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Abstract

Drug repurposing is a creative and resourceful approach to increase the number of therapies by 

exploiting available and approved drugs. However, identifying new protein targets for previously 

approved drugs is challenging. Although new strategies have been developed for drug repurposing, 

there is broad agreement that there is room for further improvements. In this chapter, we review 

protein-protein interaction (PPI) interface-targeting strategies for drug repurposing applications. 

We discuss certain features, such as hot spot residue and hot region prediction and their 

importance in drug repurposing, and illustrate common methods used in PPI networks to identify 

drug off-targets. We also collect available online resources for hot spot prediction, binding pocket 

identification, and interface clustering which are effective resources in polypharmacology. Finally, 

we provide case studies showing the significance of protein interfaces and hot spots in drug 

repurposing.
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1 Introduction

Over the years, studies on drug development are accelerated both in the pharmaceutical 

industry and in academia; still the increasing demand for new drugs cannot be met. This 

situation underscores the need for innovative strategies and techniques. However, 

discovering new drugs and drug targets is challenging. Until recently, drug targets were 

largely limited to enzymes and receptors. Small molecules that target enzymes mostly mimic 

and compete with the substrates of the enzymes [1]. The pressing demand for new drugs has 

led to an increase of investments of pharmaceutical companies in drug development. To 
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address this challenge, one approach, which is discussed here, involves targeting protein-

protein interactions (PPIs) [2]. Proteins typically execute their function by interacting with 

other proteins. These interactions transmit signaling cues, with the signaling cascading 

downstream through PPIs. Signaling takes place through transient and permanent PPIs and 

is key to most (or all) cellular functions, including cell proliferation, motility, and growth 

[3]. Alterations in PPI interfaces may affect signal transduction, leading to dysfunction and 

disease [4-6]. There are many computational and a few experimental methods for protein-

protein interaction prediction [7]. Given the large number of PPIs, the repurposing 

possibilities of drugs targeting the interfaces appear high in principle. However, traditional 

PPI drug discovery has been stymied and challenging. Still, progress has been made with 

small molecules and with fragment-based approaches [8-10].

Those efforts were guided by the traditional philosophy that coined the “one drug one 

target” paradigm, reflecting the aim of drug specificity, i.e., low toxicity. However, because 

drugs are small and typically hydrophobic with aromatic rings [11], they target protein 

surfaces that have complementing properties. Moreover, the binding regions of unrelated 

proteins can have similar shapes and surfaces [12, 13]. Therefore, many drugs may have 

multiple targets, albeit with varied affinity. Polypharmacology aims to capitalize on this and 

find drugs that bind to multiple protein targets, which, upon further optimization, can be 

used for repurposing [14, 15]. The functions of those proteins can vary. Overington et al. 

[16] conducted a comprehensive survey on earlier reports and proposed that clinical drugs 

act on total 324 drug targets. A recent study also showed that in the human proteome, on 

average a drug can bind to 329 proteins. This implies that the vast majority of drugs have 

their own side effects [17].

Protein-protein interfaces are increasingly getting attention in drug discovery [18, 19]. 

Similar binding sites on protein surfaces can be used to find the potential candidates for a 

drug. Xie et al. [20] used protein-ligand binding profiles to observe the effects of cholesteryl 

ester transfer protein (CETP) inhibitors and found its unknown off-targets in genome scale. 

They used SOIPPA [21] to align the binding site structures and find ligand binding sites 

similar to the primary target in the network. Two CETP inhibitors are investigated, and their 

candidate off-targets are mapped to several biological pathways. Based on their results, side 

effects of CETP inhibitors are involved in immune response and stress control via multiple 

interconnected pathways. Frigola et al. [22] used the similarity of protein cavities to find the 

proteins that a ligand can bind in the human proteome. They used BioGPS [23] to investigate 

all human proteins with available 3D structure, to find potential drug targets based on cavity 

similarities. Based on their results, similar cavities can be found in distinct unrelated 

proteins, and, on average, a protein has similar binding sites to seven other proteins [22]. To 

study the effects of drug combinations on a network scale, they used heat flow analysis. 

They found that drug combinations could distribute heat in the network at least 25% better 

than the usage of a single drug in 20 tumor-specific networks.

Developing drugs targeting PPI is challenging [18]. Unlike enzyme binding pockets (Fig. 

1a), interfaces usually do not have preexposed cavities, and their large surfaces are flat (Fig. 

1b) [2, 24]. This makes the drug design process difficult, since determining where exactly 

the drugs should bind is crucial [25]. New strategies are being developed to overcome these 
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challenges [26, 27]. One of these is to identify interface residues playing roles in protein 

recognition and binding affinity. A small subset of residues in interfaces, which are called 

hot spots, are the major contributors of the binding energy [28, 29]. Studies showed that hot 

spots are the main targets of small molecules aiming to disrupt PPIs [6, 30, 31]. Another 

property related to hot spots is that they are not randomly distributed, but are typically 

clustered in the interfaces. These densely packed clusters are called hot regions [32]. Hot 

regions serve as binding platforms for protein partners. This organization of interface 

residues provides an insight into how small molecules may recognize the interfaces to bind 

them. Hot spots can be detected by experimental procedures such as alanine scanning 

mutagenesis [29, 33]; however performing experiments on all known PPIs to detect hot spots 

is infeasible. Therefore, computational techniques for predicting hot spots are on the rise, 

and their accuracy increases over the years as well [34]. A number of hot spot prediction 

algorithms have been developed. Hot spot prediction methods and tools are based on either 

the structure of the complex or the structure of the unbound proteins. Only a few studies 

predict hot spots in unbound proteins. Amino acid sequences [35], normalized interface 

propensity values derived from rigid body docking [36], dynamic fluctuations in high-

frequency modes obtained from the Gaussian network model (GNM) [37], and measuring 

the dynamic exposure of hydrophobic patches [38] can be used to predict the hot spot 

residues of unbound protein structures. Table 1 summarizes algorithms and tools available 

for hot spot prediction in unbound proteins.

Most hot spot prediction algorithms focus on interaction/complex-based approaches. One 

pioneering work proposed a physical model to predict hot spots based on energy 

measurements of packing interactions, hydrogen bonds, and solvation (Robetta) [39]. Energy 

measurement-based prediction methods are widely used to develop new tools; for example, 

energies calculated by FoldX or MutaBind can be used to predict the hot spot residues [40, 

41]. Estimating the energetic contribution of interfacial residues to the binding affinity, via 

identifying non-covalent interactions, is another method used for hot spot prediction [42]. 

Solvent accessibility and the total contact potential energy of the interface residues can be 

considered for hot spot prediction [43]. Molecular dynamics (MD) simulations constitute a 

more detailed and computationally powerful approach for hot spot prediction [44, 45]. 

Physicochemical properties of interface residues can be considered in hot spot prediction 

[46]. Some servers investigate the shape specificity, biochemical contact, and plasticity 

features of the interface residues (KFC and KFC2a) for hot spot prediction [47, 48]. 

Moreover, some of the atomic features such as mass, polarizability, isoelectric point of 

residues, and relative ASA can be combined in the prediction [49]. Table 1 outlines some hot 

spot prediction tools and algorithms, which predict hot spots from the protein complexes. 

Some of the distinguishing features and websites (if available) are listed in the table. 

Structure and sequence similarity of the interfaces and conservation of energetically 

important interface residues, such as hot spots and hot regions, can help repurposing drugs 

targeting PPI.

Studies showed that despite the vast number of PPIs (approximately 130,000 binary 

interactions between human proteins [34, 50]), there exist only a limited number of interface 

architectures [12, 13, 51]. A reasonable strategy to repurpose interface-targeting drugs might 

be to identify interface motifs sharing similar hot spots [31, 52, 53]. Sequence similarities, 
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evolutionary conservation, and/or similarities in 3D structures can all be used to cluster 

similar interfaces, albeit with possibly partially different outcomes [42, 54-58]. Tables 2 and 

3 list some representative protein interface databases and binding pocket identification 

methods which are available online. PIFACE [54] is a database of clustered protein-protein 

interfaces. It consists of 22,604 unique interface structures derived from 130,209 interfaces 

which are extracted from protein complexes in PDB [59]. The PIFACE web server can be 

used to find the interface region in a protein complex and to compare the protein-protein 

interfaces of two different complexes.

PLIC [60] is a database of protein-ligand interactions in which 84,846 ligand binding sites 

are grouped into 10,858 clusters. Binding sites are extracted from the protein-ligand 

complexes in the PDB and compared using the PocketMatch [61] algorithm. The sc-PDB 

[62] is an up-to-date structure database of ligandable binding sites from the PDB. The 

binding sites in sc-PDB are extracted from protein complexes having a small ligand and 

predicted to be ligandable. The database consists of 9283 binding sites corresponding to 

3678 unique proteins and 5608 unique ligands. ProtCID [63] is a database of homodimeric 

and heterodimeric interfaces derived from multiple crystal forms of homologous proteins. It 

includes chain-chain and domain-domain interactions. The current version of ProtCID, as of 

December 2017, consists of 125,643 chains and 115,032 domains. 3did [64] is a collection 

of domain-domain and domain-motif interactions derived from PDB complex structures. 

The current version of 3did includes 11,200 domain-domain and 702 domain-motif 

interactions, respectively. Similar interacting domains in 3did are clustered into interaction 

topologies which can show different modes of binding.

In this chapter, we explain the importance of hot spot and hot region predictions and outline 

the HotPoint [65] and HotRegion [66] servers, which predict hot spots and hot regions, 

respectively. We also detail the method investigating interface similarity to identify drug off-

targets in structural PPI networks.

2 The Importance of Hot Spot and Hot Region Prediction in Drug 

Repurposing

A hot spot is defined as a residue causing an increase of more than 2 kcal/mol in binding 

free energy upon its mutation to alanine [28]. Further analysis on hot spot residues showed 

that Tyr, Arg, and Trp amino acids are more favorable to be hot spots compared to other 

amino acids. These amino acids are more prone to cause higher change in the binding free 

energy due to their size and conformation [29]. Hot spots are surrounded by a set of 

energetically less important residues. These residues form structures resembling the O-rings 

and protect hot spot residues from solvent molecules. The so-called O-ring theory explains 

that residues contributing more to the binding free energy are largely protected from contact 

with bulk solvent, with low or no accessible solvent area (ASA) [67, 68]. There is a 

correlation between the ASA of the residues and their contributions to the binding free 

energy; the more buried a residue, the more it contributes to the energy. However, this 

correlation alone is not sufficient to define a residue as a hot spot [67]. Hot regions are also 

important due to their contribution to the binding free energy and their contribution to 
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specificity to interfaces [69]. Figure 2 presents hot spots and hot regions in the interface 

between Cdc42 and GRD2 (PDB ID: 5CJP, chain C, and chain E) showing the 3D 

organization of these residues. The protein complex has a total of 17 hot spots of which 13 

are clustered into 2 hot regions.

Studies imply that interfaces lacking hot spots cannot attain high affinity toward their 

binding partners, proteins, or specific drugs [70]. Single mutation in only one hot spot may 

completely abolish interaction [71]. Computational methods confirm the relationship 

between hot spots and druggability [72]. Drugs targeting hot spots in the protein interfaces 

increase the possibility of binding to the interface and establishing a stable interaction.

Hot spots are not only energetically important; they are also conserved residues [29]. These 

conserved residues form complementary binding sites with hot spots from other interfaces. 

Hot spots of one interface usually pack against hot spots of another and together establish a 

binding region, which provides important knowledge for drug binding sites [68]. Hot regions 

usually coevolve with the hot regions of their binding partners, since they consist of hot 

spots [68]. This also gives a critical insight for drug repurposing. Proteins having similar 

binding partners are most likely to have similar hot spot and hot region distribution as a 

result of coevolution. This observation increases the possibility to repurpose a drug targeting 

an interface that coevolved with other proteins [73].

Moreover, it is possible to experimentally screen FDA-approved drugs. The screening helps 

to identify the drugs, which bind to the interfaces with similar energetically important 

residues. Then, the binding affinity and efficiency of the identified drugs to the interfaces 

can be tested [74-76]. For example, Fang et al. reported a small-molecule antagonist, LF3, 

for the β-catenin/TCF4 interaction using advanced biochemical screening techniques [75]. 

In order to identify such a molecule, they effectively docked a library of small molecules 

onto experimentally identified hot spots of the interaction sites between β-catenin and TCF4. 

Experimental and computational approaches, which are used for drug repurposing 

applications, are described in more details in the following sections.

3 Methods

3.1 HotPoint and HotRegion Servers

HotPoint and HotRegion are hot spot and hot region prediction servers, respectively [65, 66]. 

The prediction algorithm of HotPoint primarily considers solvent accessibility and the total 

contact potential energy of the interface residues. Interface residues consist of nearby and 

contacting residues. Contacting residues are defined as two residues from different chains 

whose distance between any two atoms from two proteins is less than the sum of their van 

der Waals radii plus 0.5 Å [77]. A non-contacting residue that is closer than 6 Å to an 

interacting residue in the same chain is defined as nearby residue—the distance between the 

alpha carbons of two residues [78]. In order to determine the thresholds of HotPoint 

prediction model, a nonredundant ASEdb data set and a previously compiled data set from 

Robetta were used as training sets [33, 39]. The data consists of 150 experimentally alanine-

mutated residues (58 hot spots and 92 non-hot spots). The conservation and solvent 

accessibility information are available for all these 150 residues. For training sets, if 
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mutations change the binding free energy at least 2.0 kcal/mol, these interface residues are 

considered as experimental hot spots. Residues whose mutations result in a change <0.4 

kcal/mol are labeled as experimental non-hot spots. Other residues out of these thresholds 

are not included in the training. Test set is adopted from Binding Interface Database (BID) 

[79] which is composed of 112 residues (54 hot spots and 58 non-hot spots).

Prediction criteria such as solvent accessibility, conversation, and contact potentials are 

integrated to HotPoint algorithm as follows. The ASA of each residue is calculated using 

Naccess [80] in monomer state and in complex state for both the training and test sets. Then 

these ASAs are converted into relative accessibility which indicate relative difference ASA 

between complex and monomer state. Conservation of residues is found by Rate4Site (R4S) 

algorithm [81]. Contact potentials consider nonbonded interactions which have important 

role in the stabilization of proteins and complexes [82, 83]. These potentials can be extracted 

from frequencies of contacts for proteins with known 3D structures. For HotPoint algorithm, 

knowledge-based solvent-mediated inter-residue potentials are used [84]. To obtain the 

optimal model of the HotPoint algorithm, several empirical and machine learning methods 

are trained and tested (see Note 1).

The HotRegion server first predicts hot spots using the same algorithm as HotPoint. 

Following the hot spot prediction, a network of hot spots is constructed. Two hot spot 

residues are clustered together when the distance between their Cα is smaller than 6.5 Å 

[32]. This cutoff can be adjusted in “Advanced Search” (see Note 2). If the number of hot 

spots within the cluster is ≥3, the cluster is labeled as a hot region, and the hot spots within 

the cluster are members of this hot region. Other hot spots, which cannot be clustered within 

any hot region, can be called singlet hot spots. User can either provide a PDB ID or upload a 

homology-modeled PDB-formatted file; therefore users are not limited with the structures in 

PDB (see Note 3).

The following case from the literature explains how PIFACE [54], a nonredundant clustered 

protein-protein interface database, and the HotRegion server can be used to detect interface 

residues and hot spots on an interface [85]. This example also shows that drug binding sites 

are compatible with computationally predicted interfaces and hot spots. The human double 

minute 2 (Hdm2), like its mouse homolog (Mdm2), binds to the tumor suppressor p53 [86]. 

Therefore, the Hdm2 (and Mdm2) proteins are perfect drug targets to inhibit their binding to 

p53. It is known that drugs blocking this interaction enhance the tumor suppressor activity of 

p53 [87]. An experimental study identified three hot spots on p53 of Mdm2-p53 interface 

1.For the trainings and testing empirical and machine learning methods, several features with different combinations such as relative 
ASA in complex and pair potentials, relative difference ASA and conservation, and relative ASA in complex and pair potentials were 
used. After several trials, an empirical model based on relative accessibility in complex state and total pair potentials gave the best 
performance. The thresholds to classify a residue as hot spot using this model are the relative ASA in complex state which is ≤20% 
and total contact potential which is ≥18.0; residues which are out of these thresholds are considered as non-hot spots.
2.6.5 Å is the default cutoff and described as “Hotregion Neighbor Criteria.” These criteria can be modified in “Advanced Search” part 
of the HotRegion server [66]. As well as “Hotregion Neighbor Criteria,” users can decide a valid interface extraction threshold which 
is summed with van der Waals radii of atoms. HotRegion database provides pair potentials of interface residues, ASA and relative 
ASA values of interface residues of both monomer and complex forms of proteins. In “Advanced Search,” these properties are 
optionally printed in the result page.
3.User should provide atomic coordinates of the protein complexes in the standard PDB format. If atoms are present in alternative 
locations, only the first location is considered. For NMR structures, the first model is used. Since HotRegion is specific to protein-
protein interfaces, chains corresponding to DNA and RNA structures return no interface solutions.
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(Phe19, Trp23, and Leu26), which are also successfully predicted by HotRegion [87]. The 

Nutlin compound was identified as a strong inhibitor of the Mdm2-p53 complex through 

high-throughput screening (HTS) and medicinal chemistry methods [88]. To identify 

interface residues of the Mdm2-p53 complex (PDB ID: 1YCR, chain A and chain B, 

respectively), the “Interface Search Results” options from PIFACE server can be used. PDB 

ID and chains involved in interface should be given to server. Then, it can be directly 

reached to HotRegion server by choosing the interface name (1YCRAB). HotRegion gives 

information about interface residues, hot spots, and hot regions (Fig. 3a). Mdm2-p53 

complex interface is identified by PIFACE, and hot spots on this complex are predicted by 

HotRegion (Fig. 3b). As well as experimentally identified p53 hot spots, Mdm2 hot spots 

(Leu57 and Ile61), which are complementary to p53 interface, were predicted. Comparison 

of this complex with the Mdm2-Nutlin complex (Fig. 3c) reveals that the Nutlin compounds 

occupy similar regions within the interface as the p53 side chains and these compounds bind 

to Mdm2 with a greater affinity than p53 [30].

3.2 Drug Target Prediction in PPI Networks

To analyze the protein interfaces on a network scale, Engin et al. [53] proposed a new 

representation for PPI networks, namely, Protein Interface and Interaction Network (P2IN), 

in which they marked nodes with interface structures. In this representation, the interactions 

are shown by edges between the interfaces. This representation has the advantage of 

showing different interfaces, which a protein pair uses to interact, and different protein pairs 

having similar interface structures, which may be the targets of a drug. Also, proteins 

competing to bind to a specific surface region are also detectable. Figure 4 shows a sample 

network using this representation.

Engin et al. [53] used this representation to simulate drug effects on the system level and 

find the side effects of drugs. For this purpose, they defined a new attack model in the 

networks named “interface attack.” The interface attack simulates what a drug can do in PPI 

networks. Since a drug can bind to all proteins having the similar interface motifs and inhibit 

their interactions to their physiological partners, an interface attack removes edges between 

proteins having similar interface structures simultaneously. For example, if a drug is 

designed to inhibit p4-p7 interaction in Fig. 4, it can also inhibit the interactions p3-p5 and 

p3-p1.

To create a structural network including protein complexes and their corresponding 

interfaces, they used PRISM [89]. PRISM is a computational protein docking method which 

uses the known interface structures extracted from PDB [90] as templates to predict the 

binding of protein pairs (see Note 4). When PRISM predicts that two proteins can bind to 

each other, the template interface structure used for interaction is known and can be 

embedded to PPI networks. For some interactions, PRISM may find more than one interface 

which shows there are different binding modes between them. In these cases, all possible 

4.PRISM gets a list of binary interactions, which can be gathered from literature and databases, as the input. The proteins’ PDB IDs 
should be provided in the input list. So if there are more than one PDB structure for a specific protein, all those structures should be 
investigated. For each binary interaction, PRISM shows the binding interfaces, binding residues list, and binding free energy.
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interactions are considered (see Note 5). The proteins are discarded if PRISM could not find 

any interaction between them.

Engin et al. [53] presented two case studies including the creation of the p53 interaction 

network, represented using P2IN, to find drug side effects. p53 is a tumor suppressor gene 

and it is a hub protein. p53 is involved in the cell cycle, DNA repair, and apoptosis [91]. p53 

protein level is low in normal cells, and its overexpression is construed as a sign of many 

human cancers [92]. In more than 50% of human tumors, there are p53 mutants, mostly 

inactivated [93]. p53 interaction network consisted of 81 proteins and 251 interactions in 

which there were 46 different interface structures based on PRISM results. Among the 

results, there were two interactions for CDKN2D, with CDK4 and CDK6, which use a 

similar interface structure. Thus, if there are drugs that target one of these interactions, they 

may block the other interaction as their side effect. To check this idea, they used five 

different CDK6 inhibitors which block the G1/S transition of cell, i.e., aminopurvalanol 

[94], PD-0332991 [95], CHEBI: 792519 [96], CHEBI: 792520 [96], and fisetin [97]. They 

used AutoDock [98] for docking these drugs to CDK4 and CDK6. Interestingly, they found 

that these drugs can bind to CDK4 with comparable binding free energies to CDK6. There 

are studies showing common targets for CDK4 and CDK6 [99, 100]. Superpositioning of the 

docking results for CDK4 and CDK6 showed that there are several identical hot spots, i.e., 

Val9, Ala10, Ile12, Arg23, and Phe31 on their interfaces with CDKN2D which intensified 

their idea (Fig. 5). Therefore, they suggested that the drugs blocking the CDK6-CDKN2D 

interaction may also interrupt the CDK4-CDKN2D interaction.

The second case study compares interface attack with complete node attack. The Average 

Inverse Geodesic Length (AIGL) and the Giant Component Size (GCS) [101] are used to 

measure the robustness of the PPI network after the different attacks. Consecutive interface 

attacks and complete hub node attacks are performed on p53 P2IN. The complete node 

attack targets a hub node, which is known to be essential in PPI networks [102], and 

removes all its interactions simultaneously. Based on AIGL and GCS values, attacking the 

most frequent interfaces is as destructive as attacking the hub nodes in PPI networks. It 

should be noted that interface attacks are more realistic in comparison to complete node 

attacks because even if a drug is designed to target only one specific protein, it may not 

remove all its interactions at the same time.

4 Conclusions

Research on drug repositioning accelerated recently due to the increase in demand to new 

drugs, and experimental and computational repositioning strategies are being developed. 

Targeting similar PPI interfaces with common energetically important residues, which are 

hot spots and hot regions, is one of these strategies. Simulating drug effects on a network 

scale using binding site similarities have brought new insights in drug design. These 

methods can identify candidate off-targets of newly designed drugs and novel applications 

for existing drugs.

5.The predictions having binding free energies lower than −10 are accepted.
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Besides the great benefits of PPI networks in drug repurposing, there are some serious 

restrictions in this area. One of the major limitations in structural PPI networks is the 

shortage of 3D structures of proteins and protein complexes [103, 104]. Even for the 

proteins which have available structures in the PDB, some of them have missing parts, and 

the structures are incomplete. Homology modeling is a powerful technique in predicting the 

protein structures. However, the accuracy of the binding sites would be under debate. 

Furthermore, as proteins dynamically change their conformation based on their environment 

and form new complexes, there is a need to integrate these information into PPI networks 

[105, 106]. These challenges will be addressed with the growth of the PDB in the coming 

years.
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Fig. 1. 
(a) Small drug binding pocket. Aspirin (yellow) binds to small binding cavity of albumin 

(gray). (b) Large and flat PPI interfaces. Flat binding interface of Cdc42 (orange) and GRD2 

(green)
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Fig. 2. 
Hot spots and hot regions located in the interface of a small GTPase. Purple and red balls 

represent first and second hot regions, respectively. Yellow ball is a hot spot residue that is 

not included in any hot region
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Fig. 3. 
Interface, hot spot, and hot region residues of Mdm2-p53 complex. (a) The residues listed in 

HotRegion are interface residues. Hot spots and hot regions can be identified from “Hotspot 

Status” and “Hotregion Status” columns. (b) The structure (PDB identifier: 1YCR) of a 

complex between Mdm2- (blue) and a p53-derived peptide (yellow) [107]. Pink and green 

sticks represent hot spots, which also correspond to Nutlin binding site, of Mdm2 and the 

p53-derived peptide, respectively. (c) The structure (PDB identifier: 1RV1) of a complex 

between Mdm2 (blue) and a Nutlin-2 (green) [88]. Pink sticks represent hot spots of Mdm2. 

The hot spots of the p53-derived peptide (Phe19, Trp23, and Leu26) were determined 

experimentally [87], whereas the hot spots for Mdm2 (Leu57 and Ile61) were predicted by 

HotRegion
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Fig. 4. 
A sample protein-protein interaction network using P2IN representation. Protein interfaces 

are shown in dark orange color
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Fig. 5. 
Hot spots in CDK4 interface targeted with CDK6 inhibitors. Hot spots Val9, Ala10, Ile12, 

Ala23, and Phe31 are targeted to inhibit CDK4 interactions (PDB ID: 2W96, chain B). 

Yellow balls represent hot spots
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Table 1

Hot spot prediction tools/algorithms

Name Features Website

Prediction from unbound proteins

ISIS [35] Uses amino acid sequences to predict the hot spot residues https://www.rostlab.org/services/isis

pyDockNIP [36] Uses normalized interface propensity values derived from rigid body 
docking

GNM-based predictions 
[37]

Measures dynamic fluctuations in high-frequency modes

SIM [38] Measures the dynamic exposure of hydrophobic patches on the protein 
surfaces

Prediction from the protein complex

Robetta [108] Measures energies of packing interactions, hydrogen bonds, and 
solvation

http://www.robetta.org/
alascansubmit.jsp

KFC/KFC 2 [48] Considers shape specificity, biochemical contact, and plasticity features 
of the interface residues

http://mitchell-lab.biochem.wisc.edu/
KFC_Server

APIS [109] Combines protrusion index with solvent accessibility http://home.ustc.edu.cn/~jfxia/
hotspot.html

HotPoint [65] Considers the solvent accessibility and the total contact potential of the 
interface residues

http://prism.ccbb.ku.edu.tr/hotpoint/

PredHS [110] Uses machine learning algorithm to optimize structural and energetic 
features

http://www.predhs.org

FOLDEF [40] Uses FoldX energies to predict the hot spot residues http://fold-x.embl-heidelberg.de

MutaBind [41] Calculates binding energy changes, which can be used to predict hot 
spots, based on molecular mechanics force fields

http://www.ncbi.nlm.nih.gov/research/
mutabind

MAPPIS [111] Compares physicochemical interactions of PPIs with multiple 
alignment

http://bioinfo3d.cs.tau.ac.il/mappis/

ANCHOR [112] Calculates the change in solvent-accessible surface area upon binding 
for each side chain

http://structure.pitt.edu/anchor/

PCRPi [113] Integrates diverse metrics into a unique probabilistic measure by using 
Bayesian networks

http://www.bioinsilico.org/PCRPi

HotRegion [66] Predicts hot spots using the same algorithm as HotPoint and predicts 
hot regions

http://prism.ccbb.ku.edu.tr/hotregion/
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Table 2

Representative online protein interface databases

Name Web server Input type

Protein
name

PDB
ID

Pfam
ID

Sequence UniProt
ID

GO
ID

HETATM
code

PIFACE [54] http://prism.ccbb.ku.edu.tr/piface – ✓ ✓ – – – –

PLIC [60] http://proline.biochem.iisc.ernet.in/PLIC/index.php ✓ ✓ ✓ – – ✓ ✓

sc-PDB [62] http://bioinfo-pharma.u-strasbg.fr/scPDB ✓ ✓ – – ✓ – –

ProtCID [63] http://dunbrack2.fccc.edu/ProtCiD/default.aspx – ✓ ✓ ✓ ✓ – –

3did [64] https://3did.irbbarcelona.org – ✓ ✓ – – ✓ –
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Table 3

Representative online protein binding pocket prediction methods

Name Web server Features

DeepSite [114] http://www.playmolecule.org/deepsite Uses neural network to predict ligand binding pockets on proteins

AlloPred [115] http://www.sbg.bio.ic.ac.uk/allopred/home Investigates normal mode perturbation analysis and pocket features to 
predict allosteric pockets on proteins

PockDrug [116] http://pockdrug.rpbs.univparis-diderot.fr/cgi-
bin/index.py

Uses a combination of pocket estimation methods and pocket 
properties to predict pocket druggability

LIGSITEcsc [117] http://projects.biotec.tudresden.de/cgi-bin/
index.php

Identifies pockets on protein surface using Connolly surface and degree 
of conservation

MetaPocket [118] http://projects.biotec.tudresden.de/metapocket Combines the predicted binding sites from eight different methods to 
identify ligand binding sites on protein surface

POCASA [119] http://altair.sci.hokudai.ac.jp/g6/service/pocasa Predicts protein binding sites by rolling a sphere to detect pockets and 
cavities on protein surface
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