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A role for gut microbiota in early-life
stress-induced widespread muscle pain
in the adult rat
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Abstract

Adult rats that experienced neonatal limited bedding (NLB), a form of early-life stress, experience persistent muscle

mechanical hyperalgesia. Since there is a growing recognition that the gut microbiome regulates pain and nociception,

and that early-life stress produces a long-lasting impact on the gut microbiome, we tested the hypothesis that persistent

muscle hyperalgesia seen in adult NLB rats could be ameliorated by interventions that modify the gut microbiome. Adult

NLB rats received probiotics, either Lactobacillus rhamnosus GG (10 billion CFU/150 ml) or De Simone Formulation (DSF)

(112.5 billion CFU/150 ml mixture of 8 bacterial species), in their drinking water, or non-absorbable antibiotics, rifaximin or

neomycin, admixed with cookie dough, to provide 50mg/kg. Mechanical nociceptive threshold in the gastrocnemius muscle

was evaluated before and at several time points after administration of probiotics or antibiotics. Adult NLB rats fed

probiotics L. Rhamnosus or DSF, antibiotics, as well as rats fed non-absorbable antibiotics rifaximin or neomycin, had

markedly attenuated muscle mechanical hyperalgesia. We hypothesize that persistent skeletal muscle hyperalgesia produced

by NLB stress may be, at least in part, due to a contribution of the gut microbiome, and that modulation of gut microbiome

using probiotics or non-absorbable antibiotics, may be novel therapeutic approaches for the treatment of chronic muscu-

loskeletal pain.
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Introduction

There is an increasing appreciation that the gastrointes-
tinal (gut) microbiome affects the course and severity of
many biological processes and diseases, including
pain.1–6 Most studies evaluating the role of the gut
microbiome in pain have focused on modulation of vis-
ceral pain and hypersensitivity (e.g. preclinical models,
as well as in inflammatory bowel disease and colitis),7–10

and others have shown that the gut microbiome may
affect chemotherapy-induced neuropathic pain.11,12

And, while some clinical evidence shows that there
may be a relationship between gut dysbiosis and fibro-
myalgia symptoms,13,14 no studies have directly investi-
gated whether manipulation of the gut microbiome
affect musculoskeletal pain. In this study we tested the
hypothesis that persistent muscle pain in adult rats (pro-
duced by early-life stress) is affected by modulating gut
microbiome. Using a model of early life stress-induced

adult muscle pain, based on the disruption of maternal
care by limiting bedding/nesting material (neonatal lim-
ited bedding, NLB).15,16
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Methods

Animals

Primiparous timed-pregnant female Sprague Dawley
rats were obtained from Charles River (Hollister, CA).
Dams were housed with their litter in standard cages on
postnatal days 0 – 1. On postnatal day 2, litters were
assigned to limited bedding (NLB) or standard care
(control) conditions, or received corticosterone.
Behavioral experiments were performed on 220–280 g
adult female rats.

Animals were housed in the Laboratory Animal
Resource Center of the University of California, San
Francisco, under a 12 h light/dark cycle (lights on 7
am–7 pm) and environmentally controlled conditions;
ambient room temperature (21–23�C), with food and
water available ad libitum. Their care and use in experi-
ments conformed to National Institutes of Health guide-
lines and measures were taken to minimize pain and
discomfort. Experimental protocols were approved by
the Institutional Animal Care and Use Committee of
the University of California, San Francisco.

NLB stress

We used the NLB protocol, a well-established model of
early-life stress.17 Dams and their pups were housed in
standard cages on postnatal days 0 and 1, and beginning
on postnatal day 2, dams and their pups were placed in
cages fitted with a custom stainless steel mesh grid
bottom (Ancare, Bellmore, NY), raised �2.5 cm from
the floor of the home cage, to provide space for collec-
tion of urine and feces.18 The nesting/bedding material
provided consisted of one sheet of paper towel
(�112� 22 cm), and no environmental enrichment.
Litters were left undisturbed during postnatal days 2 –
9. From postnatal day 10 until weaning, dams and pups
were again housed in standard cages with normal bed-
ding (PaperchipVR animal bedding, Shepherd Specialty
Papers, Watertown, TN), and standard enrichment. On
postnatal day 21 pups were weaned and same sex rats
housed 3 per cage, in standard housing conditions.

Probiotic and antibiotic feeding

Probiotics. Rats receiving probiotics were divided into 3
groups: the control group received only tap water for
drinking, in another group the drinking water contained
Lactobacillus rhamnosus GG (10 billion CFU/150 ml L.
rhamnosus, CulturelleVR , Amerifit, Inc, Cromwell, CT),
and in the third group the drinking water contained
De Simone Formulation (DSF) (112.5 billion CFU/150
ml mixture of L. acidophilus, L. plantarum, L. casei, L.
delbrueckii subspecies bulgaricus, Bifidobacterium breve,
B. longum, B. infantis, and Streptococcus salivarius

subspecies thermophilus, VSL Pharmaceuticals, Inc,

Towson, MD). Drinking water containing probiotics

was made fresh each day. Water or probiotic-

containing water was provided to rats ad libitum for

8 days.

Non-absorbable antibiotics. Typically, administration of

non-absorbable antibiotics to rats is accomplished by

gavage feeding. However, in order to eliminate stress

associated with gavage feeding (stress would affect noci-

ceptive threshold), we employed an established method

of voluntary oral administration,19 in which rifaximin or

neomycin was admixed with 4 g of cookie dough mix

(PillsburyTM Sugar Cookie dough); this method of feed-

ing has been shown to have an ingestion reliability of

99.9–100% in Sprague Dawley rats. To acclimate rats,

they were fed cookie dough for 3 days prior to being fed

the cookie dough-antibiotic mix. Rats receiving antibi-

otics were divided into 3 groups: the control group fed

cookie dough, another group, cookie dough contained

rifaximin (to provide 50mg/kg; Xifaxan, Salix

Pharmaceuticals, Inc.), and a third group, cookie

dough containing neomycin sulfate (to provide 50mg/

kg; MilliporeSigma, Burlington, MA). Rats were fed

cookie dough (plain, or with non-absorbable antibiotics)

daily for 10 days.

Mechanical nociceptive threshold in skeletal muscle

Mechanical nociceptive threshold in the gastrocnemius

muscle was quantified using a Chatillon digital force

transducer (model DFI2, Amtek Inc., Largo, FL).16

Rats were placed in cylindrical acrylic restrainers

designed to minimize restraint stress and allow extension

of their hind legs from lateral ports. To acclimatize rats

to the testing procedure, they were placed in restrainers

and exposed to the testing procedure, daily for 3 days,

prior to starting experiments. On the day of the experi-

ment, rats were placed in a restrainer for 30 minutes

before experimental manipulations. To determine noci-

ceptive threshold, a 7-mm diameter probe attached to

the force transducer was applied to the gastrocnemius

muscle to deliver an increasing compression force. The

nociceptive threshold was defined as the force, in

Newtons, at which the rat withdrew its hind leg.

Mechanical nociceptive thresholds was determined by

measuring the mean of 3 withdrawal thresholds taken

at 5-min intervals; one hind limb of each rat was used.

All behavioral testing was done between 10 am and 4 pm

(no differences in baseline nociceptive threshold was

observed over this time period), and was performed

blind to treatment condition.
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Statistical analyses

Group data are expressed as mean� SEM of n inde-

pendent observations. Statistical analysis of experimen-

tal data, conducted using Prism 9 (GraphPad

Software, San Diego, CA), employed two-way analysis

of variance (ANOVA) for groups with equal numbers

(Figure 1), or a mixed-effect analysis (restricted max-

imum likelihood) for groups with unequal numbers

(Figure 2). Where there was a significant main differ-

ence between treatment groups, Dunnett’s post-hoc

test was used. The accepted level for significance was

P< 0.05.

Results

Administration of probiotics, DSF and L. Rhamnosus,

in adult rats attenuates NLB-induced muscle

hyperalgesia

Adult NLB rats treated with a probiotic, either DSF or

L. Rhamnosus, showed markedly higher mechanical

nociceptive threshold in the gastrocnemius muscle com-

pared to control (vehicle-fed) rats (2-way repeated meas-

ures ANOVA, time � antibiotic treatment, F8,132¼
21.67, P< 0.0001, Figure 1). And, by day 10 of probiotic

feeding, nociceptive threshold was similar to that seen

in rats raised on standard bedding during postnatal

days 2–9.

Administration of rifaximin and neomycin, in adult

rats, attenuates NLB-induced muscle hyperalgesia

Adult rats that had been exposed to the limited bedding

protocol during postnatal days 2–9 (NLB), have a lower

mechanical nociceptive threshold compared to rats that

had standard bedding during the same postnatal period.

When rats were fed non-absorbable antibiotics, rifaxi-

min or neomycin, muscle mechanical hyperalgesia in

NLB rats was markedly attenuated compared to control

(vehicle-fed) rats (2-way repeated measures ANOVA,

time � antibiotic treatment, F8,79¼ 7.211, P< 0.0001;

Figure 2). Antibiotic feeding was stopped after 10

days, and by the seventh day of normal diet, nociceptive

threshold decreased to the level seen in vehicle-fed rats.

Discussion

In this study, we found that persistent skeletal muscle

hyperalgesia seen in adult rats that had been exposed to

early-life stress was markedly attenuated by administra-

tion of non-absorbable antibiotics (rifaximin, neomy-

cin), or of probiotics (DSF, L. Rhamnosus). It is likely

that the marked attenuation of the persistent muscle

hyperalgesia by these treatments is due to the effect of

changes in the gut microbiome, since both the antibiot-

ics20–23 and probiotics have been shown to affect gut

microbiome diversity.

Figure 1. Probiotics DSF and L. Rhamnosus reverse NLB-
induced muscle mechanical hyperalgesia. Adult NLB rats received
tap water (vehicle), or tap water containing DSF (112.5 billion
CFU/150 ml) or L. Rhamnosus (10 billion CFU/150 ml). NLB rats
were hyperalgesic (dashed lines indicate muscle mechanical noci-
ceptive threshold in rats raised on standard bedding) prior to
probiotics. While rats receiving tap water showed no change in
nociceptive threshold, both probiotics significantly increased
nociceptive threshold in males (2- way ANOVA, interaction
F8,132¼ 21.67, P< 0.0001, Tukey’s multiple comparison test
showed significant differences for both probiotics from vehicle
control rats on days 6 – 12 ****P< 0.0001); all groups n¼ 12.

Figure 2. Antibiotics, rifaximin and neomycin, attenuate NLB-
induced muscle mechanical hyperalgesia. Adult NLB rats were fed
4 g cookie dough (vehicle), or cookie dough containing rifaximin
(50 mg/kg in 4 g cookie dough) or neomycin sulfate (50 mg/kg in 4
g cookie dough). The muscle mechanical nociceptive threshold of
NLB rats was lower (i.e., they were hyperalgesic) compared to rats
raised on standard bedding (threshold indicated by dashed lines)
prior to antibiotic feeding. While rats receiving vehicle (cookie
dough) showed no change in nociceptive threshold, both antibi-
otics significantly increased nociceptive threshold (2-way ANOVA,
Time x Antibiotic treatment interaction F16,171¼ 5.78,
P< 0.0001). Dunnett’s multiple comparison test showed significant
differences for both antibiotics from vehicle control rats on days
10 – 22, *P,0.05, **P< - 0.005, ****P< 0.0001); Control n¼ 6,
both rifaximin and neomycin n¼ 10.
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It is well-established that early-life stress affects gut
microbiome,24–29 a dysbiosis that persists into adult-
hood.24,25,29 Importantly, in addition to local effects,
such as visceral pain30,31 and gut permeability,26,27 gut
dysbiosis has been implicated in several systemic pathol-
ogies, including altered behavior (e.g. depression and
anxiety),24,32,33 Parkinson’s disease,34 increased hypo-
thalamic pituitary adrenal axis (HPA) activity,35 system-
ic lupus erythematosus36 and systemic inflammation.37,38

And, there is a growing appreciation that the gut micro-
biome may contribute to chronic extra-abdominal pain
states,1,3–6 for example in cutaneous inflammatory
hyperalgesia39 and paclitaxel-induced cutaneous thermal
and mechanical nociception.11 However, to the best of
our knowledge evaluation of the role of the gut micro-
biome on skeletal muscle mechanical hyperalgesia has
not previously been evaluated.

The mechanism by which early-life stress produces
muscle hyperalgesia the persists in to adulthood has yet
to be determined. However, it is known that early-life
stress (maternal separation), produces a change in beta
diversity (i.e. a change in microbial composition, or
dysbiosis), for example a deficiency in
Lactobacillus,26,40 Staphylococcus and Mucispirillum,29

Clostridium, Bilophia30 and increases in Bacteroides,29

Alloprevotella and Acetivibrio.30 Other studies have
observed additional changes in gut microbiome follow-
ing early-life stress and with 5,000 – 10,000 bacterial
species it is going to be challenging to determine
which bacterial species contribute to local or systemic
hyperalgesia. However, altering the gut microbiome
population by administration of locally-acting antibiot-
ics or by probiotics has been shown in preclinical and
clinical studies to attenuate stress-induced visceral
hyperalgesia,22,23,30,41 as well as attenuate neuropathic
cutaneous mechanical allodynia and thermal hyperalge-
sia.42,43 How probiotic and antibiotic administration
can ameliorate hyperalgesia, which is currently
unknown, may depend on more than one mechanism.
One mechanism may depend on modifying stress-
induced gut dysbiosis. For example, early-life
stress-induced gut dysbiosis and gut permeability, is
ameliorated by probiotics,18,26,30,44 as well as by the
antibiotic, rifaximin.22,45 Stress-induced increase in gut
permeability results in increased levels of lipopolysac-
charide (LPS) and inflammatory cytokines, an effect
that is reversed by probiotics.46 Importantly, in addi-
tion to affect the gut microbiome, early-life stress pro-
duces a decreased expression of tight junction
expression in the gut,47,48 leading to persistent increase
gut permeability,26,49 which allows for systemic leakage
of bacteria products, such as LPS,45 proinflammatory
cytokines,50,51 and bacterial translocation from the
gut.52 Since LPS, inflammatory cytokines and bacteria
act directly on nociceptors to decrease nociceptive

threshold and increase neuronal excitability,53–58 since

early-life stress-induced increased gut permeability per-

sists in to adulthood,59 leakage of LPS, cytokines and/

or bacteria could contribute to hyperalgesia seen in

adult NLB rats. While NLB-induced stress increase in

gut permeability could affect the pharmacokinetics of

the poorly absorbable antibiotics used in this study,

rifaximin reverses stress-induced gut permeability to

normal, non-stressed levels,22,45 and neomycin also

reduces gut permeability.60 Given these effects of the

antibiotics, it is unlikely that the increased gut perme-

ability seen in NLB adult rats would significantly affect

antibiotic pharmacokinetics. In addition to leakage of

mediators or bacteria, the gut microbiome may affect

nociception via direct action on the vagus nerve.

We61,62 and others63,64 have shown that activity of

vagal visceral afferents have a marked effect on somatic

nociceptor sensitivity. And, since afferent vagus neu-
rons innervating the gut sense resident bacteria and

their mediators and metabolites2,65,66 this could be

another mechanism whereby the gut microbiome influ-

ences nociceptive threshold. While our data indicate

that the probiotics and antibiotics we used produce

an antihyperalgesic effect on NLB-induced hyperalge-

sia, it is possible that these agents could have indepen-

dent analgesic effects. However, to the best of our

knowledge, none of these agents has been reported to

be analgesic following oral administration.
In summary, persistent mechanical hyperalgesia in

adult rats exposed to early-life stress (NLB) is attenuated

by interventions that modify the gut microbiome, either

through administration of probiotics or non-absorbable

antibiotics. We hypothesize that the gut microbiome

and/or gut permeability is altered by early-life stress,

which results in enhanced nociceptive excitability,

either by action of gut microbiome-derived pronocicep-

tive mediators and/or via modulation of vagal afferent

activity. Our results suggest novel therapeutic

approaches for the treatment of chronic musculoskeletal

pain involving modulation of gut microbiome using pro-

biotics or non-absorbable antibiotics.
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