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Abstract

To address how the microbiome might mediate the interaction between diet and cardiometabolic 

health, we analyzed longitudinal microbiome data from 307 male participants in the Health 

Professionals Follow-Up Study, together with long-term dietary information and measurements of 

biomarkers of glucose homeostasis, lipid metabolism, and inflammation from blood samples. We 

demonstrate that a healthy Mediterranean-style dietary pattern is associated with specific 

functional and taxonomic components of the gut microbiome, and that its protective associations 

with cardiometabolic health vary depending on microbial composition. In particular, the protective 
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association between adherence to the Mediterranean diet and cardiometabolic disease risk was 

significantly stronger among participants with decreased abundance of Prevotella copri. Our 

findings advance the concept of precision nutrition and have the potential to inform more effective 

and precise dietary approaches for the prevention of cardiometabolic disease mediated through 

alterations in the gut microbiome.

Introduction

Cardiometabolic disease, including both cardiovascular disease (CVD) and type 2 diabetes 

(T2D), are top contributors to the burden of disease in the US1 and globally2. Recent studies 

in humans have linked personalized microbial metabolism and immune interactions of the 

gut microbiome with risk of cardiometabolic disease3–7. This leads to the hypothesis that 

specific diets can have highly variable effects on individual cardiometabolic disease risk as a 

result of the individualized nature of the gut microbiome8–10. However, few studies have 

formally tested not only whether gut microbial profiles respond to dietary interventions, but 

whether the gut microbiome can in turn modulate the association between diet and 

cardiometabolic disease risk.

Testing these hypotheses in an integrated manner is key for improving human health via 

dietary modification since the gut microbiome explicitly engages in a bidirectional 

relationship with diet. On one hand, gut microbial composition and biosynthetic capacity are 

responsive to host diet11,12; on the other, microbes in turn influence nutrients reaching the 

host through the metabolism of food13. In general, most short-term dietary changes tend to 

have very large effects in animal models14,15, while only extreme dietary changes induce 

modest effects in typical adult humans11,16. Dietary patterns can have larger effects on the 

early life, developing infant microbiome17,18 or in highly variable, traditional diet 

populations12,19, but these are unusual relative to the much smaller role that typical long-

term dietary patterns play in shaping an individual’s gut microbial makeup16,20,21. 

Additionally, long-term diet is often of greatest interest in the study of chronic disease given 

the long induction periods for CVD and T2D. However, the lack of long-term dietary 

measurements in current diet-microbiome studies is a significant impediment to well-

conducted studies exploring their two-way relationship.

Relatedly, the Mediterranean diet (MedDiet), characterized by intake of fruits, vegetables, 

nuts, legumes, and olive oil, fewer red meats and refined grains, and low-to-moderate wine 

consumption22, has been recommended for the prevention of CVD and T2D23,24. The 

randomized PREDIMED trial provided causal evidence that the MedDiet, compared to a 

low-fat diet, lowers risk of CVD by 30% at 5 years25. Several studies suggest that the 

MedDiet differs from typical Western dietary patterns in their associations with gut 

microbial taxonomy8,26,27. More recently, two intervention studies linked MedDiet to a 

number of taxonomic features, such as increased abundance of Faecalibacterium prausnitzii 
and Roseburia and decreased abundance of Ruminococcus gnavus, Collinsella aerofaciens, 

and Ruminococcus torques26,27. However, a majority of existing studies are limited by the 

use of 16S ribosomal RNA gene sequencing processed to yield only very general taxonomic 
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profiling (e.g. phyla or genera) and, consequently, omit strain-specific diet-related 

biochemical functionality of microbes.

In this study, we analyze the interplay of a MedDiet, the gut microbiome, and 

cardiometabolic disease risk in a subpopulation of over 300 men from the long-running 

Health Professionals Follow-up Study28. The primary goal of this study is to understand 

whether the association between the adherence to the MedDiet and cardiometabolic disease 

risk varies in individuals with different gut microbial profiles, with a secondary goal of 

understanding the MedDiet’s influence on the gut microbiome. We first quantified each 

participant’s adherence to the MedDiet based on dietary information collected every four 

years across nearly three decades. Second, we combined this with taxonomic and functional 

profiling from stool metagenomes and metatranscriptomes collected longitudinally from up 

to four time points per individual. Third, we identified gut microbial species and functions, 

i.e., the enzymes and pathways encoded and transcribed by gut bacteria, differentially 

abundant among participants with varying degrees of adherence to the MedDiet. Lastly, we 

assessed each participant’s cardiometabolic disease risk using biomarkers of glucose 

homeostasis, lipid metabolism, and inflammation measured on blood samples. We found the 

protective association of the MedDiet with cardiometabolic disease risk was particularly 

strong in participants with gut microbiomes depleted of Prevotella copri. This represents one 

of the first demonstrations in human subjects of not only long-term diet’s influence on the 

gut microbiome, but also of diet-driven chronic disease risk being modulated by the gut 

microbiome.

Results

Diet, the gut microbiome, and cardiometabolic disease risk assayed in an epidemiological 
study with prolonged follow-up

To study the potential role of the gut microbiome in modulating the protective association of 

a MedDiet with cardiometabolic disease risk, we assessed a cohort of 307 generally healthy 

men from the Men’s Lifestyle Validation Study (MLVS) with detailed dietary assessments, 

stool, and blood samples (Fig. 1 and Methods). The MLVS is a subpopulation of the long-

running Health Professionals Follow-Up Study (HPFS, https://sites.sph.harvard.edu/hpfs/).

To profile the microbiome in this population, 307 MLVS participants provided fecal samples 

from up to two paired collections six months apart from 2011 to 2013, which yielded 925 

shotgun metagenomes and 340 shotgun metatranscriptomes (Fig. 1 and Methods)28. 

Taxonomic profiling using MetaPhlAn 229 quantified a total of 468 microbial species across 

all subjects (prior to quality control, Methods). Functional profiling using HUMAnN 230 

assigned 75.3% of all DNA reads and 64.1% of all RNA reads to UniRef90 gene families, 

54.8% and 58.1% of which possessed functional characterization, respectively, and 10.7% 

and 13.2% of characterized gene families were assigned to MetaCyc pathways as previously 

described28.

We repeatedly administered up to nine validated semi-quantitative food frequency 

questionnaires (FFQs) to collect dietary information during the preceding one year in our 

study participants from 1986 through 2013. From 1986 to 2010, dietary information was 
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collected every four years. From 2011 to 2013, two FFQs were each administered three 

months before and after the biospecimen collections in the MLVS. A vast majority of the 

participants provided dietary information all nine times (n=271; Supplementary Table 1). To 

best represent long-term habitual diet, we calculated cumulative average intake by summing 

up the intake levels from all available FFQs and then dividing the sum by the number of 

FFQs.

The MLVS also collected blood samples at up to two time points and measured hemoglobin 

A1c (HbA1c) and plasma triglyceride, total cholesterol, high-density lipoprotein-cholesterol 

(HDL-C), and high-sensitivity C-reactive protein (hs-CRP, Methods). This study included 

304 participants who provided 468 blood samples in the analyses that involve blood 

biomarkers (Supplementary Table 1).

Adherence to a Mediterranean-style healthy dietary pattern covaries with composition and 
function of the gut microbiome

Each participant’s adherence to the MedDiet was evaluated by a 9-dimensional MedDiet 

index with a possible range from 0 (non-adherence) to 9 (perfect adherence, Methods, 

Supplementary Table 2 and Extended Data Fig. 1a)22,31. As expected, participants who had a 

higher adherence to MedDiet consumed more beneficial components of the MedDiet, 

including whole grains, vegetables, fruit, nuts, legumes, fish, and monounsaturated fats (at 

the expense of saturated fats); they correspondingly consumed less red and processed meat, 

a detrimental component of the MedDiet index (Fig. 2a and Supplementary Table 3). The 

food and nutrient components of the MedDiet index were correlated with each other at weak 

to moderate magnitudes (Spearman correlation coefficient ranges from −0.44 to 0.45, 

Extended Data Fig. 1b). All participants were included in subsequent analyses regardless of 

their MedDiet index.

Overall, the 10 most abundant species together accounted for an average of 46% of 

community abundance (Fig. 2b and Supplementary Table 4). The most prominent patterns of 

gut microbial taxonomic variation in the population included the expected tradeoff between 

Bacteroidetes (e.g. Bacteroides uniformis) and Firmicutes (e.g. Subdoligranulum 
unclassified)32, as well as the expected P. copri-enriched subpopulation (Extended Data Fig. 

2). P. copri has been previously observed to follow unusual ecological distribution patterns 

in Western populations, with the clade completely or near-absent in most individuals, but 

highly abundant in the remaining minority of carriers33–35. Here, this pattern was detected 

and proved to interact with the MedDiet and cardiometabolic disease risk in our study (see 

below). The most abundantly encoded and transcribed functions generally represented 

common housekeeping processes, such as the metabolism of carbohydrates, nucleic acids 

and nucleotides, vitamin biosynthesis, and genetic information processing (Fig. 2c–d and 

Supplementary Table 4). In general, the species encoding and transcribing these abundant 

pathways and enzymes were themselves highly prevalent and/or abundant, including F. 
prausnitzii, P. copri, B. uniformis, and Eubacterium rectale (Supplementary Table 5).
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Mediterranean diet adherence has modest but significant effects on overall microbiome 
configuration and specific microbial species

Although the MedDiet index was not a major driver of overall structural variation of the gut 

microbiome (Fig. 3a), PERMANOVA testing (n =999 permutations) revealed that its 

association was significant with respect to both taxonomic [q (false discovery rate adjusted 

p-value) <0.005, Fig. 3b] and enzymatic structure (p =0.001), but not enzymatic 

transcription (p =0.16). This is concordant with long-term dietary intake exerting a gradual 

selective pressure on the adult gut microbiome, with transcriptional regulatory responses 

instead influenced by more localized stimuli. The small overall percentage of variation 

explained by the dietary pattern (0.7%) was comparable in magnitude with other large-scale 

investigations16,21. Among the dietary factors, covariables, and cardiometabolic biomarkers 

considered in this analysis, the MedDiet index accounted for the third largest proportion of 

variation in taxonomy (Fig. 3b). Furthermore, the MedDiet adherence was associated with a 

higher percentage of variation in taxonomy than several covariables previously reported to 

have strong influences on the gut microbial communities, such as antibiotic use36 (0.4%) 

and the Bristol stool scale16 (0.5%), although neither of these were commonly present or 

variable in this generally healthy population. In a secondary analysis, we found no 

medications explained more than 1%, with most <0.5%, of overall variation of the gut 

microbiome (Supplemental Fig. 1). We found no association between the adherence to the 

MedDiet and the diversity of the gut microbiome (p =0.21; Extended Data Fig. 3).

We performed per-feature testing to identify microbial species associated with the MedDiet 

using linear mixed models in MaAsLin 2. These account for within-individual correlation 

from the study’s repeated sampling design, as well as occasional missing observations at 

some time points (Methods). All models included each participant’s identifier as random 

effects and simultaneously adjusted for potential confounders including total energy intake, 

age, physical activity level, smoking, probiotics use, medication use including antibiotics, 

proton pump inhibitors, aspirin, statins and metformin, and the Bristol stool scale as fixed 

effects. A total of 40 species-level features from four phyla were significantly associated 

with the MedDiet index or one of its components (q ≤0.25; Fig. 3c and Extended Data Fig. 

4). Generally, the associations for plant-based foods were in the opposite direction compared 

the associations for red/processed meat intake (Fig. 3d and Supplementary Table 6). The 

MedDiet index was positively associated with several abundant dietary fiber metabolizers 

and short-chain fatty acid (SCFA) producers, including F. prausnitzii, Eubacterium eligens, 

and Bacteroides cellulosilyticus37. We observed inverse associations of the MedDiet index 

with species such as R. torques, Clostridium leptum and C. aerofaciens. Prior efforts have 

linked R. torques and select Collinsella and Clostridium species with Western-style diets and 

red meat intake, respectively38–41. We did not find that the MedDiet index or its components 

was significantly directly associated with the abundance of P. copri. Among the components 

of the MedDiet, whole grains, vegetables, fruits and red/processed meat were the major 

driving forces of the associations between the overall dietary pattern and the microbial 

features (Fig. 3c).
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Mediterranean diet adherence particularly influences microbial plant polysaccharide 
degradation potential, short-chain fatty acid production, and pectin metabolism

We next investigated the MedDiet in relation to the functional potentials of the gut microbial 

communities, i.e., enzymes and metabolic pathways quantified from metagenomes. We 

found that the MedDiet or its components were significantly associated with 36 pathways 

(Extended Data Fig. 5) and 188 enzymes (Extended Data Fig. 6). Concordant with the fact 

that the MedDiet is a predominantly plant-based diet, the most prominent findings were 

enrichments of microbial functions for the degradation of specific dietary fibers and SCFA 

fermentation in individuals with greater MedDiet adherence. The MedDiet index was 

positively associated with the abundance of D-fructuronate degradation (PWY-7242, Fig. 

4a), one mechanism for degrading pectin, a group of soluble fibers rich in fruits and some 

vegetables; this was also true for some individual constituent enzymes of the pathway, e.g., 

2-dehydro-3-deoxygluconokinase (EC 2.7.1.45, Fig. 4b and Supplementary Table 6). 

Similarly, the mannan degradation pathway (PWY-7456) and an enzyme (EC 5.4.2.8: 

Phosphomannomutase) within the pathway were more abundant in individuals with greater 

MedDiet adherence; this is a component of hemicellulose degradation, an insoluble fiber 

embedded in almost all plant cell walls. Lignin is a group of non-carbohydrate phenolic 

polymers that is ubiquitously embedded in the plant cell wall and cross-links pectin, 

cellulose, and hemicellulose42. We identified a strong positive association between the 

MedDiet index and the abundance of a key enzyme in the breakdown of lignin-derived 

aromatics (EC 5.5.1.1: Muconate cycloisomerase), further supporting that the influence of 

the MedDiet on microbial functions could be attributed to its high-fiber content. Gut 

microbiomes in participants with a greater MedDiet adherence were also enriched for 

metabolic processes that yield SCFAs, end-products of fiber fermentation that act as 

signaling molecules and play important roles in regulating host metabolism, immunity, and 

cell proliferation43 (e.g., pyruvate fermentation to acetate and lactate II, PWY-5100). As 

expected, these pathways and their constituent enzymes were largely contributed by diverse 

anaerobic fiber metabolizers differing among subjects, such as F. prausnitzii and E. rectale, 

with several exceptions such as the pyruvate:ferredoxin oxidoreductase (EC 1.2.7.1) that was 

contributed by a multitude of organisms due to the fact that it is also involved in numerous 

other basic biochemical processes (Fig. 4b). Conversely, we found that a lower adherence to 

the MedDiet was associated with enrichment of the secondary bile acid biosynthesis 

potential. The bile-acid 7α-dehydroxylase (EC 1.17.98.1) that carries out the removal of the 

7α-hydroxy group from primary bile acids44, encoded mainly by C. aerofaciens, was 

enriched in participants with low MedDiet adherence, especially those with high red/

processed meat intake (Fig. 4b). The products of the enzyme, deoxycholate and lithocholate, 

are among the most well-studied secondary bile acids and can be hepatotoxic at elevated 

levels45,46. Interestingly, the lactose and galactose degradation pathway I (LACTOSECAT-

PWY) and a constituent enzyme of the pathway (EC 3.2.1.85: 6-phospho-β-galactosidase) 

showed lower abundance in individuals with a higher MedDiet index (Fig. 4b), consistent 

with low dairy food consumption being a key feature of the MedDiet22 (Extended Data Fig. 

1b).

As above, long-term adherence to the MedDiet was generally associated with more 

substantial shifts in metagenomic functions than in metatranscriptomic responses, 
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concordant with the latter typically regulating more short-term effects. Thus only a few 

microbial enzymes (n=46) were differentially transcribed relative to their genomic 

abundances with varying degrees of adherence to the MedDiet (Extended Data Fig. 7). This 

is also possibly attributable to decreased power, given our smaller subset of 

metatranscriptomic profiles. Nevertheless, MedDiet diet was associated with the 

transcription of several additional enzymes involved in the degradation of pectin (Fig. 4c). 

The positive associations were largely driven by the strong associations of higher intake of 

fruits, major food sources of pectin, with higher expression levels of the enzymes 

(Supplementary Table 6). Consistent with prior reports that dietary pectin was degraded by 

coordinated enzymic activities in Bacteroides spp.47, the pectinolytic enzymes were mainly 

encoded and transcribed by B. dorei, B. ovatus, B. uniformis, and B. vulgatus. with similar 

species compositions between metagenomes and metatranscriptomes. F. prausnitzii was also 

among the major contributors to the DNA profiles of L-rhamnose isomerase (EC 5.3.1.14) 

and 5-dehydro-4-deoxy-D-glucuronate isomerase (EC 5.3.1.17), but this species, compared 

to the Bacteroides spp., was less active in transcribing the two enzymes.

Prevotella copri carriage modulates the protective association of a Mediterranean diet with 
cardiometabolic health

To evaluate each participant’s cardiometabolic disease risk, we derived a composite score 

that summarized levels of biomarkers of three well-established mechanisms underlying the 

pathogenesis of CVD and T2D: dyslipidemia, hyperglycemia, and inflammation. In a 

prospectively designed case-control study of 396 myocardial infarction (MI) cases and 843 

controls from the HPFS (10 years of follow-up; Methods), we showed significant and strong 

associations of all the biomarkers with the risk of incident MI, a clinical endpoint of CVD 

(Supplementary Table 7). We first categorized participants into quintiles of each blood 

biomarker level, ranking HbA1c and plasma levels of total cholesterol, triglyceride, and hs-

CRP from lowest to highest with scores from 1 to 5. For HDL-C (“good” cholesterol), we 

reversed the scoring. A cardiometabolic disease risk score was then calculated by summing 

up these components, with a higher score indicating a higher risk of cardiometabolic disease. 

As expected, the cardiometabolic disease risk score was a strong predictor of incident MI in 

the case-control study described above. Participants in the highest quintile of the score had 

more than four times the risk of incident MI compared to those in the lowest quintile [risk 

ratio (RR) =4.05, 95% confidence interval (CI), 2.51–6.52, p trend = 9.3*10−9; 

Supplementary Table 7] during 10 years of follow-up. In addition, the adherence to the 

MedDiet was inversely associated with the cardiometabolic disease risk score as expected (p 

trend =0.04; Fig. 5a and Extended Data Fig. 8).

We then followed a statistical framework for testing interaction/effect modification widely 

used in population-based studies48,49 to examine whether the known association between the 

MedDiet and cardiometabolic disease risk differs in individuals with different gut microbial 

profiles. We initially carried out hypothesis generation by summarizing overall gut 

community structure using principal component loading scores and testing their potential 

interactions with the MedDiet index in a linear mixed model with the cardiometabolic 

disease risk score as outcome. We found that the inverse association of the MedDiet index 

with the cardiometabolic disease risk was more pronounced in participants with a lower 
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PCo1, weaker in participants with a higher PCo1 (p interaction=0.001, Fig. 5a and 

Supplementary Table 8). Upon investigating this result more specifically, PCo1 loading was 

accounted for predominantly by P. copri abundance (Spearman correlation between PCo1 

loading and P. copri abundance =0.61, Fig. 5b), and the interaction between MedDiet index 

and the carriage of P. copri in particular was independently significant (p for interaction 

=0.046), whereas we did not find significant interactions between the MedDiet index and 

other highly abundant species (Extended Data Fig. 9). Since P. copri is known to have 

distinct subspecies genetic architectures, primarily in non-Westernized populations33,34, we 

next tested whether this was a potential contributor to its interaction with the MedDiet index 

in our study population. Notably, since this population consists uniformly of adult white 

males, we would expect a preponderance of P. copri Clade A (in addition to more subtle 

between-subject strain variability). Based on a comparison of pangenome carriage between 

P. copri in this study population and that from controls in the Integrative Human Microbiome 

Project (Methods)50, both consisted entirely of Clade A as expected (Supplementary Fig. 

2)33.

Notably, we found similar patterns of interactions between the MedDiet index and P. copri 
abundance in relation to several individual cardiometabolic biomarkers as well (Extended 

Data Fig. 10, p for interaction =0.03 for hs-CRP, 0.02 for total cholesterol, 0.25 for 

triglyceride, 0.009 for HbA1c, and 0.69 for HDL-C). To understand the clinical relevance of 

our findings, we quantified the predicted risk of MI associated with the MedDiet index in P. 
copri carriers vs. noncarriers by combining the association of the MedDiet index with the 

cardiometabolic disease risk score with the RR of MI associated with the cardiometabolic 

disease risk score estimated from the prospective case-control study of MI (Methods). A 4-

unit increment in the MedDiet index was associated with a 18% lower risk of MI (RR =0.82, 

95% CI, 0.69–0.95, p =0.02) in P. copri noncarriers, but a non-significant 30% increase in 

MI risk (RR =1.30, 95% CI: 0.83–2.07, p =0.26) in P. copri carriers (Fig. 5c). This finding 

provides evidence that gut microbial functions and taxa may not only respond to dietary 

intake, but specifically interact with it to modulate resilience to diet-induced cardiometabolic 

disease risk, supporting the promise of tailoring dietary interventions on the basis of 

individualized nature of gut microbiome to achieve more effective prevention of 

cardiometabolic disease.

Discussion

Here, we demonstrate that long-term adherence to a healthy Mediterranean-style dietary 

pattern was associated with small but significant effects on the overall gut microbiome 

profiles, composed of phylogenetically diverse organisms carrying pathways including 

plant-derived polysaccharide degradation, SCFA production, and secondary bile acid 

production. Several major dietary fiber metabolizers, such as F. prausnitzii and B. 
cellulosilyticus, as well as their functions that break down specific dietary fibers 

(particularly pectin), were enriched in the gut microbiomes of participants with greater 

adherence to the MedDiet. Our study also linked high MedDiet adherence (particularly in 

association with low red / processed meat intake) to the depletions of several niche- and 

subject-specific biochemical specialists such as C. leptum and C. aerofaciens, and functions 

including secondary bile acid biosynthesis. Notably, our study identified a significant 
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interaction between a healthy dietary pattern and the gut microbiome in relation to the 

cardiometabolic disease risk. A particularly strong protective association between the 

MedDiet and risk of cardiometabolic disease among a subgroup of the participants could be 

explained by the absence of P. copri in their gut microbiomes. This finding supports the 

premise that dietary interventions or recommendations for cardiometabolic disease 

prevention could be tailored to an individual’s microbial profile. Future prevention 

approaches, for example, might emphasize healthy eating for individuals lacking substantial 

P. copri carriage, while physical activity or pharmaceuticals (e.g., statins) may be more 

effective for P. copri carriers.

Although it is not possible to determine whether the MedDiet causally selected for gut 

microbial features from this observational study, our data indirectly permit fairly specific 

speculation and hypothesis generation. For example, our findings support that the MedDiet 

plays a role in regulating conversion of primary to secondary bile acids39,51 and bile acid 

pool composition through negative selection of taxa including C. aerofaciens. Given the 

hormone-like functions of bile acids through activation of nuclear and G protein-coupled 

receptors, a dysregulated bile acid pool can lead to perturbations in multiple pathological 

processes underlying cardiometabolic disease such as lipoprotein metabolism and glucose 

homeostasis52. In addition, we find that high pectin content, particularly fruit-derived, may 

partially explain the MedDiet’s role in shaping gut microbial function53, as indicated by the 

enrichment of pathways for pectin degradation and transcription of pectinolytic enzymes in 

individuals with greater MedDiet adherence. The broadly microbiome-produced and 

immunomodulatory SCFAs are a prominent end-product of pectin fermentation43,54.

Importantly, the study also sheds important light on the emerging, unique role of Prevotella 
spp. in the human gut, particularly the ability of MedDiet to mitigate cardiometabolic 

disease risk in the absence of P. copri. P. copri has been of particular interest in the human 

gut microbiome for several reasons. First, P. copri is among the only discrete gut community 

“enterotypes” consistently identified in the human population55. Second, P. copri may either 

confer health benefits or associate with disease risk in different populations9,56. Related to 

our findings, the causal association of P. copri with upregulated biosynthesis of branched-

chain amino acids in the gut and subsequent host insulin resistance identified by Pedersen et 

al6 may partially explain the null association of the MedDiet adherence with the risk of 

cardiometabolic disease in P. copri carriers, since they have already developed insulin 

resistance and are less sensitive to a healthy diet pattern. Third, P. copri possesses a unique 

global distribution of subspecies with different clades identified primarily by 

ethnogeographic backgrounds33 and each clade carrying distinct enzymes for degradation of 

dietary fiber and amino acids33,34. It is not clear whether the interaction between diet and P. 
copri carriage was caused by the microbe itself, for example due to an enhanced capacity for 

polysaccharide fermentation9. Alternatively, it could be attributable to jointly causal external 

dietary factors (e.g., an unhealthy dietary pattern that might simultaneously increase 

cardiometabolic disease risk and select for P. copri) or possibly completely independent 

factors (e.g., populations with culturally reduced cardiometabolic risk and P. copri 
exposure). Furthermore, because of the observational nature of our study, we cannot 

distinguish between two alternative hypotheses: in individuals who do not carry P. copri, the 

gut microbiome may metabolize components of the MedDiet more efficiently and 
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effectively, leading to higher yields of cardioprotective chemical products; or individuals 

who adhere to the MedDiet are less likely to acquire or retain P. copri, which is then itself 

independently cardioprotective.

Notably, our analysis did not identify a significant association between the MedDiet and the 

abundance or carriage of P. copri, only the interaction between diet and P. copri carriage with 

cardiometabolic disease risk. This is concordant with, for example, pre-existing P. copri 
carriage (not necessarily itself influenced by recent diet) changing the metabolites produced 

in the gut from components of the MedDiet, which may in turn have cardioprotective roles. 

Simple carriage of P. copri in the gut microbiome has, on the other hand, been identified as 

enriched during adherence to a traditional Asian diet35, and its presence and exact genetic 

composition varies widely around the globe with respect to geographic origins and 

lifestyles33. Other subclades of P. copri may thus not interact with components of the 

MedDiet as do those in this population’s Clade A, for example, and there may be additional 

sub-clade genetic variation in enzymatic potential for polysaccharide degradation that 

further modifies this behavior within individuals33,34. Importantly, our finding of the 

interaction between a dietary pattern and P. copri has the potential to explain conflicting 

prior results regarding its ability to improve glucose homeostasis6,9,56 and inflammation 

status57, since these properties now appear to be diet-dependent6.

Nevertheless, we again stress that this study is observational in nature, a limitation shared by 

many such molecular epidemiological investigations. As with similar microbiome 

epidemiology profiles, even though we adjusted for many potential confounders in our 

statistical models, we were unable to assess covariates such as specific prebiotic usage, and 

even when these covariates are included most inter-individual variation in microbiome 

remains unaccounted for16,21,58. Additionally, our study focused on biomarkers of 

cardiometabolic disease rather than “hard” clinical endpoints of type 2 diabetes and 

cardiovascular disease, which might limit the directly translational potential of our findings, 

although these biomarkers are among the best available predictors of the diseases and 

sometimes included in diagnosis criteria (e.g. HbA1c). Our study also provided empirical 

data to show the strong predictive ability of these biomarkers for incident myocardial 

infarction and the translational potential of these findings. Even if the resulting microbial 

biomarkers are not used directly in the clinic, however, they provide valuable insights into 

the mechanisms underlying host-microbiome interaction and disease severity and 

progression.

These limitations could be addressed by following this work with a combination of “top 

down” human interventional studies and “bottom up” model system experiments. The 

former could assess both changes in the risk of cardiometabolic disease in subjects with 

diverse baseline microbiomes (with and without P. copri) after a MedDiet intervention, as 

well as microbiome changes after such an intervention. The latter could include perturbing 

multiple different subtypes of P. copri in culture with alternate plant-derived polysaccharide 

sources (e.g., pectin, cellulose, lignin, resistant vs. regular starches vs. monosaccharides) to 

assess growth or metabolism or doing the same in monocolonized or humanized gnotobiotic 

mice. Together, such work would characterize both the specific microbial biochemistry 

responsible for P. copri-linked MedDiet cardiometabolic risk, and its in vivo health 
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relevance. Furthermore, it is likely that this diet-microbe-phenotype interaction is only one 

instance of a pattern that may recur between many microbial functions, dietary elements, 

and health outcomes, enabling a clearer overall paradigm for personalized microbially-

mediated health maintenance and, eventually, disease therapy.

Methods

Study population and stool sample collection

The Men’s Lifestyle Validation Study (MLVS) consisted of 914 men aged 45 to 80 years 

and free from coronary heart disease, stroke, cancer, or major neurological disease at 

recruitment in 2011. The MLVS study population was randomly sampled from the Health 

Professionals Follow-up Study (HPFS), an ongoing prospective cohort study of 51,529 US 

male health professionals initiated in 1986 (https://sites.sph.harvard.edu/hpfs/). From 2011 

to 2013, 307 participants provided up to two pairs of self-collected stool samples in the 

MLVS. Each pair of stool samples were collected from two consecutive bowel movements 

24–72 hours apart. The second pair of samples was collected approximately six months after 

the first collection. Details on stool sample collection and immediate ex-situ conservation of 

metagenomic and metatranscriptomic components, laboratory handling, and paired-end 

shotgun sequencing of RNA and DNA can be found in our previous publications28,59,60. 

Briefly, each participant placed each bowel movement into a container with RNAlater and 

completed a questionnaire detailing the date and time of evacuation and other relevant 

exposures. The study participants classified the form of their bowel movements according to 

the Bristol stool scale at time of fecal sample collection. The stool samples were shipped 

overnight to the sequencing center at the Broad Institute of MIT and Harvard and stored in 

−80 °C freezers until nucleic acid extraction. Metagenomes and metatranscriptomes were 

obtained by using Illumina HiSeq paired-end (2 × 101 nucleotides) shotgun sequencing 

platform. DNA was extracted from all 929 resulting samples, in addition to RNA from a 

subset of 372 samples spanning 96 participants who provided samples during both sampling 

periods and did not report the use of antibiotics within the past year. Our study included data 

from 307 participants in the analysis on diet and gut microbiome. Among 307 participants, 

152, 14, 134 and 7 participants provided four, three, two and one stool samples, respectively. 

Additional details on study design can be found in the Life Sciences Reporting Summary. 

The study protocol was approved by the Institutional Review Boards of the Brigham and 

Women’s Hospital and the Harvard T.H. Chan School of Public Health (IRB protocol 

number: HSPH 22067-102). The MLVS obtained written informed consent from all 

participants.

Dietary assessment and covariate measurement

In the HPFS, dietary information was collected at baseline of 1986 and updated every 4 

years thereafter with validated semi-quantitative food frequency questionnaires (SFFQs) 

developed by Willett et al61. From 2011 to 2013, two FFQs were each administered three 

months before and after the biospecimen collection in the MLVS. Among 307 study 

participants, 271 and 35 individuals provided nine and eight SFFQs, respectively. Only one 

participant provided five SFFQs (Table S1). Participants reported their usual dietary intake 

(from never to ≥6 times per day) of a standard portion size (e.g., 0.5 cup of strawberries, 1 
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banana and 0.5 cup of cooked spinach) during the preceding one year on each SFFQ. 

Frequencies and portions of each individual food item were converted to average daily 

intake for each participant. The reproducibility and validity of these SFFQs in measuring 

dietary intake have been documented in detail61–63. Nutrient values were calculated based 

on the Harvard University Food Composition Database, which is updated every 4 years 

(https://regepi.bwh.harvard.edu/health/nutrition/). We calculated average daily nutrient and 

total energy intakes by multiplying the frequency of consumption of each item by its nutrient 

content and summing across all foods. For this analysis, we calculated cumulative average 

dietary intake for each participant by summing up the intake levels from all available FFQs 

and then dividing the sum by the number of FFQs. We applied a validated standard 

questionnaire64 to collect detailed information on physical activity level, and a questionnaire 

inquiring each participant’s medication use in the past year. Smoking status and prebiotic 

use were also self-reported by the participants.

Measurement of adherence to a Mediterranean dietary pattern

We applied a Mediterranean diet (MedDiet) index to measure the degree of adherence to the 

traditional dietary pattern consumed in the Mediterranean region. The MedDiet index was 

created based on the Mediterranean diet pyramid that captures food patterns typical of Crete, 

much of the rest of Greece, and southern Italy in the early 1960s, where adult life 

expectancy was among the highest in the world and rates of coronary heart disease, certain 

cancers, and other diet-related chronic diseases were among the lowest22.The MedDiet index 

was initially developed by Willett et al.22 and Trichopoulou et al.65 and then modified by 

Fung et al.31. The index was based on the intake of 9 items: vegetables, legumes, fruit, nuts, 

whole grains, red/processed meat, fish, alcohol, and the ratio of monounsaturated to 

saturated fat. For beneficial components (vegetables, legumes, fruit, nuts, whole grains, fish, 

and the ratio of monounsaturated to saturated fat), individuals whose consumption was 

below the median were assigned a value of 0, and those whose consumption was at or above 

the median were assigned a value of 1. For red/processed meat intake, participants whose 

consumption was below the median were assigned a value of 1, and those whose 

consumption was at or above the median were assigned a value of 0. For alcohol 

consumption, a value of 1 was assigned to men who consumed between 10 and 25 g per day 

per day, and those whose consumption was in other ranges were assigned a value of 0. The 

MedDiet index opted to use the ratio of monounsaturated to saturated fat, rather than 

polyunsaturated to saturated fat ratio, to measure quality of fat intake because 

monounsaturated fats, primarily from olive oils, are consumed in much higher quantities 

than polyunsaturated fats (major sources include soybean and canola oils) in Mediterranean 

region. The total MedDiet index ranged from 0 (minimal adherence) to 9 (perfect 

adherence).

Taxonomic and functional profiling of metagenomic and metatranscriptomic samples

Taxonomic and functional profiles were generated by applying the bioBakery meta’omics 

workflow66. All the microbiome measurements were taken from distinct stool samples. 

Sequence reads were passed through the KneadData 0.3 quality control pipeline (http://

huttenhower.sph.harvard.edu/kneaddata) with default parameters to filter out low-quality 

read bases and reads of human origin. Taxonomic profiling was performed using MetaPhlAn 
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2.6.029 (http://huttenhower.sph.harvard.edu/metaphlan). MetaPhlAn classifies metagenomic 

reads to taxa and yields their relative abundances in each sample based on approximately 1 

M clade-specific marker genes derived from 17,000 microbial genomes (corresponding to 

>7,500 bacterial, viral, archaeal, and eukaryotic species).

We performed functional profiling for both metagenomes and metatranscriptomes by 

applying HUMAnN 2.8.030 (http://huttenhower.sph.harvard.edu/humann). Briefly, for each 

sample, taxonomic profiling is used to identify detectable organisms. Reads are recruited to 

sample-specific pangenomes including all gene families in any detected microbes using 

Bowtie267. Unmapped reads are aligned against UniRef9068 using DIAMOND translated 

search69. Hits are counted per gene family and normalized for length and alignment quality. 

For calculating abundances from reads that map to more than one reference sequence, search 

hits are weighted by significance (alignment quality, gene length, and gene coverage). 

UniRef90 abundances from both the nucleotide and protein levels were then i) mapped to 

level 4 Enzyme Commission nomenclature and ii) combined into structured pathways from 

MetaCyc70. We used the MinPath71 and gap filling options in HUMAnN 2.8.0. More details 

about functional profiling in the MLVS can be found in our previous publications28,60.

Blood sample collection and cardiometabolic disease biomarker measurements

MLVS participants donated fasting blood samples twice, six months apart, during the same 

period as fecal samples collection. The blood samples were collected by nursing 

practitioners at a clinical laboratory. Participants were cannulated in the forearm (antecubital 

vein) to collect a blood sample after fasting for 12 hours. The first blood collection was 30 

mL consisting of three 10 mL Heparin tubes, and the second blood collection was 40 mL 

consisting of four 10 mL Heparin blood tubes. For each blood sample, information on 

fasting status, blood collection time and date, smoking status, physical activity, and body 

weight, was recorded. After collection, blood samples were placed on ice packs, stored in 

Styrofoam containers, returned to the laboratory via overnight courier, and centrifuged and 

aliquoted for storage in liquid nitrogen freezers (−130°C or colder). Hemoglobin A1c was 

measured by turbidimetric immunoinhibition using packed red cells (Roche Diagnostics), 

which is a standard approved by the US National Glycohemoglobin Standardization 

Program and FDA for clinical use. High-sensitive C-reactive protein concentrations were 

determined in plasma using an immunoturbidimetric high sensitivity assay using reagents 

and calibrators from Denka Seiken (Niigata, Japan) with assay day-to-day variability 

between 1 and 2%. Total and high-density lipoprotein cholesterol, and triglycerides were 

measured using standard methods with reagents from Roche Diagnostics (Indianapolis, IN) 

and Genzyme (Cambridge, MA). Our study included 304 participants in the analysis that 

includes blood biomarkers. Among 304 participants, 164 and 140 participants provided two 

and one blood samples, respectively. All the biomarker measurements were taken from 

distinct blood samples.

Nested Case-Control Study of Myocardial Infarction

We conducted a prospectively designed nested case-control study in 396 myocardial 

infarction (MI) cases and 843 healthy controls from the HPFS to quantify the associations of 

the cardiometabolic disease risk score and individual plasma biomarkers with the risk of MI. 
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Between 1993 and 1995, 18,225 participants in the HPFS donated blood samples. Blood 

samples were collected in EDTA tubes, placed on ice packs, stored in Styrofoam containers, 

returned to the laboratory via overnight courier, and centrifuged and aliquoted for storage in 

liquid nitrogen freezers (−130°C or colder). Participants who provided blood samples were 

similar to those who did not, albeit somewhat younger. Both this case-control study and the 

gut microbiome study in the MLVS recruited subpopulations of the HPFS. The two studies 

were largely independent: among the healthy controls of the nested case-control study, 11 

were also participants in the MLVS.

We identified participants with incident nonfatal MI or fatal coronary heart disease (CHD) 

between the date of blood draw and the return of the 2004 questionnaire (10 years of follow-

up). Using risk-set sampling, we randomly selected controls in a roughly 2:1 ratio who were 

matched for age, smoking status, and date of blood sampling from the subgroup of 

participants who were free of cardiovascular disease at the time of diagnosis in the cases. MI 

was confirmed by study physicians blinded to participant’s exposure status if it met the 

World Health Organization’s criteria (symptoms plus either diagnostic electrocardiographic 

changes or elevated levels of cardiac enzymes). Deaths were identified from state vital 

records and the National Death Index or reported by the participant’s next of kin or the 

postal system. Fatal CHD was confirmed by hospital records or on autopsy, or if CHD was 

listed as the cause of death on the death certificate, if it was the underlying and most 

plausible cause, and if evidence of previous CHD was available. We used the same tools and 

methods to collect lifestyle and dietary information and similar methods to measure blood 

cardiometabolic disease biomarkers as we described above.

Statistical analysis

Using the raw functional profiling abundances calculated for metagenomes and 

metatranscriptomes above, we quantified functional activity of gut microbial transcripts by 

calculating RNA/DNA ratio of microbial enzymes, which provides an index of over/under-

transcription (relative to DNA copy number) within each individual microbiome sample30. 

Pathways and enzymes that had <1 RPK (reads per kilobase) of either RNA or DNA were 

treated as not detected in this calculation. To determine variability in the relative abundance 

of taxonomy, functional potential (DNA enzyme) and functional activity (RNA/DNA ratio), 

we calculated the Bray-Curtis (BC) dissimilarity metric for each sample. We applied 

permutational multivariate analysis of variance (PERMANOVA) to quantify percentage of 

variance in each data type of microbial communities explained by dietary variables, plasma 

biomarkers and covariables based on the BC dissimilarity metric using adonis function in the 

R package vegan 2.5–6. All the p-values from the PERMANOVA and corrected for multiple 

comparisons using the Benjamini-Hochberg procedure. All the PERMANOVA tests were 

two-sided with degree of freedom of 1.

For per-feature tests, we first performed quality control filtering for taxonomic and 

functional features before including them in the subsequent analyses. To be qualified for 

downstream analyses, a taxonomic feature or a pathway needed to be detected at a minimum 

relative abundance of 0.01% in at least 10% of samples. Similarly, we filtered all enzyme 

commissions with a relative abundance less than 0.001% in greater than 10% of all samples. 
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This analysis yielded 139 microbial species that met the criteria. In addition to the filters of 

minimum abundance and prevalence, functional features with high correlations with others 

were removed by taking the most abundant feature from each such cluster as its 

representative. We employed the R package MaAsLin 2 1.0.0 to perform per-feature tests7 

(https://huttenhower.sph.harvard.edu/maaslin2). We log-transformed relative abundances of 

microbial features and standardized the dietary data into Z-scores of intake level before 

including them in the MaAsLin models. In the per-feature tests, unless otherwise noted, all 

high-dimensional tests were corrected for multiple hypothesis testing by controlling the false 

discovery rate (FDR) using the Benjamini-Hochberg method with a target rate of 0.25 for q 
values estimated from the per-feature tests.

We used linear mixed models for all association analyses, which provide a convenient way 

to account both for repeated measures (multiple time points per participant) and a small 

amount of missingness. These incorporated data measured from all available blood and fecal 

samples from each participant. All linear mixed models included identifiers of participants 

as random effects to account for within-subject correlation due to repeated sampling, plus 

dietary exposure variables and covariables as fixed effects. Specifically, with covariates as 

listed below, the model takes the form:

Yij = β1 + bi + β2Xij2 + ⋯ + βpXijp + ϵij

In such a model, the response for the ith subject at the jth measurement is assumed to differ 

from the population mean:

μij = E Yij = β1 + β2Xij2 + ⋯ + βpXijp

by a subject effect,bi, and a within-subject measurement error,∈ij.Furthermore, it is assumed 

that:

bi N(0, δb
2); ϵij N(0, δ2)

and that bi and ∈ij are mutually independent.

To test for a statistical interaction (i.e., effect modification) between the MedDiet index and 

gut microbiome with respect to cardiometabolic risk score (and MI, see below), we followed 

the standard statistical framework to test interaction between two exposures. This 

methodology is widely used in population-based studies, e.g. GWAS and other molecular 

epidemiology, that apply this approach to test effect modifications such as gene-environment 

and gene-gene interactions48,49. To test for a diet-microbiome interaction in cardiometabolic 

risk, we built up a linear mixed model that simultaneously includes the main effects of the 

MedDiet index and abundances of microbial species, as well as the product term of the two 

main effects, in addition to confounding variables (fixed effects) and per-subject random 

effects. When used with a potential interactor such as P. copri abundance, this becomes:
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Scoreij = β1 + bi + β2MedDieti + β3Pcopriij + β4MedDieti × Pcopriij + ⋯ + βpXijp + ϵij

We then tested the significance level of the beta coefficient of the product term (β4 in this 

example) using a two-sided likelihood ratio test by comparing models with and without an 

interaction term to calculate p for interaction (degree of freedom =1). A significant p-value 

of the product term can be interpreted as a significant interaction between diet and gut 

microbiome, referred to as a modification. In addition, we performed stratified analysis to 

quantify the associations of the MedDiet index with the cardiometabolic disease risk score 

and biomarker levels in subgroups defined by different levels of PCo loadings and microbe 

abundances separately. The linear mixed models included participant’s identifier as random 

effects and simultaneously adjusting for total energy intake, age, physical activity level, 

smoking, probiotics use, Bristol stool scale, and uses of antibiotics, proton pump inhibitors, 

aspirin, statins and metformin. To compare the genetic architecture of P. copri in this study 

population and that of controls from the Integrative Human Microbiome Project50, we first 

joined HUMAnN gene family profiles within P. copri from the two populations and then 

performed PCoA analysis of gene family dissimilarity (as quantified by the Bray-Curtis 

dissimilarity) using the R package vegan 2.5–6.

We quantified the associations of the cardiometabolic disease risk score and biomarkers with 

the risk of MI in the nested case-control study. We first categorized all the participants into 

quartiles of the cardiometabolic disease risk score and biomarker levels. We then applied 

logistic regression models to estimate odds ratios and their 95% confidence intervals (CIs) of 

MI comparing participants in each quartile to the lowest quartile. To quantify a linear trend, 

we assigned the median value of each quartile and modeled this variable continuously and 

calculated p for linear trend using the two-sided Wald test (degree of freedom =1). With risk-

set sampling, the odds ratio derived from the logistic regression directly estimated the risk 

ratio (RR). We also calculated RRs and 95% CIs of MI associated with a 1-standard 

deviation (SD) increment in the cardiometabolic disease risk score and biomarker levels. For 

the cardiometabolic disease risk score, we additionally calculated RRs and 95% CIs of MI 

associated with a 1-unit increment in the score. All multivariable models were 

simultaneously adjusted for matching factors including age, smoking status, and month of 

blood sampling, family history of MI before the age of 60 years, alcohol intake, level of 

physical activity, and body mass index. The RRs of MI associated with a 4-unit increment in 

the MedDiet index were calculated by multiplying multivariable-adjusted changes in the 

cardiometabolic disease risk score associated with a 4-unit increment in the MedDiet index 

by the multivariable-adjusted RR of MI associated with 1-unit increment in the 

cardiometabolic disease risk score. The calculations were conducted in subgroups defined by 

P. copri carriage and non-carriage separately. To estimate the uncertainty of the RRs, we 

used Monte Carlo simulations to take 1000 draws from the distribution of changes in the 

MedDiet index and the RRs of the MI simultaneously, propagating the uncertainty in the 

dietary index and estimated biological effects (RRs) of the MedDiet index into the final 

estimates. All the statistical tests were two-sided.
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Data availability statement

All the microbiome data are previously published28,60 and publicly available (https://

www.nature.com/articles/s41564-017-0084-4#Sec22). All the meta data from the Health 

Professionals Follow-Up Study are available through a request for external collaboration and 

upon approvals of a letter of intent and a research proposal. Details for how to request an 

external collaboration with the Health Professionals Follow-Up Study can be found at 

https://sites.sph.harvard.edu/hpfs/for-collaborators/. Harvard University Food Composition 

Database is publicly available at https://regepi.bwh.harvard.edu/health/nutrition/. Figures 2–

5, Extended Data Figures 1–10, Supplementary Tables 1 and 3–8, and Supplementary 

Figures 1 and 2 are associated with the microbiome and metadata.

Code availability statement

This study mainly relies on open source bioBakery tools, particularly MetaPhlAn 2, 

HUMAnN 2, and MaAsLin 2, available at https://huttenhower.sph.harvard.edu/tools/. The 

analysis-specific programs are available through http://huttenhower.sph.harvard.edu/

meddiet2020.

Extended Data

Extended Data Figure 1: Mediterranean diet index and its individual components.
(a) Distribution of the Mediterranean diet (MedDiet) index in the study population. Each 

participant’s adherence to the MedDiet was evaluated by a 9-dimensional MedDiet index 

(Supplementary Table 2 and Methods) as previously described24,36,78. The total MedDiet 

index ranged from 0 (non-adherence) to 9 (perfect adherence). The index was based on the 

intakes of 9 items: vegetables, legumes, fruit, nuts, whole grains, red/processed meat (R/P 

meat), fish, alcohol, and the ratio of monounsaturated to saturated fat (M/S ratio). 

Participants who had a higher adherence to MedDiet consumed more beneficial components 

of the dietary pattern, including whole grains, vegetables, fruit, nuts, legumes, fish, 

monounsaturated fats (at the expense of saturated fats) and moderate alcohol drinking, but 

less red and processed meat, a detrimental component of the MedDiet index. (b) 
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Correlations between the MedDiet index, its individual constituent food and nutrient 

contributors, and dairy food. Values in the figure are partial Spearman correlation 

coefficients with adjustment for total energy intake. As expected, the composite MedDiet 

score was positively correlated with “healthy” contributing factors, negatively correlated 

with “unhealthy” factors, and, importantly, not dominated by any one component.

Extended Data Figure 2: Principal coordinate analysis of species-level Bray-Curtis dissimilarity 
colored by the relative abundance of major taxonomic features.
(a) Principal coordinate analysis of species-level Bray-Curtis dissimilarity colored in 

correspondence to the relative abundance of Bacteroidetes and Firmicutes phyla. As 

expected, a majority of variation in the species-level compositional structure of the gut 

microbiome was driven by a tradeoff between Bacteroidetes versus Firmicutes phyla. (b) 

Principal coordinate analysis of species-level Bray-Curtis dissimilarity colored in 

correspondence to the relative abundance of 9 most abundant species-level features. The 
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most prominent patterns of gut microbial taxonomic variation in the population included 

tradeoffs between the abundances of Eubacterium rectale and Bacteroides uniformis vs. 

Subdoligranulum unclassified and P. copri.

Extended Data Figure 3: Association between the adherence to a Mediterranean dietary pattern 
and microbiome taxonomic diversity.
The diversity of gut microbiome was quantified by Shannon diversity index. P for linear 

trend was derived from a general linear model with the Shannon diversity index as the 

dependent variable and the quartiles of the Mediterranean diet index as independent 

variables. The significance test was two-sided. Box plot centers show medians of the 

Shannon diversity index with boxes indicating their inter-quartile ranges (IQRs); upper and 

lower whiskers indicate 1.5 times the IQR from above the upper quartile and below the 

lower quartile, respectively. This analysis was conducted based on 925 metagenomes from 

307 participants.
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Extended Data Figure 4: Associations of the Mediterranean diet index and its components with 
species-level features.
Colors of the heatmap are in correspondence to the beta coefficient for dietary variables 

from linear mixed models in MaAsLin 2 with species-level feature as outcomes. All models 

included each participant’s identifier as random effects and simultaneously adjusted for total 

energy intake, age, physical activity level, smoking, probiotic use, uses of antibiotics, proton 

pump inhibitors, aspirin, statins and metformin, and the Bristol stool scale. Statistical 

significance is from the linear mixed model with multiple comparison adjustment using the 

Benjamini-Hochberg method to calculate q-values (false discovery rate adjusted p-value, 

exact q-values in Source Data). These analyses were based on 925 metagenomes collected 

from 307 participants. All the statistical tests were two-sided.
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Extended Data Figure 5: Associations of the Mediterranean diet index and its components with 
metagenomic pathways.
Colors of the heatmap are in correspondence to the beta coefficient for dietary variables 

from linear mixed models in MaAsLin 2 with metagenomic pathways as outcomes. All 

models included each participant’s identifier as random effects and simultaneously adjusted 

for total energy intake, age, physical activity level, smoking, probiotic use, uses of 

antibiotics, proton pump inhibitors, statins, aspirin and metformin, and Bristol stool scale. 

Statistical significance is from the linear mixed model with multiple comparison adjustment 

using the Benjamini-Hochberg method to calculate q-values (false discovery rate adjusted p-

value, exact q-values in Source Data). These analyses were based on 925 metagenomes 

collected from 307 participants. All the statistical tests were two-sided.

Wang et al. Page 21

Nat Med. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 6: Associations of the Mediterranean diet index and its components with 
metagenomic enzymes.
Colors of the heatmap are in correspondence to the beta coefficient for dietary variables 

from linear mixed models in MaAsLin 2 with metagenomic enzymes as outcomes. All 

models included each participant’s identifier as random effects and simultaneously adjusted 

for total energy intake, age, physical activity level, smoking, probiotic use, uses of 

antibiotics, proton pump inhibitors, statins, aspirin and metformin, and Bristol stool scale. 

Statistical significance is from the linear mixed model with multiple comparison adjustment 

using the Benjamini-Hochberg method to calculate q-values (false discovery rate adjusted p-

value, exact q-values in Source Data). These analyses were based on 925 metagenomes 

collected from 307 participants. All the statistical tests were two-sided.
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Extended Data Figure 7: Associations of the Mediterranean diet index and its components with 
transcription levels of microbial enzymes.
Colors of the heatmap are in correspondence to the beta coefficient for dietary variables 

from linear mixed models in MaAsLin 2 with transcription levels of microbial enzymes 

(RNA/DNA ratio) as outcomes. All models included each participant’s identifier as random 

effects and simultaneously adjusted for total energy intake, age, physical activity level, 

smoking, probiotic use, and Bristol stool scale. Statistical significance is from the linear 

mixed model with multiple comparison adjustment using the Benjamini-Hochberg method 

to calculate q-values (false discovery rate adjusted p-value, exact q-values in Source Data). 

These analyses were based on 340 metatranscriptome and metagenome pairs from 96 

participants. All the statistical tests were two-sided.
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Extended Data Figure 8: Associations of the Mediterranean diet index with the cardiometabolic 
disease risk score and biomarkers.
P-values were estimated from linear mixed model that included each participant’s identifier 

as random effects and simultaneously adjusted for total energy intake, age, physical activity 

level, smoking, probiotic use, Bristol stool scale, uses of antibiotics, statins, aspirin, proton 

pump inhibitors and metformin and the 1st principal coordinate analysis loading as fixed 

effects. This analysis was based on 468 blood samples from 304 participants. The shaded 

areas indicate 95% confidence intervals of values on the fitted linear trend lines. All the 

statistical tests were two-sided.
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Extended Data Figure 9: Interaction between adherence to the Mediterranean diet and the 
abundance of highly abundant microbial species in relation to the score of cardiometabolic 
disease risk.
P for interaction was derived from linear mixed models that included participant’s identifier 

as random effects, the Mediterranean diet index, individual microbial species and their 

product term, and simultaneously adjusted for total energy intake, age, physical activity 

level, smoking, probiotic use, Bristol stool scale, and uses of antibiotics, statins, aspirin, 

proton pump inhibitors and metformin as fixed effects. We performed two-sided likelihood 

ratio tests by comparing models with and without an interaction term to calculate p-values 

for interaction (degree of freedom =1). This analysis was based on 468 blood samples from 

304 participants. The shaded areas indicate 95% confidence intervals of values on the fitted 

linear trend lines.
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Extended Data Figure 10: The gut microbial profile modifies associations of the MedDiet with 
individual biomarkers of cardiometabolic disease risk.
P for interaction was derived from a linear mixed model that included participant’s identifier 

as random effects, the MedDiet index, individual microbial species and their product term, 

and simultaneously adjusted for total energy intake, age, physical activity level, smoking, 

probiotic use, Bristol stool scale, and uses of antibiotics, statins, aspirin, proton pump 

inhibitors and metformin as fixed effects. We performed two-sided likelihood ratio tests by 

comparing models with and without an interaction term to calculate p-values for interaction 

(degree of freedom =1). This analysis was based on 468 blood samples from 304 

participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Wang et al. Page 26

Nat Med. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

Funding/Support:

This work was supported by R00DK119412 (DDW), R01HL060712 (FBH), P30DK046200 (FBH), R01CA202704 
(ATC, CH), K24DK098311 (ATC), and U54DE023798 (CH) from the National Institutes of Health (NIH), STARR 
Cancer Consortium Award #I7-A714 to CH, and a Pilot and Feasibility award to DDW from the Boston Nutrition 
and Obesity Research Center funded by the National Institute of Diabetes and Digestive and Kidney Diseases 
(P30DK046200). The Men’s Lifestyle Validation Study was supported by U01CA152904 from the National Cancer 
Institute. The Health Professionals Follow-Up Study is supported by research grants U01CA167552 and 
R01HL035464 from the NIH.

Role of the Funder/Sponsor:

The funding source had no role in the design and conduct of the study; collection, management, analysis, and 
interpretation of the data; preparation, review, or approval of the manuscript; and the decision to submit the 
manuscript for publication. The content is solely the responsibility of the authors and does not necessarily represent 
the official views of the National Institutes of Health.

The authors declare the following competing interests:

CH is a scientific advisor for Seres Therapeutics, Empress Therapeutics, and ZOE Nutrition. YL has received 
research support from the California Walnut Commission and SwissRe Management Ltd. The remaining authors 
disclose no conflicts.

References

1. Collaborators U.S.B.o.D., et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, 
and Risk Factors Among US States. JAMA 319, 1444–1472 (2018). [PubMed: 29634829] 

2. DALYs G.B.D. & Collaborators H. Global, regional, and national disability-adjusted life-years 
(DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and 
territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 
392, 1859–1922 (2018). [PubMed: 30415748] 

3. Koeth RA, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes 
atherosclerosis. Nat Med 19, 576–585 (2013). [PubMed: 23563705] 

4. Kurilshikov A, et al. Gut Microbial Associations to Plasma Metabolites Linked to Cardiovascular 
Phenotypes and Risk. Circ Res 124, 1808–1820 (2019). [PubMed: 30971183] 

5. Forslund K, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human 
gut microbiota. Nature 528, 262–266 (2015). [PubMed: 26633628] 

6. Pedersen HK, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. 
Nature 535, 376–381 (2016). [PubMed: 27409811] 

7. Thingholm LB, et al. Obese Individuals with and without Type 2 Diabetes Show Different Gut 
Microbial Functional Capacity and Composition. Cell Host Microbe 26, 252–264.e210 (2019). 
[PubMed: 31399369] 

8. Haro C, et al. Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity 
in a Human Obese Population. The Journal of clinical endocrinology and metabolism 101, 233–242 
(2016). [PubMed: 26505825] 

9. Kovatcheva-Datchary P, et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is 
Associated with Increased Abundance of Prevotella. Cell Metab 22, 971–982 (2015). [PubMed: 
26552345] 

10. Zeevi D, et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 163, 1079–1094 
(2015). [PubMed: 26590418] 

11. David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–
563 (2014). [PubMed: 24336217] 

12. Smits SA, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. 
Science 357, 802–806 (2017). [PubMed: 28839072] 

Wang et al. Page 27

Nat Med. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Sonnenburg JL & Backhed F Diet-microbiota interactions as moderators of human metabolism. 
Nature 535, 56–64 (2016). [PubMed: 27383980] 

14. Faith JJ, McNulty NP, Rey FE & Gordon JI Predicting a human gut microbiota’s response to diet in 
gnotobiotic mice. Science 333, 101–104 (2011). [PubMed: 21596954] 

15. Turnbaugh PJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in 
humanized gnotobiotic mice. Sci Transl Med 1, 6ra14 (2009).

16. Falony G, et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 
(2016). [PubMed: 27126039] 

17. Vatanen T, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. 
Nature 562, 589–594 (2018). [PubMed: 30356183] 

18. Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature 486, 222–
227 (2012). [PubMed: 22699611] 

19. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in 
children from Europe and rural Africa. Proc Natl Acad Sci U S A 107, 14691–14696 (2010). 
[PubMed: 20679230] 

20. Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 
105–108 (2011). [PubMed: 21885731] 

21. Zhernakova A, et al. Population-based metagenomics analysis reveals markers for gut microbiome 
composition and diversity. Science 352, 565–569 (2016). [PubMed: 27126040] 

22. Willett WC, et al. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 
61, 1402S–1406S (1995). [PubMed: 7754995] 

23. Van Horn L, et al. Recommended Dietary Pattern to Achieve Adherence to the American Heart 
Association/American College of Cardiology (AHA/ACC) Guidelines: A Scientific Statement 
From the American Heart Association. Circulation 134, e505–e529 (2016). [PubMed: 27789558] 

24. American Diabetes A. 4. Lifestyle Management: Standards of Medical Care in Diabetes-2018. 
Diabetes Care 41, S38–S50 (2018). [PubMed: 29222375] 

25. Estruch R, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet 
Supplemented with Extra-Virgin Olive Oil or Nuts. The New England journal of medicine 378, 
e34 (2018). [PubMed: 29897866] 

26. Ghosh TS, et al. Mediterranean diet intervention alters the gut microbiome in older people 
reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five 
European countries. Gut, gutjnl-2019–319654 (2020).

27. Meslier V, et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma 
cholesterol and causes changes in the gut microbiome and metabolome independently of energy 
intake. Gut 69, 1258–1268 (2020). [PubMed: 32075887] 

28. Abu-Ali GS, et al. Metatranscriptome of human faecal microbial communities in a cohort of adult 
men. Nat Microbiol 3, 356–366 (2018). [PubMed: 29335555] 

29. Truong DT, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12, 
902–903 (2015). [PubMed: 26418763] 

30. Franzosa EA, et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat 
Methods 15, 962–968 (2018). [PubMed: 30377376] 

31. Fung TT, et al. Diet-quality scores and plasma concentrations of markers of inflammation and 
endothelial dysfunction. Am J Clin Nutr 82, 163–173 (2005). [PubMed: 16002815] 

32. Pasolli E, et al. Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 
Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell 176, 649–662 e620 
(2019). [PubMed: 30661755] 

33. Tett A, et al. The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in 
Westernized Populations. Cell Host Microbe 26, 666–679 e667 (2019). [PubMed: 31607556] 

34. De Filippis F, et al. Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri 
Strains Are Associated with Different Habitual Diets. Cell Host Microbe 25, 444–453 e443 
(2019). [PubMed: 30799264] 

35. Vangay P, et al. US Immigration Westernizes the Human Gut Microbiome. Cell 175, 962–972 e910 
(2018). [PubMed: 30388453] 

Wang et al. Page 28

Nat Med. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



36. Dethlefsen L & Relman DA Incomplete recovery and individualized responses of the human distal 
gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108 Suppl 1, 4554–
4561 (2011). [PubMed: 20847294] 

37. Chung WS, et al. Modulation of the human gut microbiota by dietary fibres occurs at the species 
level. BMC Biol 14, 3 (2016). [PubMed: 26754945] 

38. Martinez-Medina M, et al. Western diet induces dysbiosis with increased E coli in CEABAC10 
mice, alters host barrier function favouring AIEC colonisation. Gut 63, 116–124 (2014). [PubMed: 
23598352] 

39. Gomez-Arango LF, et al. Low dietary fiber intake increases Collinsella abundance in the gut 
microbiota of overweight and obese pregnant women. Gut Microbes 9, 189–201 (2018). [PubMed: 
29144833] 

40. Amato KR, et al. Variable responses of human and non-human primate gut microbiomes to a 
Western diet. Microbiome 3, 53 (2015). [PubMed: 26568112] 

41. Foerster J, et al. The influence of whole grain products and red meat on intestinal microbiota 
composition in normal weight adults: a randomized crossover intervention trial. PLoS One 9, 
e109606 (2014). [PubMed: 25299601] 

42. Boerjan W, Ralph J & Baucher M Lignin biosynthesis. Annu Rev Plant Biol 54, 519–546 (2003). 
[PubMed: 14503002] 

43. Koh A, De Vadder F, Kovatcheva-Datchary P & Backhed F From Dietary Fiber to Host 
Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 165, 1332–1345 (2016). 
[PubMed: 27259147] 

44. Jia W, Xie G & Jia W Bile acid-microbiota crosstalk in gastrointestinal inflammation and 
carcinogenesis. Nat Rev Gastroenterol Hepatol 15, 111–128 (2018). [PubMed: 29018272] 

45. Yoshimoto S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through 
senescence secretome. Nature 499, 97–101 (2013). [PubMed: 23803760] 

46. Ferslew BC, et al. Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. 
Dig Dis Sci 60, 3318–3328 (2015). [PubMed: 26138654] 

47. Luis AS, et al. Dietary pectic glycans are degraded by coordinated enzyme pathways in human 
colonic Bacteroides. Nat Microbiol 3, 210–219 (2018). [PubMed: 29255254] 

48. Hunter DJ Gene-environment interactions in human diseases. Nat Rev Genet 6, 287–298 (2005). 
[PubMed: 15803198] 

49. Shi Y, et al. A genome-wide association study identifies new susceptibility loci for non-cardia 
gastric cancer at 3q13.31 and 5p13.1. Nat Genet 43, 1215–1218 (2011). [PubMed: 22037551] 

50. Lloyd-Price J, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. 
Nature 569, 655–662 (2019). [PubMed: 31142855] 

51. Wegner K, et al. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS 
for the investigation of bile acid transformation by mammalian gut bacteria. Anal Bioanal Chem 
409, 1231–1245 (2017). [PubMed: 27822648] 

52. de Aguiar Vallim TQ, Tarling EJ & Edwards PA Pleiotropic roles of bile acids in metabolism. Cell 
Metab 17, 657–669 (2013). [PubMed: 23602448] 

53. Koropatkin NM, Cameron EA & Martens EC How glycan metabolism shapes the human gut 
microbiota. Nat Rev Microbiol 10, 323–335 (2012). [PubMed: 22491358] 

54. Rooks MG & Garrett WS Gut microbiota, metabolites and host immunity. Nature reviews. 
Immunology 16, 341–352 (2016).

55. Koren O, et al. A guide to enterotypes across the human body: meta-analysis of microbial 
community structures in human microbiome datasets. PLoS Comput Biol 9, e1002863 (2013). 
[PubMed: 23326225] 

56. De Vadder F, et al. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal 
Gluconeogenesis. Cell Metab 24, 151–157 (2016). [PubMed: 27411015] 

57. De Angelis M, et al. Effect of Whole-Grain Barley on the Human Fecal Microbiota and 
Metabolome. Appl Environ Microbiol 81, 7945–7956 (2015). [PubMed: 26386056] 

58. Lloyd-Price J, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. 
Nature 550, 61–66 (2017). [PubMed: 28953883] 

Wang et al. Page 29

Nat Med. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



59. Franzosa EA, et al. Relating the metatranscriptome and metagenome of the human gut. Proc Natl 
Acad Sci U S A 111, E2329–2338 (2014). [PubMed: 24843156] 

60. Mehta RS, et al. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol 
3, 347–355 (2018). [PubMed: 29335554] 

61. Willett WC, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. 
Am J Epidemiol 122, 51–65 (1985). [PubMed: 4014201] 

62. Rimm EB, et al. Reproducibility and validity of an expanded self-administered semiquantitative 
food frequency questionnaire among male health professionals. Am J Epidemiol 135, 1114–1126; 
discussion 1127–1136 (1992). [PubMed: 1632423] 

63. Feskanich D, et al. Reproducibility and validity of food intake measurements from a 
semiquantitative food frequency questionnaire. J Am Diet Assoc 93, 790–796 (1993). [PubMed: 
8320406] 

64. Chasan-Taber S, et al. Reproducibility and validity of a self-administered physical activity 
questionnaire for male health professionals. Epidemiology 7, 81–86 (1996). [PubMed: 8664406] 

65. Trichopoulou A, Costacou T, Bamia C & Trichopoulos D Adherence to a Mediterranean diet and 
survival in a Greek population. The New England journal of medicine 348, 2599–2608 (2003). 
[PubMed: 12826634] 

66. McIver LJ, et al. bioBakery: a meta’omic analysis environment. Bioinformatics 34, 1235–1237 
(2018). [PubMed: 29194469] 

67. Langmead B & Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 
(2012). [PubMed: 22388286] 

68. Suzek BE, Huang H, McGarvey P, Mazumder R & Wu CH UniRef: comprehensive and non-
redundant UniProt reference clusters. Bioinformatics 23, 1282–1288 (2007). [PubMed: 17379688] 

69. Buchfink B, Xie C & Huson DH Fast and sensitive protein alignment using DIAMOND. Nat 
Methods 12, 59–60 (2015). [PubMed: 25402007] 

70. Caspi R, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc 
collection of pathway/genome databases. Nucleic Acids Res 44, D471–480 (2016). [PubMed: 
26527732] 

71. Ye Y & Doak TG A parsimony approach to biological pathway reconstruction/inference for 
genomes and metagenomes. PLoS Comput Biol 5, e1000465 (2009). [PubMed: 19680427] 

Wang et al. Page 30

Nat Med. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Experimental strategy for linking diet, the gut microbiome, and cardiometabolic 
disease risk in the Men’s Lifestyle Validation Study.
In order to associate gut microbiome features with diet and cardiometabolic disease risk, we 

profiled stool metagenomes, metatranscriptomes, and blood biomarkers of cardiometabolic 

disease from the Men’s Lifestyle Validation Study (MLVS). The MLVS is a sub-study of the 

Health Professionals Follow-up Study (HPFS), an ongoing prospective cohort totaling 

51,529 men. The HPFS has repeatedly collected dietary information using validated food-

frequency questionnaires (FFQs) and health-related information since 1986. In 2011 to 

2013, the MLVS collected stool samples at up to four time points per individual, blood 

samples at up to two time points, and additional dietary information using FFQs from 307 

participants. We applied MetaPhlAn 2 and HUMAnN 2 to perform taxonomic and 

functional profiling from stool shotgun metagenomes and metatranscriptomes. Plasma 

biomarkers of lipid metabolism, inflammation, and glucose homeostasis were measured 
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using standard methods. We employed linear mixed models to account for within-subject 

correlation due to repeated sampling and occasional missing data (Methods).
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Figure 2: Mediterranean diet and taxonomic and functional profiles of the gut microbiome.
(a) Distributions of adherence to the Mediterranean dietary pattern and intake levels of 

constituent foods and nutrients among study participants (n=307, data in Supplementary 

Table 3). (b) Distributions of the 10 microbial species most abundant on average in analyzed 

metagenomes (based on 925 metagenomes, data in Supplementary Table 4). (c) Distributions 

of the five most metagenomically abundant DNA pathways (top) and enzymes (bottom), as 

well as the top five species contributing to each enzyme or pathway (right, also based on 925 

metagenomes, data in Supplementary Tables 4 and 5). (d) Distributions of DNA-normalized 

transcript abundance for the five most metatranscriptomically abundant pathways (top) and 

enzymes (bottom), as well as the top three species contributing to each enzyme or pathway 

(right, based on 340 metatranscriptome and metagenome pairs, data in Supplementary 

Tables 4 and 5). Samples are ordered by the MedDiet index (from lowest to highest). A 
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white column indicates that a metagenome or metatranscriptome was not available for the 

sample.
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Figure 3: Associations of the Mediterranean diet with overall gut microbiome configuration and 
with individual gut microbial species abundances.
(a) Principal coordinate analysis of all samples using species-level Bray-Curtis dissimilarity. 

(b) Proportion of variation in taxonomy explained by the Mediterranean diet (MedDiet) 

index, dietary factors, plasma biomarkers and covariables based two-sided PERMANOVA 

testing (based on species-level Bray-Curtis dissimilarity). Q-values (false discovery rate 

adjusted p-value) were calculated using the Benjamini-Hochberg method with a target rate 

of 0.25. (c) Significant associations of the MedDiet and its constituent foods and nutrients 

with microbial species (q ≤0.25). This plot shows associations of dietary factors with 

specific microbial species overlaid onto their taxonomy. The blue-to-orange gradient in the 

outer rings represent the magnitude and direction of the associations between dietary factors 

and species’ abundances. The colors of the innermost ring and phylogenetic trees 

differentiate major phyla. Heights of the outmost bars are in proportion to the mean relative 

abundance of each microbial species. All models included each participant’s identifier as 
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random effects and simultaneously adjusted for total energy intake, age, physical activity 

level, smoking, probiotic use, uses of medication including antibiotics, proton pump 

inhibitors, aspirin, statins and metformin, and the Bristol stool scale. (d) A subset of 

significant associations of plant-based foods and red/processed meat intake with microbial 

species (full results in Supplementary Table 6). Q-values (false discovery rate adjusted p-

value) in (c) and (d) were derived from multivariable-adjusted linear mixed models as above, 

with multiple comparison adjustment also as above (Methods, exact q-values in Source 

Data). All the analyses in these panels were conducted based on all 925 metagenomes 

collected from 307 participants. All the statistical tests were two-sided.
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Figure 4: The Mediterranean diet is associated with microbial processes involved in plant 
polysaccharide degradation and short-chain fatty acid production.
(a) Associations of the Mediterranean diet (MedDiet) and its constituent foods and nutrients 

with microbial functions (as MetaCyc pathways) involved in plant-derived polysaccharide 

degradation, short-chain fatty acid (SCFA) production, and lactose degradation. Beta 

coefficients are derived from multivariable-adjusted linear mixed models (Methods) that 

include the MedDiet index or a dietary factor as independent variable and abundance of 

microbial pathway as dependent variable (exact q-values in Source Data). (b) A subset of 

associations of the MedDiet with enzymes (as Enzyme Commission numbers) encoded in 

microbial genomes that are involved in plant-derived polysaccharide degradation, SCFA 

production, lignin degradation, secondary bile acid production, and lactose degradation (full 

results in Supplementary Table 6). Q-values (false discovery rate adjusted p-value) in (a) and 

(b) were derived from multivariable-adjusted linear mixed models, with multiple comparison 

adjustment using the Benjamini-Hochberg method with a target rate of 0.25 (Methods). 
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Analyses in (a) and (b) use all 925 metagenomes. (c) Associations of the MedDiet with the 

transcription of enzymes within the pathways of L-rhamnose and pectin degradation, using 

340 metatranscriptome and metagenome pairs from 96 participants. The plots in (c) are 

schematic representations of several pathways containing key enzymes for L-rhamnose and 

pectin degradation. Solid rectangles indicate those quantified from both metagenomes and 

metatranscriptomes. We used Enzyme Commission numbers in the rectangles to represent 

these enzymes. The scatter plots in (b) and (c) show the associations of the MedDiet index 

with relative abundance or transcription levels of microbial enzymes. The bar plots in (b) 

and (c) show the microbial species with the greatest contributions to each microbial enzyme, 

with metagenomic or metatranscriptomic samples along the X axes ordered by the MedDiet 

index (from the lowest to the highest). All the statistical tests were two-sided.
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Figure 5: Prevotella copri carriage modulates the protective association of a Mediterranean diet 
with cardiometabolic disease risk.
(a) The interaction between the Mediterranean diet (MedDiet) adherence and the first 

principal coordinates axis (PCo1) in relation to the score of cardiometabolic disease risk. 

The interactions between the MedDiet index and both PCo1 score and P. copri carriage 

(above 20th percentile) are significant (p for interaction =0.001 and 0.046, respectively). P 
for interaction was calculated from multivariable-adjusted linear mixed models (Methods). 

We performed two-sided likelihood ratio tests by comparing models with and without an 

interaction term to calculate p-values for interaction (degree of freedom =1, Methods). The 

score of cardiometabolic disease risk was derived based on biomarkers of lipid metabolism, 

including total cholesterol, high-density lipoprotein cholesterol, and triglyceride, glucose 

homeostasis, i.e., hemoglobin A1c, and inflammation, i.e., high-sensitive C-reactive protein. 

This analysis was based on 468 blood samples from 304 participants. Box plot centers show 

medians of the MedDiet index with boxes indicating their inter-quartile ranges (IQRs); 

upper and lower whiskers indicate 1.5 times the IQR from above the upper quartile and 

below the lower quartile, respectively. (b) Distributions of P. copri, Bacteroides, the MedDiet 

index and cardiometabolic disease risk score against PCo1 score. (c) Associations between 

the MedDiet adherence and the risk of myocardial infarction (MI) in P. copri noncarriers and 

carriers. The dots in the plot indicate percent changes in predicted risks of MI associated 
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with a 4-unit increment in the MedDiet index, with error bars indicating upper and lower 

limits of their 95% confidence intervals. This analysis was based on 304 participants who 

donated 468 blood samples in the current study and an additional prospectively designed 

case-control study in 396 MI cases and 843 controls from the Health Professionals Follow-

Up Study (Methods).
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