Skip to main content
. 2021 Feb 17;22(6):1281–1304. doi: 10.1093/pm/pnab070

Table 2.

List of markers used to identify neural elements in the human intervertebral disc

Abbreviation Full Name(s) Function Location
AChE [17, 35]
  • Acetylcholinesterase

  • Enzyme that catalyzes the breakdown of acetylcholine

  • Variety of motor and sensory neurons; cholinergic and non-cholinergic neuronsa

CGRP [32–34, 43]
  • Calcitonin gene-related peptide

  • Peptide that acts as a vasodilator, is involved in nociception, and may contribute to nerve regenerationb,c

  • Somatic motor and sensory neuronsb; autonomic neuronsc

GAP43 [36, 40, 45]
  • Growth-associated protein 43

  • Cytoplasmic protein in axons and presynaptic terminals that aids with neurite growth, regeneration, and plasticity

  • Neurons in the central and peripheral nervous systemsd

  • Also found in glial cells of central and peripheral nervous systemse

GFAP [38]
  • Glial fibrillary acidic protein

  • Type III intermediate filament involved in astrocyte-neuron interactions

  • Expressed primarily in astrocytesf; also found in ependymal and Leydig cellsg,h

IB4 [43]
  • Isolectin B4 (isolated from Griffonia simplicifolia)

  • Carbohydrate-binding protein involved in biological recognitioni

  • Subpopulation of primary afferent neurons in dorsal root gangliai

NF200 [38, 41, 44, 49, 50]

NF68 [45]

  • Neurofilament 200; neurofilament heavy polypeptide

  • Neurofilament 68; neurofilament light polypeptide

  • Type IV intermediate filament that helps form neuronal cytoskeleton

  • Type IV intermediate filament that is shown to be indicative of axonal damage in neurological disordersj

  • Neurons in central and peripheral nervous systemsk

NGF [45]
  • Nerve growth factor

  • Neuropeptide involved in the growth, proliferation, and maintenance of neurons

  • Present in most neuronsl; required for survival in sensory and sympathetic neuronsm

NPY/CPON [32–34, 37]
  • Neuropeptide-Y; c-flanking peptide of neuropeptide-Y

  • Neurotransmitter that acts through G-coupled protein receptors

  • Regulates multiple functions such as neuroendocrine release, blood pressure, food intake, anxiety, bone formation, obesity, and painn

  • Primarily in GABAergic interneurons in central nervous systemn; sympathetic neuronso

p75 [40]
  • p75 neurotrophin receptor; low-affinity nerve growth factor receptor

  • One of two receptor types for neurotrophinsp, which are growth factors that stimulate neuronal survival and differentiation, and include NGF, BDNF, NT-3, NT-4

  • Variety of neurons in the central and peripheral nervous systemp

PGP9.5 [32–34, 36–40, 42, 43, 48, 49, 51]
  • Protein gene product 9.5; ubiquitin carboxy-terminal hydrolase L1

  • Cytoplasmic protein that hydrolyzes ubiquitin to generate ubiquitin monomersq

  • Neurons in central and peripheral nervous systems; neuroendocrine cellsq

PRPH [38]
  • Peripherin

  • Type III intermediate filament expressed primarily in neurons within the peripheral nervous systemr

  • Somatic sensory neuronsr; spinal motor neuronsr; autonomic neuronsr

PTN [44]
  • Pleiotrophin; heparin-binding brain mitogen

  • Protein that promotes neurite outgrowth and acts as a mitogens

  • Shown to exist in the central and peripheral nervous systems during developments

S100 [46, 47, 50, 52]
  • S100 protein

  • Protein that aids with intracellular and extracellular functions such as protein phosphorylation and the inflammatory responset

  • Cells derived from the neural crest (Schwann cells, chondrocytes, macrophages, adipocytes, etc.)

SNS/PN3 and NaN/SNS2 [39]
  • Tetrodotoxin-resistant, voltage-gated sodium channels

  • Involved in the initiation and propagation of action potentialsu

  • Somatic sensory neuronsv

SP [17, 32–37, 41, 45, 51–53]
  • Substance P

  • Neuropeptide released in response to biological stressorsw

  • Vasodilator, initiates expression of cytokines, and is highly involved in pain perception and transmission to the central nervous systemw

  • Somatic afferent neuronsw; immune cellsx (microglia, T-cells, eosinophils, dendritic cells)

SYN [37]
  • Synaptophysin; major synaptic vesicle protein p38

  • Synaptic vesicle glycoprotein involved in synaptic transmission

  • Present in most neurons and neuroendocrine cellsy

TrkA [40]
  • Tropomyosin receptor kinase A; high-affinity nerve growth factor receptor

  • Second of two receptor types (first was p75) for neurotrophins that mediates neuronal survival and differentiation

  • Variety of neurons in the central and peripheral nervous systemp

VIP [32, 33, 41]
  • Vasoactive intestinal peptide

  • Neurotransmitter and neuroendocrine factor that:

  • Regulates circadian rhythms, relaxes smooth muscle, and increases neuronal survival (central nervous system)z

  • Increases secretion and relaxes smooth muscle (digestive system)z

  • Variety of neurons in the central nervous systemz; autonomic neuronsz (especially in enteric nervous system)

a

Massoulie et al. 1994. Prog. Neurobiol. 41(1):31–91. doi: 10.1016/0301-0082(93)90040-y.

b

Chen et al. 2010. J. Clin. Neurosci. 17(1):87–91. doi: 10.1016/j.jocn.2009.03.042.

c

McCulloch et al. 1986. Proc. Natl. Acad. Sci. USA. 83(15):5731–5. doi: 10.1073/pnas.83.15.5731.

d

Benowitz and Routtenberg, 1997. Trends. Neurosci. 20(2):84–91. doi: 10.1016/s0166-2236(96)10072-2.

e

Curtis et al. 1992. J. Cell. Biol. 116(6):1455–64. doi: 10.1083/jcb.116.6.1455.

f

Middeldorp, 2001. Prog. Neurobiol. 93(3):421–43. doi: 10.1016/j.pneurobio.2011.01.005.

g

Roessman et al. 1980. Brain. Res. 200(1):13–21. doi: 10.1016/0006-8993(80)91090-2.

h

Davidoff et al. 2002. Acta. Histochem. 104(1):39–49. doi: 10.1078/0065-1281-00630.

i

Bennett et al. 1998. J. Neurosci. 18(8):3059–72. doi: 10.1523/JNEUROSCI.18-08-03059.1998.

j

Khalil et al. 2018. Nat. Rev. Neurol. 14(10):577–89. doi: 10.1038/s41582-018-0058-z.

k

Laser-Azogui et al. 2015. Curr. Opin. Cell. Biol. 32:92–101. doi: 10.1016/j.ceb.2015.01.003.

l

Denk et al. 2017. Annu. Rev. Neurosci. 40:307–25. doi: 10.1146/annurev-neuro-072116-031121.

m

Crowder and Freeman, 1998. J. Neurosci. 18(8):2933–43. doi: 10.1523/JNEUROSCI.18-08-02933.1998.

n

Decressac and Barker, 2012. Exp. Neurol. 238(2):265–72. doi: 10.1016/j.expneurol.2012.09.004.

o

Kuo et al. 2007. Nat. Med. 13(7):803–11. doi: 10.1038/nm1611.

p

Benito-Gutierrez et al. 2006. Mol. Cell. Neurosci. 31(2):179–92. doi: 10.1016/j.mcn.2005.09.007.

q

Doran et al. 1983. J. Neurochem. 40(6):1542–7. doi: 10.1111/j.1471-4159.1983.tb08124.x.

r

Hol and Capetanaki, 2017. Cold. Spring. Harb. Perspect. Biol. 9(12):a021642. doi: 10.1101/cshperspect.a021642.

s

Jin et al. 2009. Neurosurg. Rev. 32(4):387–93. doi: 10.1007/s10143-009-0202-8.

t

Marenholz et al. 2004. Biochem. Biophys. Res. Commun. 322(4):1111–22. doi: 10.1016/j.bbrc.2004.07.096.

u

Tate et al. 1998. Nat. Neurosci. 1(8):653–5. doi: 10.1038/3652.

v

Dib-Hajj et al. 1998. Proc. Natl. Acad. Sci. USA. 95(15):8963–8. doi: 10.1073/pnas.95.15.8963.

w

Zieglgansberger, 2018. Cell. Tissue. Res. 375(1):227–41. doi: 10.1007/s00441-018–2922-y.

x

Mashagi et al. 2016. Cell. Mol. Life. Sci. 73(22):4249–64. doi: 10.1007/s00018-016–2293-z.

y

Wiedenmann et al. 1986. Proc. Natl. Acad. Sci. USA. 83(10):3500–4. doi: 10.1073/pnas.83.10.3500.

z

Iwasaki et al. 2019. F1000Res. 8: F1000 Faculty Rev-1629. doi: 10.12688/f1000research.18039.1.