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Abstract

Textbook trichromacy accounts for human color vision in terms of spectral sampling by three 

classes of cone photoreceptors. This account neglects entangling of color and pattern information 

created by wavelength-dependent optical blur (chromatic aberrations) and interleaved spatial 

sampling of the retinal image by the three classes of cones. Recent experimental, computational, 

and neurophysiological work is now considering color and pattern vision at the elementary scale 

of daylight vison, that is at the scale of individual cones. The results provide insight about rich 

interactions between color and pattern vision as well as the role of the statistical structure of 

natural scenes in shaping visual processing.
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Introduction

Trichromacy provides the foundation for understanding of human color vision, and the 

standard textbook treatment may be easily summarized. Light entering the eye is encoded by 

the excitations of three classes of cone photoreceptors, each with its characteristic spectral 

sensitivity (Figure 1A). The nature of this encoding places strong constraints on our color 

experience, since any information about spectra not encoded by the cone excitations will not 

be available to human experience. Indeed, two physically-different spectra can produce the 

same cone excitations, and these two lights must then necessarily appear the same to us – no 

subsequent processing can restore spectral distinctions that are not available at the first stage 

of light encoding [1]. This observation underlies our theoretical and practical understanding 

of color mixing, where mixtures of three primary lights may be used to elicit essentially the 

full gamut of color sensations. Indeed, this understanding is the basis of color recording and 

color reproduction technologies [e.g., the colors on televisions and computer displays are 

produced by mixtures of red, green and blue primaries, rather than be recreating the actual 

spectra we encounter in daily viewing; 2].

Although the textbook account is deep and correct, it also embodies an important 

simplification. In particular, it encourages the view that color vision may be understood 

without consideration of the spatial pattern of the images that reach the retina, that is that 
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color vision and pattern vision are in some sense independent processes. Under this view, it 

would be appropriate to study color vision for spatially uniform patches and pattern vision 

for grayscale (luminance) images, with any interactions between the two relegated as effects 

of interest only to specialists. Although there is no denying that we have learned much about 

both color and pattern vision through separate consideration of the two, there is also no 

doubt that there can be large and striking interactions between color and pattern vision 

(Figure 2).

This short review argues that there are fundamental reasons for interactions between color 

and pattern vision; that is, these interactions begin with a confounding of color and pattern 

information that occurs at the initial stage of visual encoding that unavoidably leads to 

tradeoffs between the acuity of color and pattern vision. Consideration of the implications of 

color-pattern encoding may yield important general insights about color vision and its 

evolution.

The Interleaved Cone Mosaic and Color-Pattern Information Loss

Figure 1B illustrates the arrangement of cones in a patch of retinal mosaic typical of the 

high-resolution human fovea. Several observations are noteworthy. First, although the 

mosaic as a whole is trichromatic, at each retinal location there is only one cone. That is, at 

its elementary spatial scale the retina is locally monochromatic rather than trichromatic: the 

trichromacy we experience for spatially-coarse stimuli must arise by neural comparisons that 

operate not only across cones of different classes but also across cones at different spatial 

locations.

Second, the L and M cones vastly outnumber the S cones; in a typical retina over 90% of 

cones will be L or M, with only a small fraction of S cones [3–6]. The small fraction of S 

cones is likely related to chromatic aberration in the eye’s optics, which lead to a much 

blurrier short wavelength retinal image relative to that at longer wavelengths [7]. Chromatic 

aberration is another form of color-pattern interaction in early vision, which we do not 

expand on in detail here. There are also typically more L cones than M cones (about 2:1 L to 

M), but this varies considerably across individuals [4].

Third, the arrangement of the L and M cones is quite irregular, close to random [4]. This 

leads to a retinal patchiness, with some local regions L dominated and others M dominated. 

This patchiness is not readily apparent in our everyday experience of color. This, as well as 

the variation across individuals in L:M cone ratio, suggests that neural processing must be 

tailored to the local arrangement of the cone mosaic to account for the local pattern of 

spatial sampling [8–10, see also 11].

It is worth emphasizing that although the interleaving of cones in the retina occurs at a fine 

spatial scale, the consequences of such interleaving can propagate to coarser scales. One 

way to appreciate this is to consider artifacts that occur in digital imaging, as digital cameras 

also generally employ a sensor design that interleaves elements with three distinct (R, G and 

B) spectral sensitivities. Figure 3A shows salient chromatic fringing artifacts that can occur 

in images acquired with such sensors. The reason is that interleaved sampling loses the 
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distinction between fine grayscale patterns (e.g. the herringbone pattern of the jacket) and 

coarse color patterns (e.g. the artifactual red-green pattern seen over portions of the jacket). 

The information loss can be understood by considering a simple example with just two 

sensor elements, one R and one G (Figure 3B,C top). A fine dark to light pattern across these 

two elements will produce a low response in the R sensor and a high response in the G 

element. The same low-to-high response pair will also be produced by a spatially-uniform 

green pattern, which will excite the G element more than its neighboring R 3B, bottom). 

Similarly, a light-to-dark grayscale pattern produces the same pair of sensor responses as a 

spatially-uniform red pattern (3C, bottom). Thus, fine grayscale patterns can be 

indistinguishable from coarse color patterns in the encoding of images by interleaved 

mosaics. In the image shown, this effect plays out as the jacket is imaged by the camera’s 

interleaved mosaic and the image is rendered by the camera’s software. Although a different 

camera image-rendering algorithm might have avoided the artifact shown, such an algorithm 

would then have been subject to rendering actual coarse color patterns as fine grayscale 

patterns, an equally salient error.

Implications for Perception

When we look at the world, we do not typically experience salient artifacts of the sort 

illustrated in Figure 3, even though our retinas consist of an interleaved cone mosaic. That 

said, there is a perceptual phenomenon known as Brewster’s colors [12], in which subtle 

colored splotches are sometimes seen when we look at fine black and white stripes. 

Experiments that explore Brewster’s colors suggest that they indeed have their origin in 

interleaved sampling by the cone mosaic, and that their subtlety is a consequence of 

sophisticated neural processing that minimizes our exposure to the information lost to us 

through interleaved sampling [13]. The exact nature of this processing remains mysterious, 

but recent theoretical and experimental approaches are now advancing our understanding 

and promise to inform us about the degree to which some color-pattern interactions may be 

ascribed to such processing.

Bayesian approach to reconstruction from samples.

At a broad level, an interleaved cone mosaic collects less information about the retinal image 

than a hypothetical “ideal” mosaic where all cone classes sample the retinal image at each 

location. The consequences of this depend strongly on the nature of the images that the 

visual system will view. If it were known, for example, that all environmental images were 

spatially uniform and varied only in color then the consequences of interleaved sampling 

would be negligible. Similarly, if it were known that there was no variation in image color so 

that all environmental images were grayscale, again there would be little consequence of 

interleaved sampling (and indeed, little need for more than one type of cone). In the actual 

case, where images vary in both color and pattern, the consequences of interleaved sampling 

depend on the spatio-chromatic regularities in natural images. These may be examined by 

using Bayesian methods [14], together with explicit models of natural image statistics and 

retinal image formation, to reconstruct the external image from the cone excitations [15]. 

Distortions in the reconstructions then provide hypotheses about the sorts of color-pattern 

interactions we might expect to find in human vision.
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An analysis along these lines [9] incorporated the known strong correlations between natural 

image values at nearby locations [16] and between the excitations of cones of different 

classes [17]. The results indicated, among other observations, that the human visual system’s 

well-known [18, 19] lack of sensitivity to high-spatial frequency chromatic patterns (both 

blue-yellow and red-green) may have its origins in the combined effect of optical chromatic 

aberrations and interleaved cone sampling.

Experiments with small spots.

Studying directly consequences of interleaved cone sampling has historically been difficult. 

The primary reason is that under normal circumstances, blurring of the retinal image as well 

as fixational eye movements prevent precise experimental control of the excitations of 

individual cones. It has also historically been difficult to determine the spectral class of any 

individual cone in the living retina.

Early insights were gained by study of the S-cone submosaic, whose distinct spectral 

sensitivity and spatial sparseness within the mosaic (Figure 1) make it more amenable to 

cone-specific selective stimulation [20, 21]. Another fruitful approach was the use of 

interferometric stimuli, which allowed presentation of high-contrast high-spatial frequency 

sinusoidal gratings on the retina. Resulting distortions of perceived spatial patterns revealed 

consequences of spatial sampling by the mosaic as a whole [22], but interactions between 

color and pattern remained difficult to assess [but see 19, 23].

Recently, however, techniques have been developed that promise much richer experimental 

understanding. Adaptive compensation of aberrations in the eye [24, 25], combined in some 

cases with real-time tracking of fixational eye movements [26, 27], now allow targeted 

stimulation of individual cones and groups of cones for psychophysical study [28, 29]. 

Wavelength-selective imaging using adaptive optics also enables determining the spectral 

class of individual cones in an individual’s eye [3–6].

Experiments using these techniques are now providing a wealth of fundamental information 

about color and spatial vision at the elementary spatial scale of the visual system. We now 

know that signals from individual cones can result in a reliable perceptual signal [28, 30], at 

least in the central visual field; that signals from multiple cones can be combined by neural 

processes to improve detection performance of small spots [31, see also 32]; and that there is 

variation in the color percept associated with stimulating different single cones of the same 

class [30]. For example, stimulation of one L cone in an observer’s retina results in reliable 

reports of perceived red, while stimulation of a different L cone leads to reliable reports of 

perceived white [33, see also 34].

This latter effect, which at first seems counter-intuitive, may be understood as a rather direct 

characterization of color-pattern interactions at the finest spatial scale available to the visual 

system, that of the cone mosaic. The general form of the interaction is consistent with the 

Bayesian image reconstruction analyses described above [9]. To provide intuition, Figure 4 

shows Bayesian reconstructions obtained from two model cone mosaics where incremental 

stimulation was provided to a single L cone. The figure shows an expanded view of two 

model mosaics, each with an L cone near its center. For each mosaic, we simulated the cone 
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excitations that would have occurred with incremental stimulation of the central L cone 

using adaptive optics, against an otherwise spatially uniform gray background. The cone 

excitations were then processed using a Bayesian image reconstruction algorithm that 

learned its prior from a dataset of natural images. Note that although the central L cone is 

excited in the same way in each case, the resulting reconstructions differ, particularly in their 

color appearance. The intuition for this is that different information about the stimulus is 

provided by the cones surrounding the single stimulated cone, and this information differs 

depending on the type of the cones in the local neighborhood of the stimulated cone. In one 

case, there are only L cones in the immediate neighborhood, and little direct information is 

available about stimulus color. In the other, the mix of L and M cones provides different 

information, leading the algorithm to a redder reconstruction, based on the low response of 

the nearby M cones. To implement the Bayesian reconstructions shown here, the prior was 

based on an independent-components analysis [35] of the CIFAR image dataset (https://

www.cs.toronto.edu/~kriz/cifar.html), and the distribution of the coefficients for each 

independent component was assumed to be exponential. The computation was implemented 

using cross-validated lasso regression [36] and by taking advantage of the ISETBio [37] 

software to determine the relation between training image data and the mosaic’s cone 

excitations; it will be described in detail in a future publication. See also Figures 7 and 8 in 

[9] and associated discussion. It is not yet clear the extent to which a Bayesian 

computational model is consistent in detail with current experimental results [see also 38]; 

this remains an exciting direction for future experimental and modeling work.

Mechanisms.

In work that parallels targeted single-cone psychophysics, it is now possible to measure 

individual cone inputs to single neurons in the visual pathways [39–41, see also 42]. This 

work seems likely to enable strong links between psychophysical results obtained with 

single cone stimulation and the neural mechanisms that mediate those results [see 43].

Evolution.

The selective advantages conveyed by color vision have received considerable treatment in 

the literature, particularly in the context of how color vision evolved and why it differs 

across species [44–46]. Less considered in this literature are the tradeoffs between color and 

pattern vision mandated when cones of different classes sample the retinal image in an 

interleaved fashion. As we understand more about how visual systems can and do optimize 

post-receptoral processing to handle the information loss imposed by interleaved sampling, 

and how this processing depends on the statistical structure of any given species’ visual 

ecology (both in terms of the statistical structure of scenes and in terms of what features of 

those scenes are behaviorally relevant), there should be an opportunity to bring consideration 

of interleaved sampling into the discussion. Such consideration may clarify when increased 

dimensionality of the color sensory apparatus (i.e. number of distinct receptor classes) is 

beneficial and when it is not [see 38, 47].
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Highlights

1. Color and pattern information are entangled by the initial stages of visual 

encoding.

2. Experiments at vision’s elementary spatial scale can now probe color-pattern 

interactions.

3. Computational models predict limits of vision imposed by optics and the 

interleaved cone mosaic.
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Figure 1. Trichromacy and the Interleaved Cone Mosaic.
A) The human retina contains three classes of cone photoreceptors, referred to as the long-

wavelength-sensitive (L), middle-wavelength-sensitive (M) and short-wavelength-sensitive 

(S) cones. Each class of cones has a distinct spectral sensitivity, so that the relative 

excitations of the three classes depends on the spectrum of the incident light. B) Schematic 

of human foveal cone mosaic. There are approximately 2 L cones (red) for every M cone 

(green), while S cones make up only a small fraction of the mosaic (about 5%). The 

arrangement of S cones depicted is semi-regular; the actual S-cone mosaic may be less 

regular than shown. There are no S cones in the central portion (here 0.3 deg) of the fovea. 

The algorithm used to generate this model mosaic is described in [37]. Figure courtesy of 

Nicolas Cottaris.
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Figure 2. Interactions between space and color.
A) The panel shows an example of color assimilation. The two reddish bars have the same 

RGB values, but appear quite different. This difference is a consequence of where the 

reddish bars are inserted into the blue-yellow grating. B) Color assimilation depends on 

spatial pattern. The reddish bars again have the same RGB values as each other (and the 

same RGB values as the reddish bars in A), and the RGB values of the blue-yellow grating 

are also matched those in A. The effect of assimilation is reduced in B, as compared to A. 
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See [48] for discussion of possible mechanisms underlying color assimilation. Comparison 

of the panels also reveals a difference in the color appearance of the blue and yellow bars.
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Figure 3. Color-pattern artifacts.
A) A digital color image taken with a camera that employed an interleaved RGB sensor 

design. Note the green-red color artifacts on the jacket. The subject’s face has been 

intentionally distorted to protect identity; that distortion is not what is being illustrated here. 

[Panel A reproduced with permission from 9.] B) A high-spatial-frequency grayscale pattern 

can produce the same low/high alternation of sensor responses as a low-spatial-frequency 

green pattern, for a simple two-pixel RG interleaved sensor. C) When the phase of the high-

spatial-frequency pattern is shifted relative to the sensor, the grayscale pattern produces the 

same high/low alternation of sensor responses as a low-spatial-frequency red pattern. The 

type of effects illustrated in panels B and C lead to the red-green artifacts shown in A. 

[Panels B and C reproduced with permission from 38.]
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Figure 4. Bayesian small spot reconstructions.
Expanded view of two cone mosaics with an L cone near the center (left column). 

Corresponding Bayesian image reconstructions based on the cone excitations of each 

mosaic. The reconstructions for incremental stimulation of a single L cone (circled in black 

in each case) are quite different, as they depend on the responses of the whole mosaic and 

the information carried by the two mosaics differ. See main text for additional description. 

Figure courtesy Lingqi Zhang.
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