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Abstract

Background: The association between SOX14 and cancer has been reported. The aim of this study was to identify
and validate the potential value of SOX14 methylation in the early detection of cervical cancer.

Methods: First, we extracted the data for SOX14 methylation and expression within cervical cancer from The
Cancer Genome Atlas (TCGA) database and analysed them via UALCAN, Wanderer, MEXPRESS and LinkedOmics.
Subsequently, according to the bioinformatics findings, primers and probes were designed for the most
significantly differentiated methylation CpG site and synthesized for methylation-specific PCR (MSP) and quantitative
methylation-specific PCR (QMSP) to verify SOX14 methylation in both cervical tissuses and liquid-based cell samples.
Eventually, the clinical diagnostic efficacy of SOX14 methylation in the normal, cervical intraepithelial neoplasia, and

cancer groups was analysed by ROCV.

was 81.48%, with a cut-off value of 10.37.

specific PCR (QMSP)

Results: Pooled analysis demonstrated that SOX14 methylation levels were significantly increased in cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC) compared to normal tissues (P < 0.001). Both
the verification and validation cohorts indicated that the methylation level and the positive rate of SOX14 gradually
increased with increasing severity from normal to cancer samples (P < 0.01). When the cut-off value was set as
12845, the sensitivity and specificity of SOX14 hypermethylation in the diagnosis of cervical cancer were 94.12 and
86.46%, respectively. When taken as a screening biomarker (>CINII), the sensitivity was 74.42% and the specificity

Conclusion: SOX14 hypermethylation is associated with cervical cancer and has the potential to be a molecular
biomarker for the screening and early diagnosis of cervical cancer.
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Background

Cervical cancer ranks as the fourth most frequently
diagnosed cancer and the fourth leading cause of cancer
death among women, with an estimated 604,000 cases
and 342,000 deaths worldwide in 2020 [1]. It is the
second most common type of cancer in women in the
Southeast Asia region and a major cause of cancer death
among women in low- and middle-income countries
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(LMICs) [2]. Nevertheless, in some of the wealthier
countries of Central and Eastern Europe, screening has
effectively reduced the incidence and mortality of
cervical cancer among women < 50 years old [3].
Currently, the Pap smear, the ThinPrep cytologic test
(TCT), and human papillomavirus (HPV) testing are the
most commonly used methods for cervical cancer
screening [4]. However, in addition to the lower sensitiv-
ity of cytology methods (Pap smear and TCT), the
results of the different screening infrastructures vary
widely as does the labour intensiveness of these methods
[5, 6]. Regarding HPV tests, despite the superior sensitivity,
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the lower specificity is an inevitable problem leading to a
need to identify innovative biomarkers for cervical cancer
screening [7]. Studies have revealed that DNA hypermethy-
lation in the tumour suppressor gene promoter region is an
early event in human cancers and is negatively correlated
with gene expression [8]. Additionally, most of the tech-
niques on DNA methylation detection are generally easy to
perform, less labour intensive and repeatable. For those rea-
sons, the identification and performance of cancer-related
DNA hypermethylation biomarkers in clinical settings
have attracted the attention of clinical practitioners
and researchers.

SOX14 is a member of the SOX gene family, which me-
diates the binding of high-mobility group (HMG) domains
to DNA and has regulatory functions in development, the
cell cycle and differentiation [9]. Previous studies have
discovered that many genes in the SOX family participate
in carcinogenesis, such as SOX1, which can affect the
growth and invasion of cancer cells in cervical cancer [10],
breast cancer [11], lung cancer [12], glioblastoma [13] and
nasopharyngeal cancer [14]. SOX2, SOX6 and SOX17 are
associated with the occurrence of sarcomas [15]. SOX10
has been linked to melanoma metastasis [16], and SOX7 to
acute myeloid leukaemia [17]. Recently, Jiali Hu et al.
emphasized the critical roles of the SOX gene family as
regulators in the progression of gynaecological cancers
[18]. There is potential for gynaecologists to use SOX
genes to make precise clinical decisions [18]. Furthermore,
aberrant methylation of SOX genes in cancer has been
frequently reported; for instance, SOX1 and SOX11
present hypermethylation in cervical cancer and endomet-
rial cancer, respectively. However, hypomethylation in the
SOX9 promoter, which increases SOX9 expression in
prostate cancer, has also been reported [19].

SOX14 is also involved in the development of
tumours. Deb S et al. found that SOX14 can induce
apoptosis of cervical cancer cell lines by activating the
p53 pathway [20]. Li F et al. showed that SOX14
promotes the proliferation and invasion of cervical
cancer cells through the Wnt/B-catenin pathway [21]. In
addition, analysis of the genome-wide DNA methylation
map of chronic lymphocytic leukaemia showed that
SOX14 was one of the methylated genes in patients with
chronic lymphocytic leukaemia [22].

Therefore, the aims of this study were to 1) further ex-
plore the relationship of SOX14 methylation in cervical
cancer using integrated datasets and web tools and 2)
validate the potential value of SOX14 methylation in the
screening and early diagnosis of cervical cancer.

Methods

Pooled analysis

Datasets of DNA methylation was extracted from the
TCGA database and included clinical information from
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cervical tissues (Table S1). The methylation level of
SOX14 in normal and primary tumour patients with
cervical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC) was comparatively analysed using the
UALCAN web tool (http://ualcan.path.uab.edu/index.
html) [23]. The mean SOX14 methylation level in each
CpG site in CESC was generated with Wanderer (http://
maplab.imppc.org/wanderer/) [24]. The raw expression
data were collected from TCGA& GTEx and analysed by
GEPIA (http://gepia.cancer-pku.cn/) [25]. The association
of SOX14 mean methylation and expression in CESC was
compared via MEXPRESS (https://mexpress.be/) [26]. The
association of SOX14 methylation and CESC clinical
information was analysed using the LinkedOmics tool
(http://www.linkedomics.org/login.php) [27].

Sample collection

Cervical frozen tissues and liquid-based cell specimens were
available from the Department of Gynecology and Obstet-
rics, Tianjin Medical University General Hospital, and
Tianjin First Central Hospital from January 2016 to June
2017. No patients included had a history of hysterectomy,
radiotherapy or chemotherapy and a history of taking
immunosuppressive agents or other tumours. Moreover,
none of the patients involved were pregnant. Normal tissue
samples and normal TCT samples from benign disease pa-
tients with fibroids, uterine prolapse, hypermenorrhoea, etc.

All the samples were collected before treatment and a
diagnosis was made by experienced gynaecological
pathologists, with histological classification as the reference;
the samples were classified as normal, cervical intraepithe-
lial neoplasia II (CINII), CINIII or cancer. This study was
approved by the Medical Ethics Committee of Tianjin
Medical University, and all the patients gave informed
consent.

A total of 36 tissue specimens and 113 TCT specimens
were collected for the tests. The frozen tissue samples
consisted of 19 normal samples, and 17 cancer samples
stored at — 80 °C. The TCT specimens included 27 normal
cervical samples (median age: 43 vyears), 36 CINII stage
specimens (median patient age: 42 years), 33 CINIII stage
specimens (median patient age: 40 years), and 17 cervical
cancer specimens (median patient age: 54years). The
FIGO staging of cervical cancer results were as follows: 6
cases of IA1, 3 cases of IB1, 1 case of IB2, 4 cases of IIA, 2
cases of IIB, and 1 case of IIIB. The specimens were ob-
tained by clinicians using a disposable cervical specimen
collection brush, stored in TCT preservation solution
(SumDod, Guangzhou, China), and stored at 4 °C.

DNA extraction and quality testing

Genomic DNA from frozen tissues was extracted using a
TIANamp Genomic DNA Kit (Tiangen Biotech, Beijing,
China) according to the manufacturer’s instructions.
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DNA from cervical liquid-based cell specimens was
isolated by phenol/chloroform extraction [28]. DNA
concentration and absorbance (A260/280) were measured
using a Nanodrop 2000c spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). DNA samples with
concentrations >100ng/pl and A260/280 ratios of
approximately 1.8 were analysed. To ensure that the size
of the obtained DNA fragment was intact for the subse-
quent Methylation-specific PCR (MSP), ladder PCR was
performed as previously described [29]. A full-length gel
picture was presented in Figure S1.

Bisulfite treatment

One microgram of genomic DNA per sample was modi-
fied using the EZ DNA methylation kit (Zymo Research
Corp, Irvine, US) according to the manufacturer’s
instructions. Leukocyte DNA from healthy women was
used as a negative control for methylation, while in vitro
methylated leukocyte DNA produced using M. Sssl
methyltransferase (New England Biolabs, Ipswitch, USA)
was used as a positive control.

Methylation-specific PCR (MSP)

Methylated primers were designed using Methyl Primer
Express v1.0 and synthesized by Sangon Biotech (Table 1).
Each reaction was performed in a total reaction volume of
30 ul, containing 1.8 ul MSP primer mix (10 pM), 1.5 pl
bisulfite-treated DNA, 0.6 ul dNTPs (10 mM), and 0.5U
AmpliTaq Gold DNA polymerase. The MSP thermal cyc-
ling program was as follows: 10 min at 95 °C; 95 °C for 60
s, 55°C for 60's, and 72 °C for 60s, for a total of 40 cycles;
and a final elongation step of 7 min at 72°C. Leukocyte
(leu) DNA from healthy women was used as a negative
control, and in vitro methylated (iv) leukocyte DNA was
used as a positive control for each MSP.

Quantitative methylation-specific PCR (QMSP)
The methylated primers for QMSP were the same as
those used for MSP. The probes were designed using

Table 1 Primers and probes used in MSP and QMSP
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Cone Manager 9.0 software and synthesized by Sangon
Biotech. The ACTB gene was used as a methylation ref-
erence gene. Each reaction was performed in a total
10 pl reaction volume containing 5 pl 2 x Master Mix,
2.5ul BS-DNA (10 ng/pl), forward and reverse primer
(10 umol/L) at 0.3 pl each, probe (5umol/L) at 0.4 pl,
and ddH,0 at 1.5 pl. Three wells were set in each DNA
sample. PCR was performed on an ABI PRISM® 7900HT
Sequence Detection System. The QMSP thermal cycling
program was as follows: 95 °C for 10 min followed by 50
cycles of 95°C for 15s and 60 °C for 1 min. The criteria
for the interpretation of positive methylation results
were as follows: Ct value <50 (at least 2 of 3 multiple
wells) with sufficient methylated DNA (200 pg DNA).
The relative level of SOX14 methylation was expressed
as (the average quantity of methylated SOX14 /the aver-
age quantity of ACTB) x 10,000 [30].

Statistical analysis

Statistical analysis were performed using IBM SPSS 25.0
(IBM Corporation, New York, USA) and GraphPad
Prism 8 (GraphPad Software, USA). The association be-
tween methylation in cg4945331 and expression from
TCGA was analysis by Spearman. Kruskal-Wallis test
was used to compare methylation levels and clinical
stages. The threshold of each two groups was defined
with the maximum value of the Youden index (YI), and
the sensitivity, specificity were calculated accordingly.
GraphPad Prism version 8.0 was used for statistically sig-
nificant differences between two stages by the Mann—
Whitney test. A P-value of less than 0.05 was considered
statistically significant.

Results

Pooled dataset analysis

First, the methylation level of SOX14 was significantly
higher than that in normal tissues from UALCAN (P <
0.001). Furthermore, the methylation level was increased
with tumour stage, and that of stage IV was the highest

Primers or Probes Sequence(5' to 3') Size (bp)
MSP SOX14-methylation primer F:GTTCGTGGGGGTTTTCGAC 85
R:CAAAAAATAAAACGCCGAAACCG
SOX14-unmethylation F:GTTTGTTTGTGGGGGTTTTTGATG 94
Primer RTCCAACAAAAAATAAAACACCAAAACCA
QMSP SOX14 primer F: GTTCGTGGGGGTTTTCGAC 85
R: CAAAAAATAAAACGCCGAAACCG
SOX14 probe 6-FAM-TGAGCGCGTTCGAGAAAGTTCGGG-BHQ1
ACTB primer F: TGGTGATGGAGGAGGTTTAGTAAGT 100

R: AACCAATAAAACCTACTCCTCCCTTAA

ACTB probe

6-FAM-ACCACCACCCAACACACAATAACAAACACA-BHQ1
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(P<0.001) (Fig. 1a.b). The dataset from Wanderer dem-
onstrated that the mean methylation level of each CpG
site in the whole SOX14 gene (total of 19 CpG sites)
was significantly increased in CESC compared to normal
tissues (Fig. 1c) (P < 0.05). The most differential methyl-
ated CpQG site was cg4945331 (Table S2).

From MEXPRESS, a total of 12 CpG sites, including
cg4945331, were found to be significantly correlated
with expression (Pearson correlation coefficients from —
0.112 to -0.269) (Fig. 2a). However, SOX14 did not
show any expression in normal cervix uterine from the
GTEx (Fig. S2). Fig. 2b from GEPIA illustrated that only
a few of cervical cancer samples with the expression.
Hence, we analysed the raw expression data from
TCGA, there were total of 25 cases with both methyla-
tion and expression levels, and further calculated the as-
sociation between them. It was showed that the level of
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SOX14 methylation in ¢g4945331 was inversely corre-
lated with SOX14 mRNA expression (corr = - 0.398 P <
0.05) (Fig. 2c), which was consistent with MEXPRE.

Additionally, LinkedOmics found that the SOX14
methylation level was linked with the histological type
(P<0.01, n=292). (Fig. 3a) It was higher in endocervical
adenocarcinoma than in cervical squamous cell carcin-
oma and mucinous adenocarcinoma. However, SOX14
methylation had no significant relationship with radi-
ation therapy (P =0.084, n=184) or T stage (P=0.185,
n = 244) (Fig. 3b,c).

Verification of SOX14 methylation in cervical tissues using
MSP

We performed MSP with primer sets targeting the se-
quence including the cg4945331 site with the top differen-
tial value (Table S2) to detect SOX14 hypermethylation in
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Fig. 3 Association of SOX14 methylation and pathological features in CESC. (a) SOX14 methylation level is associated with histological type (P <
0.01), which higher in endocervical type of adenocarcinoma by Kruskal-Wallis Test. (b) SOX14 methylation level shows no difference with
radiation therapy (P = 0.084, Wilcox Test), and (c) T stage (P = 0.185,Kruskal-Wallis Test)

cervical tissues. Consistent with the bioinformatics results,
the methylation positive rate in cancer tissues was 70.59%
(12/17), which was higher than that in normal tissues
(5.26%, 1/19) (Fig. 4). Full-length gel pictures were pre-
sented in Supplementary Fig S3 and Fig S4.

Validation of SOX14 methylation in cervical liquid-based
cells using QMSP

Figure 5 illustrates that the methylation level of SOX14
increased with the severity of cervical lesions (H =52.55,
P<0.01) (Table 2). Paired comparisons between groups

showed a significant difference between each pair of
groups (P<0.05) (Table 2). Similarly, the SOX14
methylation positive rate increased from the normal to
cancer samples and were 48.15% (13/27) in the normal
samples, 72.22% (26/36) in CINII, 90.91% (30/33) in
CINIII, and 100% (17/17) in cancer, respectively
(Fig. 5). Despite a slightly higher methylation positive
rate in normal cells, it was easy to determine an opti-
mal threshold to discriminate each group since the
quartile QMSP value was significantly different. As
Table 3 and figure showed, with the optimal cut-off
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value of 87.21, the SOX14 methylation positive rate
was 3.70% (1/27) in the normal group, 58.33% (21/36)
in the CINII group, 81.81% (27/33) in the CINIII
group, and 94.12% (16/17) in the cancer group.

Clinical evaluation of SOX14 hypermethylation in cervical
cancer

The sensitivity and specificity between the groups were
analysed according to ROC curves (Fig. S5). The highest
ROCAYC was 0.99 in the normal and cancer tissues, and
the sensitivity and specificity in the diagnosis of cancer
were 94.12 and 96.3%, respectively, with the optimal cut-
off value (87.21) (Table 3). Since DNA methylation
biomarkers were reported in a stage-specific manner, we
further combined the precancer stage (normal & CINII
& CINII) and compared that combination with the
cancer stage. Table 3 showed that the ROC*Y had a
sensitivity of 94.12% and specificity of 86.46%. The YI
was 0.81, which indicated that SOX14 was a cancer-
related biomarker. In addition, CINII is the split stage in
the clinical screening programs, and we combined the
CINII and worse stages (>CINII) into a disease group.

Table 2 The comparison of QMSP value in each stage

Group N QMSP value [M (P25, P75)]
Normal 27 0.00 (0.00-9.38)

CINII 36 10.71 (0.00-40.27)

CIN I 33 5808 (21.08-267.19)

Cervical Cancer 17 1707.93 (187.79-4394.02) * ¥ A

“CIN 1l was compared with normal group (P < 0.001). Cancer was compared
with the normal group” (P <0.001), CIN Il ¥ (P < 0.001), and CIN llI* (P < 0.001)

Table 3 showed that the ROCAYC was 0.81, the sensitiv-
ity (74.42%) was decreased, but the specificity (81.48%)
were comparable.

Discussion

As a common malignancy of the female reproductive
system, cervical carcinogenesis is a complicated process
with multiple stages and steps. There is a gradual devel-
opment process from precancerous lesions to cervical
cancer, and early detection of cervical lesions is particu-
larly important in clinical practice. Aberrant DNA
methylation is an epigenetic hallmark of cancer and is
known to play an important role in tumorigenesis and
progression. Meanwhile, with the advancement of bio-
informatics technology, it is feasible to identify novel
methylation biomarkers via integrative multi-web tools
[31-33]. Definitely, before these markers can be used
clinically to benefit patients, a series of worldwide clin-
ical evaluation studies are needed.

Hence, to further reveal the role of SOX14 methyla-
tion in cervical cancer and validate the potential clinical
value of SOX14 methylation in the diagnosis of cervical
cancer, we combined information from databases and
clinical samples. Based on an integrative multi-web tool
approach, we found that SOX14 was hypermethylated in
CESC and correlated with its expression. Clearly, these
findings indicate that SOX14 methylation participates in
carcinogenesis by perturbing SOX14 gene regulation.
More exciting, it was feasible for us to select a CpG site
with the most differentiated methylation level between
normal and cancer samples to design primers and
probes for subsequent verification and validation via the
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Table 3 Clinical evaluation of SOX14 methylation in each of the differentiated groups

Groups AUC Cut off Sen (%) Spe (%) Yl

Normal vs. Cancer 0.99 87.21 94.12 96.30 0.90
Precancer (Normal+CINII+CINIII vs. Cancer 0.94 12845 94.12 86.46 0.81
Normal vs. 2 CINII 0.81 1037 7442 8148 0.56

AUC Area Under Curve;Sen:sensitivity;Spe:specificity; Y/ Youden index

Wander web tool. As expected, the MSP results demon-
strated that the methylation positive rate of SOX14 in
cancer tissues (70.59%) was obviously higher than that in
normal tissues (5.26%). Thus, the biomarker of SOX14
hypermethylation in cervical cancer moved forward to
the validation step. The QMSP results showed that both
the SOX14 methylation positive rate and methylation
level were higher than those in normal cervical samples.

In a recent review that about the translational road of
DNA methylation biomarkers to the clinic, Warwick J.
Locke et al. mentioned that there are several diagnostic
areas including primary diagnosis,triage,choice of ther-
apy etc. for adopting the DNA methylation biomarkers
[34]. Hence,we analysed the different combinations to
explore the potential role of SOX14 hypermethylation in
the diagnosis and prevention of cervical cancer. ROC
curve analysis showed that SOX14 hypermethylation had
good sensitivity (94.12%) for discrimination of cervical
cancer patients that would assist for the choice of
therapy.

Recently, the World Health Organization (WHO) called
for action towards achieving the global elimination of cer-
vical cancer by 2030. To achieve this goal, one of the chal-
lenges is to build effective and scaled screening strategies
[35]. Although the UK National Screening Committee rec-
ommended a switch to hrHPV primary screening in 2016
[36] to substitute the lower sensitivity and subjective inter-
pretation of cytomorphology-based methods, the lower
specificity results in relatively more referrals, anxiety in
false-positive women, and higher costs for the health-care
system. The results of this experiment confirmed that
SOX14 hypermethylation has a high specificity (81.48%)
for identifying CINII, which was greatly improved com-
pared with 14.7% for HPV detection of CINII or above
[37]. It indicated a triage biomarker role of SOX14 hyper-
methylation followed by the primary HPV screening.

Furthermore, the detection of methylation biomarker
is an objective test and can be performed on the same
material used for hrHPV testing, which makes it promis-
ing for self-sampled tests. This will benefit more Chinese
women who live in remote rural places [38]. As one of
the principal contributors to the global burden of cer-
vical cancer, it is very important to validate biomarkers
in the Chinese population not only for effective diagno-
sis and prevention but also for contributing indirectly to
the human methylation map.

What's more, consistent with studies that have re-
vealed that DNA methylation occurs in a tissue-specific,
cell type-specific and stage-specific manner [39, 40],
SOX14 methylation correlated with tumour histological
type in our analysis. This suggests a potential capability
to be a differentiated biomarker of SOX14 methylation.
In contrast, studies have shown that gene methylation is
associated with the sensitivity of cancer to definitive
chemoradiotherapy (CRT) [41, 42], while SOX14 did not
present this association. In addition, another interesting
mechanism worthy to be discovered afterwards is the re-
lationship between SOX14 methylation and its expres-
sion. It is well established that DNA methylation in the
gene promoter region leading to the silencing of the cor-
responding gene, however, gene body CpG-methylation
is not so well understood, but usually associated with
higher expression of the corresponding gene [43]. The
CpG-methylation site of SOX14 validated in our study
located in the gene body, which showed higher methyla-
tion in cancer samples. Consistently, SOX14 had higher
expression in cervical cancer tissues compared to normal
tissues, even quite a few samples. It is in line with
previous findings that SOX14 plays an oncogene role in
cervical carcinogensis [21]. Yet, the CpG-methylation
site of SOX14 validated here shows a negative correl-
ation with expression via MEXPRESS and TCGA, which
may be caused by the participation of other gene regula-
tion factors, including histone acetylation, transcription
factor, etc.

Conclusion

Our results demonstrated that it was feasible and
convenient to identify DNA methylation biomarkers
through coupling with bioinformatics analysis and
clinical samples. SOX14 presented hypermethylation in
cervical cancers; furthermore, with the optimal cut-off
value, the sensitivity and specificity in the differentiation
of precancer and cancer were 94.12 and 86.46%, respect-
ively. Additionally, the sampling method can be com-
bined with HPV tests. Thus, scale-up screening can be
performed via high-throughput detection. Nevertheless,
more sustainable and large cohort clinical trials are
needed to confirm the identified biomarkers worldwide
to push forward the rapid development of translation
medicine in the near future.
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