω2i

8

>

>

<

>

>

:

ð4Þ

bCi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Ci�1 � �Ci

q

ω1i þ ω2i ¼ 1

α1i > 1; α2i 2 ð0; 1Þ;
we use Expectation-maximization (EM) algorithm (see Fig. 3d). Our fitting pro-
cedure is similar to the procedure used in the classical Gaussian mixture model49.

For fitting procedure, we used a threshold on the total allelic gene coverage (50
for mice and 30 for human). All bins that didn’t meet the requirement of minimal
40 observations (genes) were also excluded from all stages of QCC-fitting process.

Starting from initials ω0
1i ¼ ω0

2i ¼ 0:5, α01i ¼ 10, α02i ¼ 1
50, and vector of

converted allelic imbalance observations fAIθigθ2f1::Nig, where Ni is number of genes
in bin Bi:

xni ¼ AIni � bCi ; ð5Þ
we performed iterative EM steps until the difference between parameters of the
sequential steps converged (Supplementary Fig. S13).

E-step:

γtnki ¼
ωt�1
ki BetaBin ðxni j 2bCi; α

t�1
ki ; αt�1

ki Þ
∑j¼f1;2gω

t�1
ji BetaBin ðxni j 2bCi; α

t�1
ji ; αt�1

ji Þ ð6Þ

for k∈ {1, 2}, n∈ {1,…,Ni} and t is number of EM step.
M-step: Since we expect μ ¼ bCi and beta-binomial distributions being

symmetric:

ωt
ki ¼

1
Ni

∑
Ni

n¼1
γtnki

Σt
ki ¼

∑Ni
n¼1 γ

t
nki � ðxni � bCiÞ

2

∑Ni
n¼1 γ

t
nki

Σt
ki ¼

2bCi � αtki2 � ð2αtki þ 2bCiÞ
4αtki

2 � ð2αtki þ 1Þ ¼ 4 � bCi � αtki þ ð2bCiÞ
2

8 � αtki þ 4
) αtki ¼

ð2bCiÞ
2 � 4Σt

ki

8Σt
ki � 4bCi

ð7Þ

Simulation of a pair of replicates. Using fitted triplet of parameters {ω1i, α1i, α2i}, in
each bin Bi we generated the weighted mixture of two Beta distributions prob-
abilities fpθigθ2f1::5000g , for 5000 “genes":

fpθigθ �
Beta ðα1i; α1iÞ; with probability ω1i

Beta ðα2i; α2iÞ; with probability ð1� ω1iÞ

�

ð8Þ

Next, for each “gene" a pair of beta-binomial distributed AIs is generated, forming
two replicates.

fξ1θi; ξ2θig �
Bin ðbCi; pθi; pθiÞ

bCi

ð9Þ

The expected AI distribution then can be obtained via subtraction: ξ1θi− ξ2θi.

Quantile analysis and QCC value. To quantify the overdispersion, we performed
quantile analysis between observed ΔAI distribution (Fig. 3c) and expected ΔAI

distribution (Fig. 3e), within the coverage bins. It is a reasonable measure because
differences between AI values among replicates generally tend to be symmetric on
autosomes in experiments.

For each coverage bin i and a set of quantiles q∈ {0.2, 0.35, 0.5, 0.65, 0.8, 0.9,
0.95}, the ratios of quantiles of observed ΔAI to quantiles of expected ΔAI were
calculated: Q obs:

q;i =Qexp:
q;i .

Then the obtained ratios were linearly fitted with a constant which we
call Quality Correction Constant (QCC), since it reflects the difference
between observation and the binomial sampling assumption in the model
(see Fig. 3f).

More than 2 replicates in the analysis. When more than 2 replicates are used in
the analysis, gene counts and AI estimates are obtained from all M ≥ 3 sampled
replicates pooled, and the mean of all pairwise QCCs is used for correction of
Confidence Intervals (CI):

QCC ¼
∑

ri ;rj2f1::Mg;ri≠rj
QCCri rj

M
2

� � : ð10Þ

Note that before performing this step, it is useful to check if any replicates are
outliers, and exclude them from further analysis.

Adjusting AI confidence intervals. To apply QCC and adjust CI we use pro-
portional test function prop.test from R standard package stats, using QCC2

times less allelic coverage and total coverage values.
The reasoning in choosing this test is as follows: we observe that the quantiles of

AI differences are QCC times wider than those from proportional binomial
assumption about maternal counts distribution relative to total counts Cg. To
approximate this property for our distribution we treat gene AI observations as
proportions which came from the binomial distribution for QCC2 times less
coverage:

AIg �
QCC2 � Bin ð 1

QCC2 � Cg ; aiÞ
Cg

¼
Bin ð 1

QCC2 � Cg ; aiÞ
1

QCC2 � Cg
: ð11Þ

In this approximation, gene counts divided by QCC2 would be generally not
integer, which limits the applicability of binomial test but can be addressed with
proportional test which is based on Wilson score intervals.

For the methodological consistency, binomial test is implemented as
proportional test function prop.test on uncorrected gene count values, due to
the coincidence of their approximations on integral values.

Differential AI analysis. Accurate accounting for CIs enables differential analysis
of gene AI both with point estimates and AI values from different samples.

● The difference of AI estimate from particular proportion value is
considered significant if the corresponding CI interval does not cover
this value.

● For identifying the differently expressed between two samples we use the
same function prop.test on the respectively corrected on the QCC
values estimates as explained above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data deposited in GEO as record GSE143310 (ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE143310). Publicly available datasets used: RNA-seq data for 5
individuals from Geuvadis dataset (HG00117, HG00355, NA06986, NA19095, NA20527)
[ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/]; mouse RNA-seq data (GSE54016)
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54016]. Protected datasets
used: allelic count data for GTEX-11NUK individual from GTEx project [https://www.
ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v7.p2]. Source
data are provided with this paper, including gene-level allelic counts for the GTEx
sample.

Code availability
AI estimation tools described here are implemented in two parts. Data processing steps
from read alignment to allelic counts were reimplemented as ASEReadCounter* (github.
com/gimelbrantlab/asereadcounter_star). Calculation of QCC, estimation of confidence
intervals and differential AI analysis are implemented in Qllelic tool set (github.com/
gimelbrantlab/Qllelic50).
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