
Predicting motor skill learning in older adults using visuospatial 
performance

Peiyuan Wanga, Frank J. Infurnab, Sydney Y. Schaefera,c,*

aSchool of Biological and Health Systems Engineering, Arizona State University, Tempe, USA;

bDepartment of Psychology, Arizona State University, Tempe, USA;

cDepartment of Physical Therapy and Athletic Training, University of Utah, USA

Abstract

Between-group comparisons of older and younger adults suggest that motor learning decreases 

with advancing age. However, such comparisons do not necessarily account for group differences 

in cognitive function, despite the co-occurrence of aging and cognitive decline. As such, cognitive 

differences may explain the observed age effects on motor learning. Recent work has shown that 

the extent to which a motor task is learned is related to visuospatial function in adults over age 65. 

The current study tested whether this relationship is replicable across a wider age range and with a 

brief, widely available cognitive test. Thirty-three adults (aged 39–89 years old) completed the 

Montreal Cognitive Assessment (MoCA) prior to practicing a functional upper extremity motor 

task; performance on the motor task was assessed 24 hours later to quantify learning. Backward 

elimination stepwise linear regression identified which cognitive domains significantly predicted 

retention. Consistent with previous findings, only the Visuospatial/Executive subtest score 

predicted change in performance 24 hours later, even when accounting for participant age. Thus, 

the age-related declines in motor learning that have been reported previously may be explained in 

part by deficits in visuospatial function that can occur with advancing age.
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Introduction

Much of what is known about aging and motor learning has come from between-group 

comparisons of older (typically 65 years and older) and younger adults (typically college-

aged). The current consensus is that older adults tend to retain less motor skill after practice 

compared to younger adults, as evidenced by several types of motor learning paradigms, 

including sensorimotor adaptation (McNay & Willingham, 1998; Seidler, 2006), complex 

motor skill acquisition (Brown, Robertson, & Press, 2009; Pratt, Chasteen, & Abrams, 

1994), and motor sequence learning (Ehsani, Abdollahi, Mohseni Bandpei, Zahiri, & 
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Jaberzadeh, 2015; Harrington & Haaland, 1992). While this suggests that motor learning 

capacity, on average, decreases with advancing age, comparing learning between older and 

younger adults tends to overlook 1) the notable variations in motor learning within older age 

groups (Bock & Girgenrath, 2006; Ehsani et al., 2015) and 2) the age-related differences in 

cognition (Harada, Natelson Love, & Triebel, 2013; Hedden & Gabrieli, 2004) despite the 

reliance of motor learning on cognitive processes, especially in the early stages (Fitts & 

Posner, 1967). Thus, differences in cognitive status may explain why older adults tend to 

have poorer motor learning outcomes than younger adults.

Motor learning is a relatively permanent change in the ability to execute movements as a 

result of practice or experience (Schmidt & Lee, 2005). As such, the extent of learning can 

be approximated by the amount of improvement following a period of delayed retention 

(Kantak & Winstein, 2012). Recent findings have suggested that neither chronological age 

nor global cognitive status is predictive of retained improvements (Schaefer, Dibble, & Duff, 

2015; Schaefer & Duff, 2015), while visuospatial function may be (Schaefer & Duff, 2017; 

Lingo VanGilder, Hengge, Duff, & Schaefer, 2018). However, these studies only used one 

neuropsychological assessment (the Repeatable Battery for the Neuropsychological Status, 

RBANS) (Randolph, 1998) and only tested adults age 65 years and older, making it unclear 

whether these previous findings truly reflect a relationship between visuospatial function and 

motor learning, or are simply an artifact of the cognitive test used. Thus, the purpose of this 

study was to test the robustness of the previous findings with the more commonly used 

Montreal Cognitive Assessment (MoCA) (Brenkel, Shulman, Hazan, Herrmann, & Owen, 

2017; Tsoi, Chan, Hirai, Wong, & Kwok, 2015), and with a wider age range. We 

hypothesized that the Visuospatial/Executive subtest of the MoCA would be the most 

predictive of how much participants learned the motor task, compared to all other MoCA 

subtests.

Methods

Participants

Data from thirty-three adults (aged 39–89 years old) with no self-reported physician-

diagnosed neurological disorders (e.g. no history of stroke, Parkinson’s disease, or 

dementia) were retrospectively analyzed. Informed consent was obtained prior to study 

participation. The research procedures were approved by the University Institutional Review 

Board, in accordance with the Helsinki Declaration.

Cognitive, sensorimotor, and functional assessments

Cognitive status was measured using the Montreal Cognitive Assessment (MoCA), a brief 

and widely-available screening tool. It has seven subtests including Visuospatial/Executive, 

Naming, Attention, Language, Abstraction, Delayed Recall and Orientation (Nasreddine et 

al., 2005). The subtests are summed to provide a total score of 0–30 points (“normal” total 

score cut-off ≥ 26), with higher scores indicating better overall cognitive status. Although it 

is typically used as a cognitive screen, it can be used in cognitively-intact individuals for 

purposes such as quantifying overall function (e.g., Kenny et al., 2013), change over time 

(e.g., Krishnan et al., 2017) or acute cognitive performance (e.g., Kaliyaperumal, Elango, 
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Alagesan, & Santhanakrishanan, 2017). Unlike other more expensive and more time-

consuming cognitive assessments (e.g., Repeatable Battery for the Assessment of 

Neuropsychological Assessment or Wechsler Adult Intelligence Scale), the MoCA is not 

age-adjusted against normative data and therefore does not account for age-related 

differences in its scoring, although studies associate lower scores with older age (Malek-

Ahmadi, O’Connor, Schofield, Coon, & Zamrini, 2018; Rossetti, Lacritz, Cullum, & Weiner, 

2011), even in cognitively-intact adults (Krishnan et al., 2017; Oren et al., 2015).

Sensorimotor function of the tested hand was characterized using tactile sensation, grip 

strength and handedness. Tactile sensation was measured with Semmes Weinstein 

monofilaments (Touch-Test, North Coast Medical, Inc, Gilroy, CA) at the distal end of the 

index finger. Maximal grip strength of the tested hand was tested via hand dynamometer 

(Jamar, Sammons-Preston-Rolyan, Bolingbrook, IL) (Andrews, Thomas, & Bohannon, 

1996) as the average of three consecutive measurements. Hand dominance was determined 

using a modified Edinburgh Handedness Questionnaire.

General disability was screened for with the Index of Independence in Activities of Daily 

Living (Katz, Downs, Cash, & Grotz, 1970), in order to assess functional ability in daily life 

and to rule out the presence of dementia. This index is a paper-and-pencil test in which 

participants report their level of assistance needed to complete each of the six ADL 

functions: feeding, continence, transferring, going to toilet, dressing, and bathing. Reports of 

“no assistance needed” were scored as 1; the maximum (worst) score was 18, which 

indicated “dependent in all six functions.” Thus, a total score of 6 indicates no disability 

(best). All cognitive, sensorimotor, and functional assessments were administered only one 

time in this study.

Upper extremity motor task

The upper extremity motor task used in this study was a functional motor task involving 

reaching, grasping, and object manipulation (Fig. 1). In this task, participants were required 

to use their nondominant hand to spoon raw kidney beans from a “home cup”, to one of 

three distal cups as fast as possible. Because this task is used to study changes in 

performance over time due to practice, the nondominant hand was used to minimize any 

ceiling effects (Schaefer, 2015). The cups (9.5 cm in diameter) were fixed to a thin board 

(60.5 cm × 40.0 cm). The home cup was oriented along the participant’s midline and 15 cm 

in front of the seated participant. The three distal target cups were radially placed 16 cm 

away around the home cup at 45°, 90°, and 135°. One trial of the motor task consisted of 15 

repetitions of spooning two and only two beans at once from the home cup to one of the 

target cups. Participants first moved beans to the ipsilateral cup, then to the middle cup, and 

lastly to the contralateral cup, with respect to their nondominant hand. This procedure was 

repeated for five times in one trial, resulting in 15 repetitions in total. Each trial began when 

the participants picked up the spoon (plastic, 5.21 g) and ended when participants finished 

15 repetitions. If any beans were dropped during transport, participants were instructed not 

to re-scoop them, but to proceed on to the next repetition; this repetition was counted as an 

error. The error rate in this sample was <1% of total repetitions, and therefore not considered 

Wang et al. Page 3

J Mot Learn Dev. Author manuscript; available in PMC 2021 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as a factor in learning. Trial time (to the nearest 100th of a second via stopwatch) was 

recorded.

Experimental Protocol

Participants were evaluated over two consecutive days. On Day 1, participants completed all 

cognitive, sensorimotor, and functional assessments, then completed two trials of the 

functional motor task for familiarization. Then participants completed 50 trials of the 

functional motor task (i.e., a total of 750 out-and-back movements). Baseline performance 

on the motor task was defined as the trial time of the first practice trial. On Day 2, 

participants completed a follow-up trial of the functional motor task 24 hours later. We note 

that only the motor task was re-evaluated on Day 2; the MoCA nor any of the other 

assessments were not.

Data and statistical analyses

The primary measure of motor learning was the change in trial time from baseline on Day 1 

to follow-up on Day 2, normalized to baseline performance (Eq. 1):

24 − ℎour performance cℎange = Trial Timebaseline − Trial Timefollow–up
Trial Timebaseline

× 100
(Eq. 1)

A positive value indicates improved task performance 24 hours later, relative to baseline, 

with higher values indicated more learning. This measure quantified the extent to which 

individuals learned the task (Schaefer et al., 2015; Lingo VanGilder et al., 2018). Additional 

measures of interest were within-session performance change and retention. Within-session 

performance change was quantified as the change in trial time between baseline and the last 

practice trial on Day 1, normalized to baseline (Eq. 2):

witℎin−session performance cℎange
= Trial Timebaseline − Trial Timelast trial

Trial Timebaseline
× 100 (Eq. 2)

Again, a positive value indicates improved task performance at the end of practice, relative 

to baseline. This measure reflects more transient, immediate changes in response to 

repetitive practice, whereas Equation 1 reflects more persistent, longer-lasting effects that 

are conceptualized as learning (Kantak & Winstein, 2012). Lastly, retention was quantified 

as the change in trial time between the last trial of practice on Day 1 and follow-up on Day 

2, normalized to baseline (Eq. 3):

retention =     Trial Timelast trial − Trial Timefollow–up
Trial Timebaseline

× 100 (Eq. 3)

This measure reflects the relative permanence of the level of performance achieved in 

acquisition (Kantak & Winstein, 2012) and is based on established measures of relative 

retention (Schmidt & Lee, 2005). To account for any initial differences in motor 

performance, due to factors such as age-related slowing (Birren & Fisher, 1991, 1995; 
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Krampe, 2002; Myerson, Hale, Wagstaff, Poon, & Smith, 1990), all measures were 

normalized to baseline for each participant as recommended by Nuzzo, 2018.

To test whether individual subtest(s) of the MoCA significantly predicted 24-hour 

performance change (i.e., learning), within-session performance change (i.e., acquisition), 

and retention, all scores of the MoCA subtests (Visuospatial/Executive, Naming, Attention, 

Language, Abstraction, Delayed Recall and Orientation) were entered into three separate 

backward elimination stepwise linear regression models with an elimination criterion of p 
> .05. However, because the MoCA is not an age-adjusted assessment, participant age and 

any significant predictor(s) remaining from the stepwise regression were entered into a 

second regression model. Statistical analyses were done using R 3.4.1 (R Core Team, 2017). 

Any correlation coefficients (r) greater than 0.59 were considered to be strong, between 0.30 

and 0.59 were moderate, and below 0.30 were weak effect sizes (Cohen, 1988).

Results

Summary statistics for participants are provided in Table 1, including age, education, ADL 

index, cognitive and sensorimotor variables. Most participants had intact tactile sensation in 

the tested hand (finest Semmes-Weinstein monofilament detectable, 2.83: n = 22; next finest 

detectable, 3.61: n = 9). Only two of the 33 participants had ‘diminished protective 

sensation’ in their index finger based on monofilament results. As shown in Table 1, the 

mean and standard deviation for the MoCA Total Score was 24.79 ± 2.65 (range = 18 – 30). 

Scores for each subtest of the MoCA are also provided in Table 1. Confirmatory analyses of 

linear regression indicated no significant relationship between baseline motor performance 

and the MoCA total score (p = .51), verifying that lower cognitive status did not interfere 

with participants’ ability to understand the instructions and perform the motor task initially.

As expected, practice on the motor task improved participants’ performance. Figure 2 shows 

how trial time decreased (i.e., improved) over the course of the 50 practice trials on Day 1 

across participants. Also shown in Figure 2 is the mean (and standard error) trial time at the 

24-hour follow-up. As described above, this trial was compared to participants’ first trial on 

Day 1 to quantify the amount of learning (see Eq. 1). Overall, the amount of learning was 

significant with mean±SD = 13.38±13.68% (95% CI [8.71, 18.05]). However, the large 

standard deviation also indicated a wide range in this measure. As such, this study aimed to 

test whether variation in motor learning could be explained by cognitive factors associated 

with aging, described next.

Relationship between learning and MoCA subtests

Bivariate linear regression revealed that none of the dependent variables were significantly 

correlated with the total MoCA score (all p > .27), indicating that learning, acquisition, and 

retention were not predicted by global cognitive status. Because the MoCA is comprised of 

seven subtests, however, individual subtest scores were entered into a backward elimination 

stepwise linear regression to identify whether specific cognitive domains could predict 

learning. The final model revealed that the only significant predictor of 24-hour performance 

change (see Eq. 1) was the Visuospatial/Executive score (R2 = 0.21; adjusted R2 = .19, p 
= .007), indicating a moderate effect size. Table 2 provides the iterative stepwise elimination 
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of each predictor based on p > .05. Stepwise regressions for within-session performance 

change (Eq. 2) and retention (Eq. 3) measures eliminated all MoCA subtests as predictors, 

indicating no significant relationships (all p > .05).

Because the MoCA does not account for age (Nasreddine et al., 2005), age was added to the 

final regression model to account for any potential age-related differences in MoCA scores. 

As shown in Table 3, both Visuospatial/Executive score (p = .04) and age (p = .02) were 

significantly related to 24-hour performance change, indicating that participants’ 

visuospatial function predicts learning above and beyond their age.

Discussion

The purpose of this study was to test whether the Visuospatial/Executive subtest of the 

MoCA predicted learning of a functional motor task, as measured by a change in 

performance at a 24-hour follow-up. The relationship between visuospatial function and 

motor learning has been suggested by previous studies using a lengthier cognitive test in 

adults over age 65 with and without cognitive impairment (Schaefer and Duff 2017; Lingo 

VanGilder et al., 2018), but this study extends these findings by demonstrating the same 

trend with a briefer cognitive screen and in a wider age range.

Moreover, the Visuospatial/Executive score of the MoCA remained a significant predictor of 

learning even when accounting for participant age, suggesting that earlier studies showing 

age-related declines in motor learning (e.g., Harrington & Haaland, 1992) may in part be 

due to age-related visuospatial deficits (Techentin, Voyer, & Voyer, 2014). In other words, 

two older adults may have the same chronological age but one may have visuospatial 

deficits, while the other does not, resulting in differences in motor learning. This was the 

case in this study, for example, with two participants with similar ages (age 67 and 68), but 

one had a Visuospatial/Executive score of 2 and had a learning value of −19.4%. This is 

contrast to another who had a Visuospatial/Executive score of 5 and had a learning value of 

+28.5%. These findings, particularly in the context of previous work (Schaefer & Duff, 

2017; Lingo VanGilder et al., 2018), suggest that visuospatial tests could be used in 

rehabilitation to predict how much an older patient can recover motor skill and/or probe the 

patient’s capacity for skill learning.

Furthermore, this study adds to the longstanding findings of Fleishman and Rich (1963), 

which showed that the early stages of learning a new motor task rely on visuospatial 

abilities. By re-testing participants 24 hours after practice, the current study extends this 

classical paper to show the role of visuospatial ability not just early on (as shown by 

Fleishman & Rich, 1963) but also for inducing longer-lasting change. The lack of 

relationship between the Visuospatial/Executive subtest and the acquisition and retention 

measures further underscores the role that visuospatial abilities play in the process of 

learning, rather than in immediate and transient behavioral changes. This relationship 

thereby raises interesting questions about 1) the underlying mechanism and, in turn, 2) the 

practical application of this study. The extent to which older adults learn to compensate for 

visuomotor perturbations has been associated with spatial working memory processes linked 

to mental rotation (Anguera, Reuter-Lorenz, Willingham, & Seidler, 2009; Fernandez-Ruiz, 
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Wong, Armstrong, & Flanagan, 2011). Moreover, Jeunet and colleagues have shown that the 

ability to learn motor imagery brain-computer interfaces (i.e., BCI literacy) is also related to 

mental rotation (Jeunet, N’Kaoua, Subramanian, Hachet, & Lotte, 2015), so much so that 

they advocate for additional training for people who perform poorly on mental rotation tasks 

initially (Jeunet, Jahanpour, & Lotte, 2016). These studies implicate a shared mechanism 

between visuospatial ability (specifically mental rotation) and motor learning that leads to 

hypotheses about learning enhancement. There is evidence that visuospatial abilities, 

including mental rotation, can be improved through targeted interventions (Hohenfeld et al., 

2017; Oldrati, Colombo, & Antonietti, 2018; Zhou et al., 2018), which, in the context of the 

current study, would suggest that if older adults with low visuospatial scores (e.g., ≤2 on the 

MoCA subtest) underwent some sort of visuospatial training prior to motor practice, the 

visuospatial training may generalize to improve their motor learning. Future proof-of-

concept studies are needed, however, as well as to identify what sorts of visuospatial training 

might generalize to improve motor learning above and beyond the known benefits of motor 

practice itself.

Interestingly, within-session performance change (i.e., acquisition) was not predicted by any 

global or specific cognitive measure, including visuospatial. Although the group overall 

improved over the course of practice on Day 1 (refer to Fig. 2), some individual participants 

actually showed negative acquisition values, indicating worse performance at the end of 

practice compared to the beginning. It is argued that within-session performance change is 

not reflective of true learning (Kantak & Winstein, 2012), particularly for older adults or 

neurological populations (Park & Schweighofer, 2017) due to fatiguability or attentional 

factors. Future studies are needed to identify which cognitive tests can predict poor 

acquisition in older adults such that their practice scheduling can be optimized, much like 

Schweighofer et al. (2011).

Finally, there are several limitations to this study. First, while the MoCA is a quick and 

simple test for probing global cognitive function, the individual subtests of the MoCA may 

not necessarily yield sufficient information to draw conclusions about specific impairments 

that can be detected by lengthier and more thorough neuropsychological testing 

(Moafmashhadi & Koski, 2013). Thus, the MoCA and its individual subtests are not 

typically used to diagnose any specific cognitive impairments, be they visuospatial or 

otherwise. Nevertheless, individual subtests have been used experimentally to explore 

cognitive predictors of functional outcomes in clinical settings (Schweizer, Al-Khindi, & 

Macdonald, 2012; Toglia, Fitzgerald, O’Dell, Mastrogiovanni, & Lin, 2011). Second, most 

neuropsychological assessments used clinically (e.g., Wechsler Adult Intelligence Scale, 

WAIS, or RBANS) report scores as age-adjusted percentiles to account for normal variations 

in chronological age, whereas the MoCA does not. However, once the effect of age was 

accounted for statistically in this study, the effect of the Visuospatial/Executive subtest on 

learning was still significant. Third, the visuospatial tests used in this study all involve a 

motor response (i.e., drawing). Although participants in this study completed the MoCA 

with their dominant hand and the motor practice with their nondominant hand, their scores 

on the Visuospatial/Executive subtest could in part reflect participants’ overall motor 

function, which could then partially explain variations in learning of the skill among older 

adults (Park & Schweighofer, 2017). Thus, future research should incorporate both motoric 
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and non-motoric visuospatial tests to better control for any potential confounds. A more 

comprehensive visuospatial battery will also determine which specific visuospatial 

function(s), such as visuospatial working memory, mental rotation, visuoconstruction, or 

visual perception, are most predictive of motor skill learning.
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Fig. 1. 
Overhead view of motor task apparatus. The start and center locations were placed at 

participants’ midlines.
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Fig. 2. 
Mean trial time for trials 1 through 50 on Day 1, and for the follow-up trial 24 hours later on 

Day 2. Error bars indicate standard error.
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Fig. 3. 
Mean 24-hour performance change for each value of Visuospatial/Executive subtest score. 

(No participant had scores of 0 or 1). Error bars indicate standard error.
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Table 1.

Participant characteristics.

Mean (SD) Range

Age (years) 69.91 (11.41) 39 – 89

Education (years) 14.97 (2.51) 12 – 21

Grip strength (kg) 24.32 (8.38) 6.67 – 44.00

MoCA Total score 24.79 (2.65) 18 – 30

 Visuospatial/Executive 3.56 (0.90) 2 – 5

 Attention 5.27 (1.04) 2 – 6

 Naming 2.91 (0.29) 2 – 3

 Language 2.24 (0.87) 0 – 3

 Abstraction 1.58 (0.71) 0 – 3

 Delayed Recall 3.16 (1.51) 0 – 5

 Orientation 5.97 (0.17) 5 – 6

Katz ADL Total score
a 6.13(0.71) 6 – 10

n = 33; 8 males and 25 Females. 2 Left-handed, 31 Right-handed.

a
All Katz ADL Total scores > 6 were due to continence issues, not upper extremity issues.
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Table 3.

Standardized and unstandardized coefficients predicting 24-hour performance change.

B SE B β R2 Adjusted R2

Intercept 27.17 17.61

0.35 0.30Age −0.46* 0.19 −0.39

Visuospatial/Executive 5.19* 2.35 0.34

*
p < .05.
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