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Abstract

In this article we analyze the linear parabolic partial differential equation with a stochastic domain 

deformation. In particular, we concentrate on the problem of numerically approximating the 

statistical moments of a given Quantity of Interest (QoI). The geometry is assumed to be random. 

The parabolic problem is remapped to a fixed deterministic domain with random coefficients and 

shown to admit an extension on a well defined region embedded in the complex hyperplane. The 

stochastic moments of the QoI are computed by employing a collocation method in conjunction 

with an isotropic Smolyak sparse grid. Theoretical sub-exponential convergence rates as a function 

to the number of collocation interpolation knots are derived. Numerical experiments are performed 

and they confirm the theoretical error estimates.
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1. Introduction

Mathematical modeling forms an essential part for understanding many engineering and 

scientific applications with physical domains. These models have been widely used to 

predict the QoI of any particular problem when the underlying physical phenomenon is well 

understood. However, in many cases the practicing engineer or scientist does not have direct 

access to the underlying geometry and uncertainty is introduced. Quantifying the effects of 

the stochastic domain on the QoI will be critical.

In this paper a numerical method to efficiently solve parabolic PDEs with respect to 

stochastic geometrical deformations is developed. Application examples include subsurface 
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aquifers with geometric variability diffusion problems [13], acoustic energy propagation 

with geometric uncertainty [27], chemical diffusion with uncertain geometries [26], among 

others.

Several methods have been developed to quantify uncertainty of elliptic PDEs with 

stochastic domains. The perturbation approaches [21, 46, 18] are accurate for small 

stochastic domain deformations. In contrast, the collocation approaches in [9, 14, 45] allow 

the computation of the statistics of the quantity of interest for larger domain deviations, but 

lack a full error analysis. In [8], the authors present a collocation approach for elliptic PDEs 

based on Smolyak grids with a detailed analyticity and convergence analysis. Similar results 

where also developed in [20, 22]..

For stationary Stokes and Navier-Stokes Equations for viscous incompressible flow in [10], 

a regularity analysis of the solution is studied with respect to the deformation of the domain. 

This approach is similar to the mapping technique proposed in this paper i.e. the stochastic 

domain is assumed to be transformed from a fixed reference domain. The authors establish 

shape holomorphy with respect to the transformations of the shape of the domain.

In [25] the authors perform a shape holomorphy analysis for time-harmonic, electromagnetic 

fields arising from scattering by perfect conductor and dielectric bounded obstacles. This 

approach falls under the class of asymptotic methods for arbitrarily close random 

perturbations of the geometry. However, the authors show dimension-independent 

convergence rates for shape Taylor expansions of linear and higher order moments.

A fictitious domain approach combined with Wiener expansions was developed in [7], 

where the elliptic PDE is solved in a fixed domain. In [38, 37] the authors introduce a level 

set approach to the stochastic domain problem. In [40] a multi-level Monte Carlo has been 

developed. This approach is well suited for low regularity of the solution with respect to the 

domain deformations. Related work on Bayesian inference for diffusion problems and 

electrical impedance tomography on stochastic domains is considered in [16, 23].

The work developed in this paper is a extension of the analysis and error estimates derived in 

[8] to the parabolic PDE setting with Neumann and Dirichlet boundary conditions. 

Moreover, the stochastic domain deformation representation is extended to a larger class of 

geometrical perturbations. This class of perturbations was originally introduced in [20, 18].

The stochastic domain is assumed to be parameterized by a ℝN valued random vector. 

Complex analytic regularity of the solution with respect to the random vector is shown. A 

detailed mathematical convergence analysis of the collocation approach based on isotropic 

Smolyak grids is presented. The error estimates are shown to decay sub-exponentially as a 

function of the number of interpolation nodes of the sparse grid. This approach can be 

extended to anisotropic sparse grids [35].

In Section 2 the problem formulation is discussed. The stochastic domain parabolic PDE 

problem is remapped onto a deterministic domain with a matrix valued random coefficients. 

In Section 3 the solution of the parabolic PDE is shown that an analytic extension exists in 

region in ℂN. In Section 4 isotropic sparse grids and the stochastic collocation method are 
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described. In Section 5 an error analysis of the QoI as a function of the number of sparse 

grid knots and a truncation approximation Ns < N of the random vector are derived. In 

section 6 numerical examples confirm the theoretical sub-exponential convergence rates of 

the sparse grids, and the truncation approximation.

2. Problem setting

Let D(ω) ⊂ ℝd be an open bounded domain that is dependent upon a random parameter 

ω ∈ Ω, where (Ω, ℱ, ℙ) is a complete probability space, Ω is the set of outcomes, ℱ is the σ-

algebra of events and ℙ is a probability measure. The corresponding ∂D(ω) is assumed to be 

Lipschitz.

Suppose that the boundary ∂D(ω) is split into two disjoints sections ∂DD(ω) and ∂DN(ω). 
Consider the following boundary value problem such that the following equations hold 

almost surely:

∂tu( ⋅ , t, ω) − ∇ ⋅ (a( ⋅ , ω)∇u( ⋅ , t, ω)) = f( ⋅ , t, ω) in D(ω) × (0, T )
u( ⋅ , t, ω) = 0 on ∂DD(ω) × (0, T )

a( ⋅ , ω)∇u( ⋅ , t, ω) ⋅ n( ⋅ , ω) = gN( ⋅ , ω) on ∂DN(ω) × (0, T )
u( ⋅ , 0, ω) = u0( ⋅ ) on D(ω) × t = 0

(1)

where T > 0. Let G: = ∪ω ∈ ΩD(ω), then the functions a:G ℝ, f :G × (0, T ) ℝ, and 

u0:G ℝ are defined over the region of all the stochastic perturbations of the domain D(ω)

in ℝd. Similarly, let ∂G: = ∪ω ∈ Ω ∂D(ω) ⊂ ℝd, then the boundary conditions gN : ∂G ℝ
are defined over all the stochastic perturbations of the boundary ∂D(ω).

Before the weak formulation is posed, some notation and definitions are established. If 

q ∈ ℕ, let LP
q (Ω) be defined as follows

LP
q (Ω): = v|∫

Ω
|v(ω)|

q
dℙ(ω) < ∞ and

LP
∞(Ω): = v|ℙ − ess sup

ω ∈ Ω
|v(ω) ∣ < ∞ ,

where v:Ω ℝ is strongly measurable. For ℝM valued vector functions v:D ℝM, 

D ⊂ ℝd, v: = v1, …, vM , 1 ⩽ q < ∞, let

Lq(D) M: = v|∫
D

∑
n = 1

M
|vn(x)|

q
dx < ∞ and

L∞(D) M: = v| ess sup
x ∈ D, n = 1, …, M

|vn(x) ∣ < ∞ .

In addition, defined the following space
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V (D(ω)): = v ∈ H1(D(ω)) ∣ v = 0 on ∂DD(ω) ,

and denote by V *(D(ω)) the dual space of V (D(ω)).

Suppose that Γ: = Γ1 × ⋯ × ΓN ⊂ ℝN, where for all n = 1, …, N Γn ⊂ ℝ is a compact 

connected domain or unbounded. Let ℬ(Γ) be the Borel σ–algebra with respect to Γ and 

suppose that Y: = Y 1, …, Y N :Ω Γ is a ℝN valued random vector measurable in (Ω, ℱ, ℙ).

Consider the induced measure μY on (Γ, ℬ(Γ)). Let μY: = ℙ Y−1(A)  for all A ∈ ℬ(Γ). 

Suppose that the μY is absolutely continuous with respect to the Lebesgue measure defined 

on Γ, then from the Radon–Nikodym theorem [5] for any event A ∈ ℬ(Γ) there exists a 

density function ρ(y):Γ [0, + ∞) such that ℙ(Y ∈ A): = ℙ Y−1(A) = ∫Aρ(y)dy. In addition, 

the expected value is defined as E[Q]: = ∫Γyρ(y)dy for any measurable function 

Q ∈ LP
1 (Γ) N

.

For q ∈ ℕ define the following spaces

Lρq(Γ): = v(y):Γ ℝ is strongly measurable ∣ ∫Γ
v(y)qρ(y)dy < ∞ and

Lρ∞(Γ): = v(y):Γ ℝ is strongly measurable |ρ(y)dy − ess sup
y ∈ Γ

|v(y) ∣ < ∞ ,

We now pose the weak formulation of equation (1) (See Chapter 7 in [11] and Chapter 7 in 

[30]):

Problem 1.

Given that f(x, t, ω) ∈ L2 0, T ; L2(D(ω)) , gN(x, ω) ∈ L2 ∂DN(ω)  and u0 ∈ L2(G) find 

u(x, t, ω) ∈ L2(0, T ; V (D(ω))), ∂tu ∈ L2 0, T ; V *(D(ω)) , with Neumann boundary conditions on 

∂DN ω  s.t.

∫D(ω)
∂tuv + a(x, ω)∇u ⋅ ∇vdx = l(ω; v), in D(ω) × (0, T )

u(x, 0, ω) = u0 on D(ω) × t = 0 ,
(2)

∀v ∈ V (D(ω)) almost surely, and

l(ω; v): = ∫D(ω)f(x, t, ω)v dx + ∫∂DN(ω)gN(x, ω)v dS(x) .

Through out the paper, we restrict our attention to linear parabolic PDE with Neumann 

boundary conditions. Recall that the Neumann boundary condition gN(x, ω) ∈ L2(∂D(ω)) is 
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defined over ∂G. Problem 1 has a unique solution if the following assumption is satisfied 
(See Chapter 7 of [11], Chapter 7 of [30], and Chapter 4 of [32] in Volume II):

Assumption 1.

Let amin: = ess infx ∈ Ga(x, ω) and amax: = ess supx ∈ G, and assume that 0 < amin ⩽ amax < ∞.

Remark 1.

In Problem 1 vanishing Dirichlet boundary conditions are assumed to simplify the 
presentation. We can also consider nonzero Dirichlet boundary condition e.g. 
u( ⋅ , t, ω) = gD( ⋅ , t, ω) on ∂DD(ω) × (0, T ). If the boundary condition is time independent, i.e. 

u( ⋅ , t, ω) = gD( ⋅ , ω), then set u( ⋅ , t, ω) = u( ⋅ , t, ω) − χ( ⋅ , ω), where χ ∈ H1(D(ω)) agrees with 

gD on ∂D(ω). It follows the solution u( ⋅ , t, ω) satisfies the following weak form on D(ω):

∫D(ω) ∂tu( ⋅ , t, ω)v dx + ∫D(ω)a( ⋅ , ω)∇u( ⋅ , t, ω) ⋅ ∇v dx

= ∫D(ω)f( ⋅ , t, ω)v dx + ∫D(ω)a( ⋅ , ω)∇χ( ⋅ , ω) ⋅ ∇v dx
.

Hence we translate the nontrivial Dirichlet boundary condition into the standard Dirichlet 
boundary condition with an alternative inhomogeneous term. The analyticity analysis in 
Section 3 can be easily extended by following similar assumptions and arguments for χ( ⋅ , ω)
as shown in [8]. However, it may also require a compatibility condition between gD and gN 

on ∂D(ω).

On the other hand, if gD is a function of t, and agrees with some H1(D(ω)) - function 
χ( ⋅ , t, ω) on ∂D(ω) for each t, then the setup u( ⋅ , t, ω) = u( ⋅ , t, ω) − χ( ⋅ , t, ω) will result in an 
extra time dependent term in the weak sense:

∫D(ω) ∂tu( ⋅ , t, ω)v dx + ∫D(ω)a( ⋅ , ω)∇u( ⋅ , t, ω) ⋅ ∇v dx

= ∫D(ω) ∂tχ( ⋅ , t, ω)v dx + ∫D(ω)f( ⋅ , t, ω)v dx + ∫D(ω)a( ⋅ , ω)∇χ( ⋅ , t, ω) ⋅ ∇v dx

In this case, the analytic extension for the term ∂tχ( ⋅ , t, ω) becomes time dependent and the 

analysis is significantly more complicated.

2.1. Reformulation on a reference domain

To simplify the analysis of Problem 1 we remap the solution u ∈ H1(D(ω)) onto a non-

stochastic fixed domain. This approach has been applied in [14, 8, 20, 22, 18] and we can 

then take advantage of the extensive theoretical and practical work of PDEs with stochastic 

diffusion coefficients.

The idea now is to remap the domain D(ω) onto a reference domain almost surely with 

respect to Ω. Suppose there exist a reference domain U ⊂ ℝd with Lipschitz boundary ∂U
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and a bijection F(ω):U D(ω) that maps D(ω) into U almost surely with respect to Ω. The 

mapβ x, U D(ω), is written as

β x = F(β, ω),

where β are the coordinates for the reference domain U. See the cartoon example in Figure 

1.

Assumption 2.

Denote by ∂F(β, ω) the Freéhet derivative (Jacobian) of the bijective map F(β, ω):U D(ω). 
Furthermore, let σmin(∂F(β, ω)) and σmax(∂F(β, ω))  be respectively the minimum and 

maximum singular value of ∂F(β, ω). Suppose there exist constants 0 < Fmin ⩽ Fmax < ∞
such that Fmin ⩽ σmin(∂F(β, ω)) and σmax(∂F(β, ω)) ⩽ Fmax a.e. in U and a.s. in Ω.

Remark 2.

The previous assumption implies that the Jacobian | ∂F(β, ω) | ∈ L∞(U) almost surely.

From the Sobolev chain rule (see Theorem 3.35 in [1] or page 291 in [11]) it follows that for 

any v ∈ H1(D(ω))

∇D(ω)v = ∂F−T ∇(v ∘ F), (3)

where ∇D(ω) refers to the gradient on the domain D(ω), ∇ is the gradient on the reference 

domain U, and (v ∘ F) ∈ H1(U). Let

V : = v ∈ H1(U):v = 0 on ∂UD ,

where ∂U is the boundary of U, ∂UD ⊂ ∂U is the range of F−1 with respect to the boundary 

DD(ω), ∂UN ⊂ ∂U is the range of F−1 with respect to the boundary DN(ω) and 

∂UD ∪ ∂UN = ∂U. Furthermore, denote by V* the dual space of V.

We can now show that:

Lemma 1.

Under Assumptions 2 the following pairs of spaces are isomorphic

i. L2(D(ω)) ≅ L2(U) .

ii. H1(D(ω)) ≅ H1(U) .

iii. L2 0, T ; L2(D(ω)) ≅ L2 0, T ; L2(U) .

iv. L2 0, T ; H1(D(ω)) ≅ L2 0, T ; H1(U) .

v. L2(∂D(ω)) ≅ L2(∂U) .
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vi. L2 0, T ; V *(D(ω)) ≅ L2 0, T ; V * .

vii. H1/2(∂D(ω)) ≅ H1/2(∂U) .

PROOF.

i)–iv) From the Sobolev chain rule it is not hard to prove. These results can be found 

in either [8], or similarly in [9].

v) Suppose we have a disjoint finite covering T  of the boundary ∂U such that for each 

τ ∈ T  there exists a Lipschitz bijective mapping ξτ:Br
0 τ (c.f. trace theorem proof, 

p. 258 in [11] for details and [39]), where Br
0: = x ∈ Br ∣ xd = 0  and Br ⊂ ℝd is a ball 

of radius r. In the following proof the Lipschitz mappings ξτ, τ ∈ T, are assumed to be 

differentiable. From the Radamacher Theorem [12] every Lipschitz function is 

differentiable almost everywhere. Therefore without loss of generality we can replace 

the Lipschitz mappings ξτ, τ ∈ T, with an equivalent differentiable version except for 

sets of measure zero. For simplicity we shall perform the following analysis with 

respect to a single open set τ and mapping ξτ:Br
0 τ . Let Jτ: = ∂xiξτj 1 ⩽ i ⩽ d − 1

1 ⩽ j ⩽ d
, 

then for any v ∈ L2(∂U)

∫
τ

v2 dS = ∫Br0
v ∘ ξτ 2|JτTJτ|

1
2dx′ . (4)

Now, Kτ = F(τ, ω) covers a portion of the boundary of ∂D(ω), then

∫Kτ
v2 dS = ∫Br0

v ∘ F ∘ ξτ 2|JF ∘ τ
T JF ∘ τ|

1
2 , dx′,

where JF ∘ τ = ∂F( ⋅ , ω)Jτ. It is not hard to show that for any vector s ∈ ℝd − 1, where 

∥ s ∥l2 = 1,

σmin ∂F( ⋅ , ω)T ∂F( ⋅ , ω) σmin JτTJτ ⩽ sTJτT ∂F( ⋅ , ω)T ∂F( ⋅ , ω)Jτs

⩽ σmax ∂F( ⋅ , ω)T ∂F( ⋅ , ω) σmax JτTJτ .

The result follows.

vi) Suppose that ξ ∈ V (D(ω))*, then ∥ ξ ∥V (D(ω)) *  is equal to

sup
v ∈ V ((D(ω)))

∥ v ∥V (D(ω)) ⩽ 1

|ξ(v) | = sup
v ∘ F ∈ V

C ∥ v ∘ F ∥V ⩽ ∥ v ∥V (D(ω)) = 1

|ξ(v ∘ F) | .

The positive constant C > 0 is due to the fact that H1(D(ω)) ≅ H1(U). Let 

w = C(v ∘ F), then
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∥ ξ ∥V (D(ω))* ⩽ sup
w ∈ V

∥ w ∥V ⩽ 1
C−1|ξ(w) | = C−1 ∥ ξ ∥V * , ∀C > 0.

The converse is similarly proven.

vii)The result follows by using ii), the Trace Theorem and inverse Trace Theorem 

(Theorems 2.21 and 2.22 in [44]).

Note that analogous lemmas are proved in [8, 20].

From this point on the terms a.s. and a.e. will be dropped unless emphasis or disambiguation 

is needed. For any v, s ∈ H1(U)

B(ω; s, v): = ∫U
(a ∘ F)(β, ω)∇sT ∂F−1(β, ω)∂F−T(β, ω)∇v| ∂F(β, ω) |dβ .

With a change of variables the boundary value problem is remapped.

Problem 2.

Given that (f ∘ F)(β, t, ω) ∈ L2 0, T ; L2(U) , gN : = gN ∘ F , and gN ∈ L2 ∂UN  find 

u(β, t, ω) ∈ L2(0, T ; V ), ∂tu ∈ L2 0, T ; V * , with Neumann boundary condition on ∂UN s.t.

∫U
v| ∂F(β, ω) | ∂tu(β, t, ω)dβ + B(ω; u, v) = l (ω; v), in U × (0, T )

u(β, 0, ω) = u0 ∘ F (β, ω) on U × t = 0

∀v ∈ V  almost surely, where

l (ω; v): = ∫U
(f ∘ F)(β, ω) | ∂F(β) |v dβ

+ ∑
τ ∈ T

∫Br0
gN ∘ F β ∘ ξτ, ω v ∘ ξτ

|JτT ∂F β ∘ ξτ, ω T ∂F β ∘ ξτ, ω Jτ|
1
2dx′,

where TU :H1/2(∂U) H1(U) is a linear bounded operator such that ∀g ∈ H1/2(∂U), 

TUg ∈ H1(U) satisfies TUg |∂U = g. The weak solution u ∈ H1(D(ω)) is obtained as 

u(x, ω) = u ∘ F−1 (x, ω).

Now we have to be a little careful. The existence theorems from [11], Chapter 7, do not 

apply directly to Problem 2 due to the | ∂F(β, ω) | ∂tu term. Although the existence proof in 

[11] can be modified to incorporate this extended term, we direct our attention to Theorem 

10.9 in [6] from J. Lions [32].
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Let H (with norm ∥ ⋅ ∥H) and W (with norm ∥ ⋅ ∥W ) be Hilbert spaces with the associated 

dual spaces H* and W* respectively. It is assumed that W ⊂ H with dense and continuous 

injection so that

W ⊂ H ⊂ W * .

For a.e. t ∈ [0, T ] suppose the bilinear form A[t; ζ, v]:W × W ℝ satisfies the following 

properties:

i. For every ζ, v ∈ W  the function t A[t; ζ, v] is measurable,

ii. For all ζ, v ∈ W |A[t;w, v] | ⩽ M ∥ ζ ∥W ∥ v ∥W  for a.e. t ∈ [0, T ]

iii. For all v ∈ W A[t; v, v] ⩾ α ∥ v ∥W
2 − C ∥ v ∥H

2  for a.e. t ∈ [0, T ].

where α > 0, M and C are constants.

Theorem 1.

(J. Lions) Given a bounded linear functional ℒ ∈ L2 0, T ;W *  and u0 ∈ H, there exists a 

unique function u satisfying u ∈ L2(0, T ;W ) ∩ C([0, T ]; H), ∂tu ∈ L2 0, T ;W *

∂tu, v + A[t; u, v] = ℒ, v

for a.e. t ∈ (0, T ), ∀v ∈ W , and u(0) = u0.

PROOF.—See Chapter 4 of Volume II of [32].

We can now use Theorem 1 to show that there exists a unique solution to Problems 1 and 2. 

Let W = V (D(ω)) and H = L2(D(ω)) then from Theorem 1 there exists a unique solution 

u ∈ L2(0, T ; V (D(ω)) for Problem 1 such that ∂tu ∈ L2 0, T ; V *(D(ω)) . From Lemma 1 there 

is an isomorphic map between u and u. Since there is a unique solution for Problem 1, we 

conclude there exists a solution u ∈ L2(0, T ; V ) for Problem 2 such that ∂tu ∈ L2 0, T ; V * . 

The last step is to confirm that it is unique solution. This is done by checking u = 0 is the 

solution whenever the inhomogeneous term vanishes and the boundary conditions are trivial.

2.2. Stochastic domain deformation map

The next step is to build a parameterization of the map F(β, ω) from a set of random 

variables Y 1, …, Y N with probability density function ρ(y). One objective is to build a 

parameterization such that a large class of stochastic domain deformations are represented. 

Following the same approach as in [18, 20], without loss of generality we assume that the 

map F(β, ω) has the finite noise model

F(β, ω): = β + ∑
n = 1

N
μnbn(β)Yn(ω) .
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From the Doob-Dynkin Lemma the solution u to Problem 2 will be a function of the random 

variables Y 1, …, Y N.

This is a very general representation of the stochastic domain deformation. For example, 

such representation may be achieved by a truncation of a Karhunen-Loéve (KL) expansion 

of vector random fields [20]. In general, the KL eigenfunctions bl(β) ∈ L2(U) d
, which 

presents a problem, as the KL expansion of the random domain may lead to large spikes and 

thus most likely Problem 2 will be ill-posed. However, under stricter regularity assumptions 

of the covariance function the eigenfunctions will have higher regularity (see [15] for 

details). We thus make the following assumption:

Assumption 3.—For n = 1, …N:

i. bn ∈ W 1, ∞(U) d .

ii. bn L∞(U) d = 1

iii. ∞ > μ1 ⩾ ⋯ ⩾ μN > 0. decreasing.

The Jacobian ∂F  can be similarly written as

∂F(β, ω) = I + ∑
n = 1

N
μn∂bn(β)Y n(ω) . (5)

3. Analyticity of the boundary value problem

In this section we show that the solution to Problem 2 can be analytically extended on a 

region Θβ in ℂN with respect to stochastic variable y ∈ Γ. The larger the complex analytic 

domain Θβ is the higher the regularity of the solution with respect to Γ. This provides us a 

path to estimate the convergence rates of the stochastic moments by using a sparse grid 

approximation. In particular, the larger the size of the region Θβ, the faster the convergence 

rate of the sparse grid approximation will be.

Remark 3.

To simplify the analysis assume that Γ is bounded in ℝN. Without loss of generality it can 

also be assumed that Γ ≡ [ − 1, 1]N. However, Γ can be extended to the non-bounded case by 
following the approach described in [2].

We formulate the region Θβ by making the following assumption:

Assumption 4.

1. There exists 0 < δ < 1 such that ∑n = 1
N μn∂bn(β)2 ⩽ 1 − δ for all β ∈ U.

For any 0 < β < δ define the region Θβ ⊂ ℂN (as shown in Figure 2 (a)):
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Θβ: = z ∈ ℂN; z = y + v, y ∈ [ − 1, 1]N, ∑
n = 1

N
sup

x ∈ U
∂bn 2 μn|vn| ⩽ β . (6)

Now, we can extend the mapping ∂F(β, y) = I + R(β, y), with R(β, y): = ∑n = 1
N μn∂bn(β)yn, to 

ℂN by simply replacing y with z ∈ Θβ. It is clear due to linearity that the entries of the maps 

F and ∂F are holomorphic in ℂN. Moreover, denote by Ψ ≡ F Θβ  the image of F :Θβ Ψ.

Since y ∈ [ − 1, 1]N then the matrix inverse of ∂F(y) can be written as 

∂F−1(y) = (I + R(y))−1 = I + ∑k = 1
∞ ( − R(y))k. Furthermore, since β < δ then the 

holomorphic expansion of ∂F−1(y) can be written as the series

∂F−1(z) = (I + R(z))−1 = I + ∑
k = 1

∞
( − R(z))k .

The sum is pointwise convergent ∀z ∈ Θβ. We conclude that for all z ∈ Θβ the entries of the 

matrix ∂F(z)−1 are analytic.

Up to this point we have assumed that only the geometry is stochastic but have made no 

assumptions on further randomness in the forcing function, the boundary conditions or the 

initial condition in Problems 1 and 2. These terms can also be extended with respect to other 

stochastic spaces.

Assumption 5.

a. Suppose that the Nf valued random vector f : = f1, …, fNf
T  takes values on 

Γf : = Γ1 × ⋯ × ΓNf with the probability density ρf(f):ΓNf [0, + ∞). The 

domains Γ1, …, ΓNf can be assumed to be closed intervals in ℝ. Now, assume that 

the random vector f is independent of y and write the forcing function 
f:D(ω) × Γf ℝ as

f(x, f, t) = ∑
n = 1

Nf
cn t, fn ξn(x),

where for n = 1, …, Nf, cn(t, f) ∈ Lρf
∞ Γf ∀t ∈ ℝ+, and ξn:D(ω) ℝ. Since ξn is 

defined on D(ω) we can remap f:D(ω) × Γf ℝ with pullback onto the reference 

domain as

(f ∘ F)(β, f, y, t) = ∑
n = 1

Nf
cn t, fn ξn ∘ F (β, y) .
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We shall now make analytic extension assumptions of the coefficients cn(t, f) and 
ξn for n = 1, …, Nf. The coefficients cn( ⋅ , f):Γf ℝ are defined over the domain 

Γf. Since the solution u from Problem 2 is dependent on the coefficient cn(t, f) 

certain analyticity assumptions have to be made. In particular, suppose there 

exists an analytic extension of cn( ⋅ , f) onto the set F ⊂ ℂNf, where ΓNf ⊂ ℂNf

(See Figure 2 for a graphical representation). The size of the region ℱ will 
directly depend on the coefficients cn( ⋅ , f) on a case by case basis. Furthermore, 

for n = 1, …, Nf the following assumptions are made:

• ξn ∘ F (β, y) can be analytically extended on 

Θβ, Re ξn ∘ F (z) ∈ L2(U), Im ξn ∘ F)(z) ∈ L2(U)∀z ∈ Θβ.

• Re∂zn ξn ∘ F (z), Im ∂zn ξn ∘ F (z) ∈ L2(U) where ∂zn refers to the the 

Wirtinger derivative along the nth dimension.

b. The initial condition u0 ∘ F (β, y) has an analytic extension on Θβ. Moreover, it is 

assumed that Re u0 ∘ F (β, z), Im u0 ∘ F (β, z) ∈ L2(U) for all z ∈ Θβ.

Assumption 6.

We make the following assumptions on the Neumann boundary conditions: It is also 
assumed that gN ∘ F (β, y) can be analytically extended on Θβ, and that 

Re gN ∘ F)(z) ∈ L2(∂U), Im gN ∘ F (z) ∈ L2(∂U)∀z ∈ Θβ. Furthermore, assume that 

det JτT ∂F(β, z)T ∂F(β, z)Jτ
1
2  is analytic for all z in some region C ⊂ ℂN for all τ ∈ T .

Remark 4.

Since ∂F(β, z) is analytic everywhere then s(β, z): = det JτT ∂F(β, z)T ∂F(β, z)Jτ  is analytic in 

ℂN. Thus s(β, z)
1
2  is analytic if Res(β, z) > 0. The region C ⊂ ℂN can be synthesized by 

placing the restriction on Res(β, z) > 0. This can be achieved by placing restrictions on 
∂F(β, z) for all z ∈ C. This is, however, a little involved and is left for a future publication. 
Thus, to simplify the rest of the discussion in this paper we assume that there exists a 
constant β  such that β ⩽ β < δ and C = Θβ ⊂ Θβ .

To show that an analytic extension of the solution to Problem 2 exists certain assumptions on 

the diffusion coefficient a(x) are made. This assumption is left quite general and should be 

checked on a case by case basis.

Assumption 7.

Suppose that the diffusion coefficient a(x):G ℝ is a deterministic map defined over the 

domain G: = ∪ω ∈ Ω D(ω). Furthermore, assume there exists an analytic extension of a(x) 

such that if x∈Ψ then

i. amaxc ⩾ Rea(x) ⩾ aminc,

Castrillón-Candás and Xu Page 12

Comput Math Appl. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ii. |Im a(x) | < amin,

where c = 1/tan c1  and π/8 > c1 > 0.

Let G(z): = (a ∘ F)(β, z)∂F−1(z)∂F−T (z) | ∂F(z)| for all z ∈ Θβ, we can now conclude that G(z) 

is analytic for all z ∈ Θβ.

The following lemma shows under what conditions the matrix Re G(z) is positive definite 

and provides uniform bounds for the minimum eigenvalue of Re G(z). This lemma is key to 

showing that there exists an analytic extension of u(β, y) on Θβ. Note that this is an extension 

of Lemma 5 in [8].

Lemma 2.

Whenever

0 < β < min
δlogγc

d + logγc
, 1 + δ2/2 − 1 ,

where γc: = 2δd + c(2 − δ)d

δd + c(2 − δ)d
 then for all z ∈ Θβ Re G(z) is positive definite. Furthermore, we 

have the following uniform bounds:

a. λmin ReG(z)−1 ⩾ A δ, β, d, c1, amin, amax > 0 where

A δ, β, d, c1, amax, amin : = (2 − δ)−d(2 − α(β))−1

amax2 c2 + amin2 1/2 cos 2c1 δ(δ − 2β)

−sin 2c1 2β(2 + (β − δ)) ,

and α(β): = 2 − exp − dβ
δ − β ,

b. λmax ReG(z)−1 ⩽ R δ, β, d, c1, amin < ∞ where

R δ, β, d, c1, amin : = aminc
−1δ−dα(β)−1 2β(2 + β − δ) + (2 − δ + β)2 .

c. σmax ImG(z)−1 ⩽ ℒ δ, β, d, c1, amin < ∞ where

ℒ δ, β, d, c1, amin : = aminc
−1δ−dα(β)−1(2β(2 + (β − δ))

+((2 − δ) + β)2 + β2 .

PROOF.—(a) From the proof in Lemma 5 in [8] and Assumption 4 we have that if β < δ/2
then
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λmin Re ∂F(z)T ∂F(z) ⩾ δ(δ − 2β) > 0. (7)

Furthermore, for all z ∈ Θβ,

max
i = 1, …, d

|λi Im ∂F(z)T ∂F(z) | ⩽ 2β(2 + (β − δ)), (8)

thus

ReG(z)−1 = Re
(aR(z) − iaI(z))

|a(z)|2
(ξR(z) − iξI(z))

|ξ(z)|2
Re∂F(z)T ∂F(z)

+i Im ∂F(z)T ∂F(z)

= Re e−iθa(z)
|a(z)|

e−iθξ(z)
|ξ(z)| Re∂F(z)T ∂F(z) + i Im ∂F(z)T ∂F(z)

where with a slight abuse of notation ξ(z): = ξR(z) + iξI(z) = |ξ(z) |eiθξ(z) = |I + R(z)| and 

a(z): = |a(z) |eiθa(z = aR(z) + iaI(z) = Re(a ∘ F)(β, z) + i Im(a ∘ F)(β, z).

It is simple to check that Re∂F(z)T ∂F(z) and Im ∂F(z)T ∂F(z) are Hermitian. Let 

ψR(z): = Rea−1(z)ξ−1(z) and ψI(z): = Im a−1(z)ξ−1(z). For the next step the dual Lidskii 

inequality is applied. Suppose that K, ℒ ∈ ℂd × d are Hermitian, then 

λmin(K + ℒ) ⩾ λmin(K) + λmin(ℒ). Assuming that ψR(z) > 0 it follows from the dual Lidskii 

inequality that

λmin ReG(z)−1 ⩾ λmin ψR(z) Re∂F(z)T ∂F(z) − ψI(z) Im ∂F(z)T ∂F(z)

⩾ λmin ψR(z)Re∂F(z)T ∂F(z) + λmin −ψI(z) Im ∂F(z)T ∂F(z)

⩾ ψR(z)λmin Re∂F(z)T ∂F(z) + λmin −ψI(z) Im ∂F(z)T ∂F(z)

⩾ ψR(z)λmin Re∂F(z)T ∂F(z)

−|ψI(z)| max
k = 1, …, d

|λk Im ∂F(z)T ∂F(z) | .

(9)

The next step is to place sufficient conditions on ξ(z), a(z) and ∂F(z)T ∂F(z) such that 

λmin(ReG(z)−1 > 0 in Equation (9).

I. First we determine for what range of values of β the following inequality is 

satisfied:

ξR(z) ⩾ c|ξI(z)| (10)

Castrillón-Candás and Xu Page 14

Comput Math Appl. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for all z ∈ Θβ. From Lemma 4 in [8] iii) we have that if α = 2 − exp dβ
δ − β > 0 then 

Re| ∂F(y) | ⩾ δdα and |Im | ∂F(y) ∥ ⩽ 2 − δd (1 − α). Thus we need to solve for β 

such

ξR(z) ⩾ δdα ⩾ c 2 − δd (1 − α) ⩾ c|ξI(z)|

for all z ∈ Θβ. This is achieved if β <
δlogγc

d + logγc
, where γc: = 2δd + c(2 − δ)d

δd + c(2 − δ)d
.

II. From Assumption 7 it follows that aR(z) > c|aI(z)| if z ∈ Θβ.

III. From inequalities (7) and (8) it follows that if β < 1 + δ2/2 − 1 then

λmin Re∂F(z)T ∂F(z) > max
k = 1, …, d

|λk Im ∂F(z)T ∂F(z) | .

From I) - II) it follows that ψR(z) > |ψI(z)| since the angle of ψ(z) is less than π/4 for all 

z ∈ Θβ. However, an explicit expression can be derived:

ψR(z) − |ψI(z)| = |ψ(z) | cos θψ(z) − sin θψ(z) ,

where |ψ(z) | = 1
|a(z) | | ξ(z)|  and θψ(z) = − θa(z) − θξ(z). We observe from Assumption 7 that

tanθa(z) = Im(a(z))
Re(a(z)) < |Im(a(z))|

Re(a(z))

tan −θa(z) = −Im(a(z))
Re(a(z)) < |Im(a(z))|

Re(a(z)) .

It follows that |θa(z)| < π
8 . Apply the same argument to θξ(z), we have |θξ(z)| < π

8 . It follow that

θψ(z) = − θa(z) − θξ(z) ∈ −π
4 , π4 . (11)

Since cos(θ) > sin(θ), ∀θ ∈ − π
4 , π

4 , we obtain

ψR(z) − |ψI(z)| > 0.

In particular, substituting equations (7) and (8) in equation (9) we obtain that for all z ∈ Θβ
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λmin ReG(z)−1 ⩾ A δ, β, d, c1, amin, amax > 0.

Since λmin ReG(z)−1  is uniformly bounded by below it follows from From London’s Lemma 

[33] that for all z ∈ ΘβReG(z) is positive definite.

(b) From the proof in Lemma 5 in [8] and Assumption 4 we have that

λmax Re∂F(z)T ∂F(z) ⩽ (2 − δ + β)2 . (12)

From Assumption 7 we have that |a(z) |−1 ⩽ aminc −1 for all z ∈ Θβ. From Lemma 4 in [8] 

|ξ(z) |−1 ⩽ δ−dα(β)−1 for all z ∈ Θβ. We then have that

|ψ(z) | ⩽ aminc −1δ−dα(β)−1 . (13)

Applying the Lidskii inequality (if A,B ∈ ℂd × d are Hermitian then 

λmax(A + B) ⩽ λmax(A) + λmax(B)  and substituting equations (7), (8), (12) and (13)

λmax ReG(z)−1 ⩽ |ψR(z)|λmax Re∂F(z)T ∂F(z) + |ψI(z)|max
i

|λi Im∂F(z)T ∂F(z) |

⩽
λmax Re∂F(z)T ∂F(z) + maxi|λi Im ∂F(z)T ∂F(z) |

|ψ(z)|−1

⩽ ℛ δ, β, d, c1, amin < ∞ .

(c) Similarly to (b), as shown in [8], it can be shown that

σmax Im ∂F(z)T ∂F(z) ⩽ 2β(2 + (β − δ)) . (14)

and

σmax Re∂F(z)T ∂F(z) ⩽ ((2 − δ) + β)2 + β2 . (15)

From equations (13), (14) and (15) it follows that

σmax Im G(z)−1 ⩽ |ψR(z)|σmax Im ∂F(z)T ∂F(z)

+|ψI(z)|σmax Re∂F(z)T ∂F(z)

⩽ ℒ δ, β, d, c1, amin < ∞ .

Lemma 3.

For all z ∈ Θβ and β ∈ U whenever
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0 < β < min δ
logγc

d + logγc
, 1 + δ2/2 − 1

Then λmin(ReG(z)) ⩾ ε δ, β, d, c1, amax, amin > 0, where ε δ, β, d, c1, amax, amin  is equal to

1 +
L δ, β, d, c1, amin

A δ, β, d, c1, amin, amax

2 −1
ℝ δ, β, d, c1, amin

−1 .

PROOF.—The proof essentially follows Lemma 6 in [8]. The main result of this section can 

now be proven.

Theorem 2.

Let 0 < δ < 1 then u(β, y, f, t) can be analytically extended on Θβ × ℱ if

β < min δ
logγc

d + logγc
, 1 + δ2/2 − 1 .

PROOF.—Suppose that V is a vector valued Hilbert space equipped with the inner product 

(γ, v)V, where v: = ϑ1ϑ2
T  and γ: = γ1γ2

T , such that for all ϑ1, ϑ2, γ1, γ2 ∈ V

(γ, v): = γ1, ϑ1 + ∇γ1, ∇ϑ1 + γ2, ϑ2 + ∇γ2, ∇ϑ2 .

Consider the extension of (y, f) (z, q) on Θβ × ℱ. Let Φ(y, f, t): = u(y, f, t) and consider the 

extension Φ = ΦR + iΦI on Θβ × ℱ, where ΦR: = Re Φ and ΦI : = Im Φ. Let ζ = ΦR, ΦI
T , 

then the extension of Φ on Θβ × ℱ is posed in the weak form as: Find 

ζ ∈ L2(0, T ; V), ∂tζ ∈ L2 0, T ; V*  such that

∫
U

∂tζTC(z)Tv + ∇ζTG(z)T ∇v dβ = ∫
U
f(z, q, t) ⋅ v dβ + ∑

τ ∈ T
∫Br0

g ⋅ v dx′

in U × (0, T )
ζ = ζ0 on U × t = 0

(16)

for all v ∈ V, where v: = ϑ1, ϑ2
T ,

G(z): =
GR(z) −GI(z)
GI(z) GR(z) f(z, q, t): =

fR
fI

g(z): =
gN
R

gN
I 0: = 0

0 ,

C(z): =
cR(z) −cI(z)
cI(z) cR(z) d(z): =

dR
dI

ζ0(z): =
u0
R

u0
I ,
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GR(z): = Re G(z) , GI(z): = Im G(z) , cR(z): = Re | ∂F(z) | , cI(z): = Im | ∂F(z) | , 

fR: = Re (f ∘ F)(q, z, t) | ∂F(z) | , fI : = Im (f ∘ F)(q, z, t) | ∂F(z) | , u0
R = Re(u ∘ F)(z), 

u0
I = Im (u ∘ F)(z), dR(z): = Re ∇ ⋅ G(z)∇χ , dI(z): = Im ∇ ⋅ G(z)∇χ , 

gN
R = Re gN ∘ F) β ∘ ξτ, z det JτT ∂F β ∘ ξτ, z T ∂F β ∘ ξτ, z Jτ

1
2  and 

gN
I = Im gN ∘ F β ∘ ξτ, z det JτT ∂F β ∘ ξτ, z T ∂F β ∘ ξτ, z Jτ

1
2  The system of equations (16) 

has a unique solution if GR is uniformly positive definite λmin GR(z) > 0  since this implies 

that λmin(G(z)) > 0 uniformly. From Lemma 2 this condition is satisfied if z ∈ Θβ. Moreover, 

Φ(z, q, t) coincides with Φ(y, f, t) whenever z ∈ Γ and q ∈ Γf thus making it a valid extension 

of Φ(y, f, t) on Θβ × ℱ.

The analytic regularity of the solution Φ(z, q, t) with respect to variables in z is now analyzed. 

However, it is not necessary to perform the analysis with respect to all the variables z jointly. 

It is sufficient to show that Φ(z, q, t) is analytic with respect to each variable zn, n = 1, …, N, 

separately. As shown at the end of the proof it can be concluded that Φ(z, q, t) is analytic in 

Θβ × ℱ.

First, we concentrate on the zn variable of the vector z. Let s = Rezn and w = Im zn. 

Analogous to [8], we would like to take derivatives on (16) with respect to w and s, but we 

cannot do this directly since we do not know whether ζ is differentiable in w or s. Due to 

Lemma 8, ∂wζ and ∂sζ do exist on Θβ × ℱ. Furthermore, we also conclude from Lemma 8 

that:

a. ∂wζ ∈ L2(0, T ; V), ∂t ∂wζ ∈ L2 0, T ; V*  uniquely satisfies

∫
U

∂t ∂wζTC(z)Tv + ∇ ∂wζTG(z)T ∇v dβ = ∫
U

− ∂tζT ∂wC(z)Tv −

∇ζT ∂wG(z)T ∇v + ∂wf(z, q, t) ⋅ v dβ + ∑
τ ∈ T

∫Br0
∂wg ⋅ v dx′

(17)

in U × (0, T) for all v ∈ V and

∂wζ = ∂wζ0 (on U × t = 0 .

b. ∂sζ ∈ L2(0, T ; V), ∂t ∂sζ ∈ L2 0, T ; V*  uniquely satisfies

∫
U

∂t ∂sζTC(z)Tv + ∇ ∂sζTG(z)T ∇v dβ = ∫
U

− ∂tζT ∂sC(z)Tv −

∇ζT ∂sG(z)T ∇v + ∂sf(z, q, t) ⋅ v dβ + ∂sd(z) ⋅ v + ∑
τ ∈ T

∫Br0
∂sg ⋅ v dx′

(18)

in U × (0, T) for all v ∈ V and
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∂sζ = ∂sζ0 (on U × t = 0 ) .

In the following argument we show that Φ is analytic with respect to zn for all z ∈ Θβ × ℱ by 

using the Cauchy-Riemann equations. Consider the two functions P(z): = ∂sΦR(z) − ∂wΦI(z)

and Q(z): = ∂wΦR(z) + ∂sΦI(z), P: = [P(z), Q(z)]T . First, let us write out explicitly equation 

(18) for the first term:

∂t ∂sζTC(z)Tv = ∂t ∂sΦRcR − ∂t ∂sΦIcI ϑ1 + ∂t ∂sΦRcI − ∂t ∂sΦIcR ϑ2 . (19)

Second, for equation (17) exchange ϑ1 with ϑ2, and ϑ2 with −ϑ1 (Note, that this is valid since 

equations (16) and (17) are satisfied for all v ∈ V), then the first term can written explicitly 

as

∂t ∂wΦRcR − ∂t ∂wΦIcI ϑ2 − ∂t ∂wΦRcI − ∂t ∂wΦIcR ϑ1 . (20)

Adding Equations (19) and (20) we obtain

∂tPTC(z)Tv .

Following for the rest of the terms we obtain the following weak problem: Find 

P ∈ L2(0, T ; V), with ∂tP ∈ L2 0, T ; V* , s.t.

∫U
∂tPTC(z)Tv + ∇PTG(z)T ∇v dβ

= ∫U
− ∂tζT ∂scR(z) − ∂wcI(z) ∂scI(z) + ∂wcR(z)

− ∂scI(z) + ∂wcR(z) ∂scR(z) − ∂wcI(z) v

+ ∇ζT ∂sGR(z) − ∂wGI(z) ∂sGI(z) + ∂wGR(z)
− ∂sGI(z) + ∂wGR(z) ∂sGR(z) − ∂wGI(z) v

+ ∂sfR(z, q, t) − ∂wfI(z, q, t)∂sfI(z, q, t) + ∂wfR(z, q, t) T

dβ

+ ∑
τ ∈ T

∫BT
0 ∂sgN

R(z) − ∂wgN
I (z)∂sgN

I (z) + ∂wgN
R(z) T ⋅ v dx′

in U × (0, T) for all v ∈ V and

P = 0 (on ∂UD × (0, T ) and U × t = 0

Since (f ∘ F)(q, z, t) is holomorphic in Θβ × ℱ and c(z) and G(z) are holomorphic in Θβ then 

from the Cauchy Riemann equations we have that
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∫U
∂tPTC(z)Tv + ∇PTG(z)T ∇v dβ = 0.

Observe that zero solved the above equation above, and hence due to uniqueness we have 

that Q(z) = P(z) = 0 and therefore Φ(z, q, t) is holomorphic in Θβ along the nth dimension. 

From Hartogs’ Theorem (Chap1, p32, [31]) and Osgood’s Lemma (Chap 1, p 2, [19]) Φ(z, 

q, t) is holomorphic in Θβ whenever q ∈ ℱ.

Since f(z, q, t) is holomorphic in Θβ × ℱ then Φ(z, q, t) is also holomorphic in ℱ whenever 

z ∈ Θβ. Applying Hartogs’ Theorem and Osgood’s Lemma it follows that Φ(z, q, t) is 

holomorphic in Θβ × ℱ.

4. Stochastic polynomial approximation

Consider the problem of approximating a function ν:Γ W  on the domain Γ. Our goal is to 

seek an accurate approximation of ν in a suitably defined finite dimensional space. To this 

end the following spaces are defined:

We first define the space of tensor product polynomials Pp(Γ) ⊂ Lρ
2(Γ), where p = p1, …pN)

controls the degree along each dimension. Let Ppn Γn : = span ynm, m = 0, …, pn , n = 1, …, N, 

and form the space Pp(Γ) = ⊗n = 1
N Ppn Γn .

Suppose that lk
p, k ∈ K, is a series of Lagrange polynomials that form a basis for Pp(Γ). An 

approximation of ν, know as the Tensor Product (TP) representation, can be constructed as

νN(y) = ∑
k ∈ K

ν ⋅ , yk lk
p(y)

where yk are evaluation points from an appropriate set of abscissas. However, this is a poor 

choice for approximating ν as the dimensionality of the index set K is Πn = 1
N pn + 1 . Thus 

the computational burden quickly becomes prohibitive as the number of dimensions N 
increases. This motivates us to choose a reduced polynomial basis while retaining good 

accuracy.

Consider the univariate Lagrange interpolant along the nth dimension of Γ:

ℐnm(i):C0 Γn Pm(i) − 1 Γn .

In the above equation i ≥ 0 is the level of approximation and m(i) ∈ ℕ0 is the number of 

evaluation points at level i ∈ ℕ0 where m(0) = 0, m(1) = 1 and m(i) ≤ m(i + 1) if i ≥ 1. Note 

that by convention P−1 = ∅.
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An interpolant can now be constructed by taking tensor products of ℐn
m(i) along each 

dimension n. However, the dimensionality of Pp increases as ∏n = 1
N pn + 1  with N. Thus 

even for a moderate size of dimensions the computational cost of the Lagrange 

approximation becomes intractable. In contrast, given sufficient regularity of ν with respect 

to the stochastic variables defined on Γ, the application of Smolyak sparse grids is better 

suited [42, 4, 3, 36]).

Consider the difference operator along the nth dimension of Γ

Δnm(i): = ℐnm(i) − ℐnm(i − 1) .

We can now construct a sparse grid from a tensor product of the difference operators along 

every dimension. Denote w ∈ ℕ0, w > 0, as the approximation level. Let i = i1, …, iN ∈ ℕ+
N

be a multi-index and given the user defined function g:ℕ+
N ℕ, which is considered to be 

strictly increasing along each argument. Note that the function g imposes a restriction along 

each dimension such that a small subset of the polynomial tensor is selected. More precisely, 

the sparse grid approximation of ν is constructed as

Sw
m, g[ν] = ∑

i ∈ ℕ+N:g(i) ⩽ w
⊗

n = 1
N

Δn
m in (ν(y)) .

The sparse grid with respect to formulas (m, g) and level w can also be written as

Sw
m, g[ν(y)] = ∑

i ∈ ℕ+N:g(i) ⩽ w
c(i) ⊗

n = 1
N

ℐn
m in (ν(y)), with c(i) = ∑

j ∈ 0, 1 N
g(i + j) ⩽ w

( − 1)|j| .

Let m(i) = m i1 , …, m iN ∈ ℕ+
N vector and the define the following index set with respect 

to (m, g, w) as

Λm, g(w) = p ∈ ℕN, g m−1(p + 1) ⩽ w .

The indices in Λm, g(w) form the set of allowable polynomial moments ℙΛm, g(w)(Γ) restricted 

by (m, g, w). Specifically this polynomial set is defined as

ℙΛm, g(w)(Γ): = span ∏
n = 1

N
yn
pn, with p ∈ Λm, g(w) .

We have different choices for m and g. One of the objectives is to achieve good accuracy 

while restricting the growth of dimensionality of the space ℙΛm, g(w)(Γ). The well known 

Smolyak sparse grid [36] can be constructed with the following formulas:
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m(i) =
1, for i = 1

2i − 1 + 1, for i > 1
and g(i) = ∑

n = 1

N
in − 1 .

For this choice the index set Λm, g(w): = p ∈ ℕN : ∑nf pn ⩽ w  where

f(p) =
0, p = 0
1, p = 1
log2(p), p ⩾ 2

.

This selection is known as the Smolyak sparse grid. Other choices include the Total Degree 

(TD) and Hyperbolic Cross (HC), which are described in [8]. See Figure 4 for a graphical 

representation of the index sets Λm,g(w) for N = 2.

The Smolyak sparse grid combined with Clenshaw-Curtis abscissas form a sequence of 

nested one dimensional interpolation formulas and a sparse grid with a highly reduced 

number of nodes compared to the corresponding tensor grid. For any choice of m(i) > 1 the 

Clenshaw-Curtis abscissas, which are formed from the extrema of Chebyshev polynomials, 

are given by

yjn = − cos π(j − 1)
m(i) − 1 .

We finally remark that not all of the stochastic dimensions have to be treated equally. In 

particular, some dimensions will have more of a contribution to the sparse grid 

approximation that others. By adapting the restriction function g to the input random 

variables yn for n = 1, …, N a more accurate anisotropic sparse grid can be obtained [41, 35]. 

For the sake of simplicity in the rest of this paper we restrict ourselves to isotropic sparse 

grids. However, an extension to the anisotropic setting is not difficult.

5. Error analysis

In this section we analyze the error contributions of the sparse grid approximation to the 

mean and variance estimates of the QoI. In addition, an error analysis is also performed with 

respect to a truncation of the stochastic model to the first Ns dimensions. Note that the error 

contributions from the finite element and implicit solvers are neglected since there are many 

methods that can be used to solve the parabolic equation (e.g. [30]) and the analysis can be 

easily adapted. First, we establish some notation and assumptions:

i. Split the Jacobian matrix:

∂F(β, ω) = I + ∑
l = 1

Ns
μl∂bl(β)Y l(ω) + ∑

l = Ns + 1

N
μl∂bl(β)Y l(ω) . (21)

and let Γs: = [ − 1, 1]Ns, Γκ: = [ − 1, 1]N − Ns, then the domain Γ = Γs × Γκ.
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ii. Assume that Q:L2(U) ℝ is a bounded linear functional on L2(U) with norm 

∥ ⋅ ∥.

iii. Refer to Q(ys) as Q(y) restricted to the stochastic domain Γs and similarly for 

G(ys). It is clear also that Q(ys, yκ) = Q(y) and G(ys, yκ) = G(y) for all y ∈ Γs × 

Γκ, ys ∈ Γs, and yκ ∈ Γκ.

iv. Suppose that the Ng < Nf valued random vector g = f1, …, fNg  matches with f 

from the first to Nf entry and takes values on Γg: = Γ1 × ⋯ × ΓNg. The truncated 

forcing function can now be written as

(f ∘ F)(β, g, y, t) = ∑
n = 1

Ng
cn t, fn ξn ∘ F (β, y) .

It is not difficult to show that the variance error |var Q ys, yκ, f, t − var Sw
m, g Q ys, g, t |

and mean error |E Q ys, yκ, f, t − E Sw
m, g Q ys, g, t |  are less or equal to (see [8])

CTR Q ys, yκ, f, t − Q ys, f, t Lρ2 Γ × Γf
Truncation (I)

+CFTR Q ys, f, t − Q ys, g, t Lρ2 Γ × Γf
Forcing function Truncation (II)

+CSG Q ys, g, t − Sw
m, g Q ys, g, t Lρ2 Γs × Γg ,

Sparse Grid (III)

where CT R, CF T R and CSG are positive constants and t ∈ (0, T ). We now derive error 

estimates for the truncation (I) and sparse grid (II) errors.

5.1. Truncation error (I)

We study the effect of truncating the stochastic Jacobian matrix to the first Ns stochastic 

dimensions. Consider the bounded linear functional Q:L2(U) ℝ, then

|Q ys, yκ, f, t − Q ys, f, t | ⩽ ∥ Q ∥ u ys, yκ, f, t − u ys, f, t L2(U) .

It follows that for t ∈ (0, T )

Q ys, yκ, f, t − Q ys, f, t Lρ2 Γ × Γf
⩽ ∥ Q ∥ u ys, yκ, f, t − u ys, f, t Lρ2 Γ × Γf; L2(U) .

The objective now is to control the error term u(y, f, t) − u ys, f, t Lρ2 Γ × Γf; L2(U) . But first 

we establish some notation. If W is a Banach space defined on U then let define the 

following spaces
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C0(Γ;W ): = v:Γ W is continuous on Γ and max
y ∈ Γ

∥ v(y) ∥W < ∞ .

and

Lρ2(Γ;W ): = v:Γ W is strongly measurable and ∫Γ
∥ v ∥W

2 ρ(y) dy < ∞ .

With a slight abuse of notation let ς ys, f, t : = u ys, f, t  for all t ∈ (0, T ), ys ∈ Γs and f ∈ Γf. 

From Theorem 2 it follows that

ς , u ∈ C0 Γ × Γf; L2(0, T ; V ) ⊂ Lρ2 Γ × Γf; L2(0, T ; V ) .

We can now bound the error due to the truncation of the stochastic variables. However, due 

to the heavy density of the notation, we first prove several lemmas that will be useful to the 

truncation analysis.

Lemma 4.—Let

BT : = sup
β ∈ U

∑
l = Ns + 1

N
μl ∂bl and CT : = ∑

i = Ns + 1

N
μl

then

a. supβ ∈ U, y ∈ Γ|F(y) − F ys | ⩽ CT .

b. supy ∈ Γ ∂F(y) | − | ∂F ys ⩽ Fmax
d − 1Fmin

−2 dBT .

c. supβ ∈ U, y ∈ Γ G(y) − G ys ⩽ amaxBTH Fmax, Fmin, δ, d  for some positive 

constant H Fmax, Fmin, δ, d .

d. For all τ ∈ T

sup
x′ ∈ Br0, y ∈ Γ

∥ JτT ∂F β ∘ ξτ, y T ∂F β ∘ ξτ, y Jτ | − |JτT ∂F β ∘ ξτ, ys
T

∂F β ∘ ξτ, ys Jτ ∥ ⩽ 32(d − 1) sup
x′ ∈ Br0

∥ Jτ x′ ∥2 dFmax2d − 1BT,

where

Jτ: = Jτ 0

and 0 ∈ ℝd
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PROOF.: (a) - (c) Follow the same arguments as in Theorem 10 in [8]. (d) To prove this last 

inequality, we use Theorem 2.12 in [24] (A,E ∈ ℂd × d then 

|det(A + E) − det(A) | ⩽ d ∥ E ∥ max ∥ A ∥ , ∥ A + E ∥ d − 1 . For any τ ∈ T let 

A: = JτT , ∂F β ∘ ξτ, ys T ∂F β ∘ ξτ, ys Jτ and E: = JτTℰJτ, where

ε: = β ∘ ξτ, ∂F β ∘ ξτ, yκ T ∂F β ∘ ξτ, yκ + ∂F β ∘ ξτ, yκ T ∂F β ∘ ξτ, ys
+ ∂F β ∘ ξτ, ys

T ∂F β ∘ ξτ, yκ ,

then

∥ E ∥ = Jτ
TℰJτ = ℰJτJτ

T ⩽ ∥ ℰ ∥ JτJτ
T ⩽ 32(d − 1) JτJτ

T Fmax2(d − 1)BT .

The result follows.

Lemma 5.—Let

χU(β) = 1 β ∈ U
0 o.w.

,

then

a. ∫U | (f ∘ F)(y, f, t) − (f ∘ F) ys, f, t | ∂F(y) ∣ e(y, f, t)

⩽ Fmax
d χU L2(U) sup

f ∈ Γf
∥ f ∥W 1, ∞(G × (0, T )) sup

t ∈ (0, T )
∥ e(y, f, t) ∥V CT

b. ∫U |(f ∘ F) ys, f, t | ∂F(y) | − |∂F ys | e(y, f, t)|

⩽ Fmax
d − 1Fmin

−2 dBT sup
t ∈ (0, T )

∥ e(y, f, t) ∥V sup
t ∈ (0, T )

f ∈ Γf, y ∈ Γ

∥ (f ∘ F)(y, f, t) ∥L2(U)

PROOF.

a. ∫U | (f ∘ F)(y, f, t) − (f ∘ F) ys, f, t | ∂F(y) ∣ e(y, f, t)

⩽ Fmax
d χU L2(U) sup

f ∈ Γf
∥ f ∥W 1, ∞(G × (0, T )) sup

t ∈ (0, T )
∥ e(y, f, t) ∥V sup

y ∈ Γ, β ∈ U
|F(y) − F ys | .

The result follows from Lemma 4 (a).

b. ∫U |(f ∘ F) ys, f, t | ∂F(y) | − |∂F ys | e(y, f, t)|
⩽ sup

t ∈ (0, T )
∥ e(y, f, t) ∥V sup

t ∈ (0, T )
f ∈ Γf, y ∈ Γ

∥ (f ∘ F)(y, f, t) ∥L2(U) sup
y ∈ Γ, β ∈ U

∂F(y) | − | ∂F ys .

The result follows from Lemma 4 (b).
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Lemma 6.—Let 

ST: = supx′ ∈ Br0, τ ∈ T, y ∈ Γ|s β ∘ ξτ x′ , y
1
2 |, CT: = infx′ ∈ Br0, τ ∈ Tσmin

(d − 1)/2 JτTJτ
−1

, and 

CT (U) the trace constant defined in [11] then

∑
τ ∈ T

∫Br0
∣ gN ∘ F (β, y) − gN ∘ F β, ys s(β, y)

1
2 e(y, f, t) ∣ dx′

⩽ CT(U)CTST sup
t ∈ (0, T )

∥ e(y, f, t) ∥V gN W 1, ∞ ∂GN CT

PROOF.: From Lemma 4 (a) it follows that

∑
τ ∈ T

∫Br0
∣ gN ∘ F (β, y) − gN ∘ F β, ys s(β, y)

1
2 e(y, f, t) ∣ dx′

⩽ ST ∑
τ ∈ T

∫Br0
| gN ∘ F (β, y) − gN ∘ F β, ys e(y, f, t)|dx′

⩽ ST gN W 1, ∞ ∂GN CT ∑
τ ∈ T

∫Br0
|e(y, f, t) |dx′ .

By using the trace theorem [11] we have that ∥ e(y, f, t) ∥L2(∂U) ⩽ CT (U) ∥ e(y, f, t) ∥V  where 

CT (U). From equation (4), Jensen’s inequality and the fact that all τ ∈ T are disjoint then

CT
−1 ∑

τ ∈ T
∫Br0

|e(y, f, t) |dx′ ⩽ ∑
τ ∈ T

∫Br0
|e(y, f, t) JτTJτ|

1
2dx′ = e(y, f, t) ∥L1(∂U)

⩽ ∥ e(y, f, t) ∥L2(∂U) ⩽ CT(U) ∥ e(y, f, t) ∥V .

Lemma 7.—Let DT: = infx′ ∈ Br0, τ ∈ T, y ∈ Γ|s β ∘ ξτ x′ , y
1
2 |

−1
 then

∑
τ ∈ T

∫
Br0

| gN ∘ F β, ys s(β, y)
1
2 − s β, ys

1
2 e(y, f, t)|dx′

⩽ 32(d − 1)dFmax2d − 1CT(U)CTDT sup
t ∈ (0, T )

∥ e(y, f, t) ∥V gN L∞ ∂GN BT, sup
x′ ∈ Br0

Jτ x′ 2 .

PROOF.: Following the same arguments as in the proof of Lemma 6
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∑
τ ∈ T

∫Br0
| gN ∘ F β, ys s(β, y)

1
2 − s β, ys

1
2 e(y, f, t)|dx′

⩽ sup
τ ∈ T

∥ JτT ∂F β ∘ ξτ, y T ∂F β ∘ ξτ, y Jτ|
1
2 − |JτT ∂F β ∘ ξτ, ys

T ∂F β ∘ ξτ, ys Jτ|
1
2 ∣

gN L∞ ∂GN ∑
τ ∈ T

∫Br0
|e(y, f, t) |dx′

⩽ CT(U)CT sup
t ∈ (0, T )

∥ e(y, f, t) ∥V gN L∞ ∂GN sup
τ ∈ T

∥ JτT ∂F β ∘ ξτ, y T ∂F β ∘ ξτ, y Jτ|
1
2

−|JτT ∂F β ∘ ξτ, ys
T ∂F β ∘ ξτ, ys Jτ|

1
2 ∣ .

From the mean value theorem

sup
τ ∈ T

∥ JτT ∂F β ∘ ξτ, y T ∂F β ∘ ξτ, y Jτ|
1
2 − |JτT ∂F β ∘ ξτ, ys

T ∂F β ∘ ξτ, ys Jτ|
1
2 ∣

⩽ DT sup
τ ∈ T

JτT ∂F β ∘ ξτ, y T ∂F β ∘ ξτ, y Jτ | − |JτT ∂F β ∘ ξτ, ys
T ∂F β ∘ ξτ, ys Jτ .

The result follows from Lemma 4 (d).

Theorem 3.—Suppose that ς ∈ C0 Γs; L2(0, T ; V )  satisfies

∫
U

| ∂F ys |v∂tςdβ + B ys; ς , v = l ys; f, v ∀v ∈ V (22)

for all f ∈ Γf, where ς ys, f, 0 = u0. Let e(y, f, t): = u(y, f, t) − ς ys, f, t  then for 

0 < t < T, f ∈ Γf, it follows that

∥ e(y, f, t) ∥Lρ2 Γ × Γf; L2(U)
2 ⩽ ℂ1BT + ℂ2CT,

where ℂ1, ℂ2 ∈ ℝ+.

PROOF.: Consider the solution to equation (22)

ς ∈ C0 Γs × Γf; L2(0, T ; V ) ⊂ Lρ2 Γs × Γf; L2(0, T ; V )

where the matrix of coefficients G(ys) depends only on the variables Y 1, …, Y Ns. Following 

an argument similar to Strang’s Lemma it follows that
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ς ys − u(y) V
2 ⩽ K |l ys; ζ ys − u(y) − l y; ς ys − u(y) |

+∫
U

ς ys − u(y) |∂F(y) | − |∂F ys | ∂tς ys

+∫
U

ς ys − u(y) |∂F(y) | ∂tu(y) − ∂tς ys

+ ∣ B y; u(y), ς ys − u(y) − B ys; u(y), ς ys − u(y) ∣ ,

(23)

where K: = amin−1 Fmin
−d Fmax

2 CP(U)2  and CP(U) is the Poincaré constant. Recall that 

e(y): = u(y) − ς ys  and note that

∫U
e(y) | ∂F(y) |

1
2 ∂t |∂F(y) |

1
2 e(y) = 1

2 ∂t e(y) | ∂F(y)|
1
2 L2(U)

2
.

We conclude that

∂t ∥ | ∂F(y) |e(y, f, t) ∥L2(U)
2 ⩽ 2 B1 + B2 + B3

for all t ∈ (0; T), f ∈ Γf and y ∈ Γ, where

a. B1: = ∣ B(y; u(y), e(y)) − B ys; u(y), e(y) ∣ .

b. B2: = ∫U |e(y) |∂F(y) | − |∂F ys | ∂tς ys |,

c. B3: = |l (y; e(y)) − l ys; e(y) |.

From Gronwall’s inequality we have that for t ∈ (0, T), y ∈ Γ, and f ∈ Γf

Fmind ∥ e(y, f, t) ∥L2(U)
2 ⩽ ∥ | ∂F(y) |e(y, f, t) ∥L2(U)

2

⩽ ∥ | ∂F(y) |e(y, f, 0) ∥L2(U)
2 + 2 B1 + B2 + B3 T

and thus

∥ e(y, f, t) ∥L2(U)
2 ⩽ 1

Fmin
d ∥ | ∂F(y) |e(y, f, 0) ∥L2(U)

2 + 2 B1 + B2 + B3 T . (24)

We will now obtain bounds for E ∥ | ∂F(y) |e(y, f, 0) ∥L2(U)
2

, E B1 , E B2 , and E B3 .

I. E |∂F(y) | ∥ e(y, f, 0) ∥L2(U)
2

. The first term in equation (24) is bounded as

∥ | ∂F(y) |e(y, f, 0) ∥L2(U) = |∂F(y) | u0 ∘ F ys − u0 ∘ F (y) L2(U)

⩽ 2Fmax
d u0 W 1, ∞(G) χU L2(U) sup

y ∈ Γ, β ∈ U
|F ys − F(y)| . (25)
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for all f ∈ Γf and y ∈ Γ. From equation (25) and Lemma 4 (a)

E ∥ | ∂F(y) |e(y, f, 0) ∥L2(U)
2 ⩽ 2Fmaxd u0 W 1, ∞(G) χU L2(U)CT .

II. E B1  For the second term we have that

B1: = sup
t ∈ (0, T )

|B(y; u(y, f, t), e(y, f, t)) − B ys; u(y, f, t), e(y, f, t) |

⩽ sup
t ∈ (0, T )

∥ u(y, f, t) ∥V ∥ u(y, f, t) ∥V + ς ys, f, t V sup
β ∈ U, y ∈ Γ

G(y) − G ys .

From Lemma 4 (c)

sup
β ∈ U, y ∈ Γ

G(y) − G ys ⩽ amaxBTH Fmax, Fmin, δ, d

and thus we have

E B1 ⩽ amaxBTH Fmax, Fmin, δ, d

sup
t ∈ (0, T )

2E max ∥ u(y, f, t) ∥V
2 , u ys, f, t V

2 .

III. E B2 . The third term is bounded as

B2 ⩽ ∫U
|e(y, f, t) |∂F(y) | − |∂F ys | ∂tζ ys, f |

⩽ 2Fmaxd − 1Fmin−2 dBT sup
t ∈ (0, T )

∥ u(y, f, t) ∥V ∂tς ys, f, t L2(U) .

By using the Schwartz inequality E B2  is less or equal to

2Fmaxd − 1Fmin−2 dBT sup
t ∈ (0, T )

E ∥ u(y, f, t) ∥V
2 1/2 E ∂tς ys, f, t L2(U)

2 1/2
.

IV. E B3 . The last term

B3: = |l (y; e(y, f, t)) − l ys; e(y, f, t) |

is more complex and it can be bounded by
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|∫U
(f ∘ F)(y, f, t) | ∂F(y) | − (f ∘ F) ys, f, t | ∂F ys | e(y, f, t)|

+| ∑
τ ∈ T

∫Br0
gN ∘ F (β, y)s(β, y)

1
2 − gN ∘ F β, ys s β, ys

1
2 e(y, f, t)dx′|

⩽ ∑
τ ∈ T

∫Br0
∣ gN ∘ F (β, y) − gN ∘ F β, ys s(β, y)

1
2e(y, f, t) ∣

+| gN ∘ F β, ys s(β, y)
1
2 − s β, ys

1
2 e(y, f, t)|dx′

+∫U
| (f ∘ F)(y, f, t) − (f ∘ F) ys, f, t | ∂F(y) |e(y, f, t)|

+|(f ∘ F) ys, f, t | ∂F(y) | − |∂F ys | e(y, f, t)|

for all t ∈ (0, T), f ∈ Γf and y ∈ Γ. From Lemma 5 (b) and Lemma 7 we have that

E ∑
τ ∈ T

∫Br0
| gN ∘ F β, ys s(β, y)

1
2 − s β, ys

1
2 e(y, f, t)|dx′

+∫U
|(f ∘ F) ys, f, t | ∂F(y) | − |∂F ys | e(y, f, t)|

⩽ Fmaxd − 1Fmin−2 dBT sup
t ∈ (0, T )

E ∥ e(y, f, t) ∥V sup
t ∈ (0, T )

f ∈ Γf, y ∈ Γ

∥ (f ∘ F)(y, f, t) ∥L2(U)

+ 32(d − 1)dFmax2d − 1CT(U)CTDT ∥ e(y, f, t) ∥V gN L∞ ∂GN BT sup
x′ ∈ Br0

Jτ x′ 2 .

⩽ BTC Fmax, Fmin, d, CT(U), CT, DT, gN L∞ ∂GN ,

sup
τ ∈ T, x′ ∈ Br0

Jτ x′ 2 E ∥ e(y, f, t) ∥V sup
t ∈ (0, T )

f ∈ Γf, y ∈ Γ

∥ (f ∘ F)(y, f, t) ∥L2(U) .

From Lemma 5 (a) and Lemma 6

E ∑
τ ∈ T

∫Br0
∣ gN ∘ F (β, y) − gN ∘ F β, ys s(β, y)

1
2e(y, f, t) ∣ dx′

+∫U
| (f ∘ F)(y, f, t) − (f ∘ F) ys, f, t | ∂F(y) |e(y, f, t)|

⩽ CTC d, Fmax, CT(U), CT , ST , χU L2(U), gN W 1, ∞ ∂GN ,

sup
f ∈ Γf

∥ f ∥W 1, ∞(G × (0, T )) sup
t ∈ (0, T )

E ∥ e(y, f, t) ∥V

Note that C refers to some generic non-negative constant with the respective 

dependen cies.

V. Combining the bounds for E |∂F(y) | ∥ e(y, f, 0) ∥L2(U)
2

, E B1 , E B2 , E B3  and 

inserting them in equation (24) we obtain that
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∥ e(y, f, t) ∥Lρ2 Γ × Γf; L2(U)
2 ⩽ ℂ1BT + ℂ2CT .

The constant ℂ1 ⩾ 0 depends on the coefficients 

Fmax, Fmin, d, CT (U), CT, DT, amax, T , δ and

i. gN L∞ ∂GN , supt ∈ (0, T )E ∥ u(y, f, t) ∥V , supt ∈ (0, T )E ξ ys, f, t V ,

ii. supt ∈ (0, T )E ∂tξ ys, f, t L2(U) ,

iii. supτ ∈ T, x′ ∈ Br0Jτ x′ 2, supt ∈ (0, T )
f ∈ Γf, y ∈ Γ

∥ (f ∘ F)(y, f, t) ∥L2(U) .

Similarly, ℂ2 ⩾ 0 depends on the coefficients T, d, Fmax, Fmin, CT (U), CT, ST

i. χU L2(U), gN W 1, ∞ ∂GN , supf ∈ Γf ∥ f ∥W 1, ∞(G × (0, T )) ,
u0 W 1, ∞(G),

ii. supt ∈ (0, T )E ∥ e(y, f, t) ∥V .

Remark 5.—Note that for Theorem 3 to be valid, a bound to the terms E ∥ e(y, f, t) ∥V  and 

E ∂tξ ys, f, t L2(U)  is needed. Clearly,

E ∥ e(y, f, t) ∥V ⩽ 2max E ξ ys, f, t V , E ∥ u(y, f, t) ∥V .

By modifying the energy estimates in Chapter 7 [11] to take into account the domain 
mapping on the reference domain U the terms E ∥ e(y, f, t) ∥V  and E ∂tξ ys, f, t L2(U)  can 

be bounded.

5.2. Forcing function truncation error (II)

Since Q is a bounded linear functional the error due to (II) is controlled by 

∥ u ys, f, t − u ys, g, t ∥Lρ2 Γ × Γf; L2(U) . Recall that u ys, f, t ∈ L2(0, T ; V ) satisfies the 

following equation

∫
U

| ∂F ys |v∂tudβ + B ys; u, v = l ys; f, v ∀v ∈ V (26)

for all f ∈ Γf and ys ∈ Γs, where u ys, f, 0 = u0. It is clear then that u ys, g, t ∈ L2(0, T ; V )

satisfies

∫
U

| ∂F ys |v∂tudβ + B ys; u, v = l ys; g, v ∀v ∈ V (27)

for all g ∈ Γg and ys ∈ Γs, where u ys, g, 0 = u0.

Theorem 4.—Let e ys, f, t : = u ys, f, t − u ys, g, t , t ∈ (0, T ),
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0 < ϵ < amin−1 Fmin−d Fmax2 CP(U)2/4

and

ℐ d, amin, Fmin, Fmax, CP(U), ϵ : = 2
Fmind

1
4ε − aminFmind Fmax−2 CP(U)−2

then

e ys, f, t Lρ2 Γ × Γf; U ⩽ T1/2eℐ d, amin, Fmin, Fmax, CP(U), ϵ T /2

ϵ1/2 ∑
n = Ng + 1

Nf
E cn2 t, fn

1/2
∑

n = Ng + 1

Nf
ξn ∘ F β, ys Lρ2 Γs; U

2
1/2

.

PROOF.: Subtract (27) from (26)

∫
U

| ∂F ys |v∂tedβ + B ys; e, v = ∫
U

(f ∘ F) ⋅ , ys, f − (f ∘ F) ⋅ , ys, g v (28)

∀v ∈ V. Recall that

∫U
e|∂F ys |

1
2 ∂t |∂F ys |

1
2e = 1

2 ∂t e|∂F ys |
1
2 L2(U)

2
.

Let v = e and substitute in (28), then

1
2 ∂t e|∂F ys |

1
2 L2(U)

2
+ B ys; e, e

= ∫U
(f ∘ F) ⋅ , ys, f − (f ∘ F) ⋅ , ys, g e .

Applying the Poincaré and Cauchy’s inequalities we obtain

Fmind

2 ∂t ∥ e ∥L2(U)
2 + aminFmind Fmax−2 CP(U)−2 ∥ e ∥2

⩽ 1
4ϵ ∥ e ∥L2(U)

2 + ϵ ∥ (f ∘ F) ⋅ , ys, f − (f ∘ F) ⋅ , ys, g ∥L2(U)
2 .

From Gronwall’s inequality it follows that

E ∥ e ∥L2(U)
2 ⩽ TeI d, amin, Fmin, Fmax, CP(U), ϵ T

ϵE ∥ (f ∘ F) ⋅ , ys, f − (f ∘ F) ⋅ , ys, g ∥L2(U)
2 .
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We have that

∥ (f ∘ F) ⋅ , ys, f − (f ∘ F) ⋅ , ys, g ∥L2(U)

⩽ ∑
n = Ng + 1

Nf
cn(t, f) ξn ∘ F β, ys

L2(U)

⩽ ∑
n = Ng + 1

Nf
|cn t, fn | ξn ∘ F β, ys L2(U)

⩽ ∑
n = Ng + 1

NF
cn2 t, fn

1/2
∑

n = Ng + 1

Nf
ξn ∘ F β, ys L2(U)

2
1/2

,

thus

E ∥ (f ∘ F) ⋅ , ys, f − (f ∘ F) ⋅ , ys, g ∥L2(U)
2

⩽ ∑
n = Ng + 1

NP
E cn2 t, fn ∑

n = Ng + 1

Nf
ξn ∘ F β, ys Lρ2 Γs; U .

2

5.3. Sparse grid error (III)

In this section convergence rates for the isotropic Smolyak sparse grid with Clenshaw Curtis 

abscissas are derived. The convergence rates can be extended to a larger class of abscissas 

and anisotropic sparse grids following the same approach.

Given the bounded linear functional Q:L2(U) ℝ it follows that

|Q ys, g, t − Sw
m, g Q ys, g, t | ⩽ ∥ Q ∥ u ys, g, t − Sw

m, g u ys, g, t L2(U)

for all t ∈ (0, T ), ys ∈ Γs and g ∈ Γg. The sparse grid operator Sw
m, g is defined on the domain 

Γs × Γg. The next step it to bound the term

u ys, g, t − Sw
m, g u ys, g, t L2 Γs × Γg; U .

for t ∈ (0, T ). The error term ∥ ϵ ∥L2 Γs × Γg; U , where

ϵ: = u ys, g, T − Sw
m, g u ys, g, T ,

is directly affected by (i) the number of interpolation knots η, (ii) the sparse grid formulas 

(m(i), g(i)), (iii) the level of approximation w of the sparse grid and from (iv) the size of an 

embedded polyellipse in Θβ × ℱ ⊂ ℂNs + Ng. Recall that from Theorem 2 the solution 

u ys, g, t  admits an analytic extension in Θβ × ℱ ⊂ ℂNs + Ng for all t ∈ (0, T ).
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Consider the Bernstein ellipses

ℰn, σn = z ∈ ℂ; Re(z) = eδn + e−δn
2 cos(θ),

Im(z) = eδn − e−δn
2 sin(θ), θ ∈ [0, 2π), δ ⩽ σn ,

where σn > 0 and n = 1, …Ns + Ng. From each of these ellipses form the polyellipse 

ℰσ1, …, σNs + Ng: = Πi = 1
Ns + Ngℰn, σn, such that Eσ1, …, σNs + Ng ⊂ Θβ × ℱ. From Theorem 2 

the solution u ys, g, T  admits an extension Θβ × ℱ.

For given Clenshaw-Curtis or Gaussian abscissas, the isotropic (or anisotropic) Smolyak 

sparse grid error decays algebraically or sub-exponentially as function of the number of 

interpolation nodes η and the level of approximation w (see [35, 36]). In the rest of the 

discussion we concentrate on isotropic sparse grids.

Since for a isotropic sparse grids all the dimensions are considered of equally, the overall 

convergence rate will be controlled by the smallest width σ of the polyellipse, i.e.

σ ≡ min
n = 1, …, Ns + Ng

σn .

Then the goal is to choose the largest σ such that ℰσ1, …, σNs + Ng is embedded in Θβ × ℱ. To 

thus end, for n = 1, …, Ns, let

Σn: = z ∈ ℂ; z = y + v, y ∈ [ − 1, 1], |vn| ⩽ τn: = β
1 − δ

and

σβ: = log β
1 − δ

2
+ 1 + β

1 − δ
> 0.

We can now construct a the set Σ: = ∏n = 1
Ns Σn that is embedded in Θβ. By setting 

σ1 = σ2 = ⋯ = σNs = σβ we conclude that ℰσ1, …, σNg ⊂ Σ ⊂ Θβ (see Figure 4).

The second step is to form a polyellipse such that Eσ1, …, σNg ⊂ ℱ. This, of course, depends 

on the size of the region ℱ. For simplicity we assume that 

σNs + 1 = σNs + 2 = ⋯ = σNs + Ng = σg, for some constant σg > 0. The constant σg is chosen 

such that ℰσNs + 1, …, σNs + Ng ⊂ ℱ. Finally, the polyellipse ℰσ1, …, σNs + Ng is embedded in 

Θβ × ℱ by setting σ = min σβ, σg .
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We now establish some notation before providing the final result. Suppose 

σ: = σ/2, μ1(N): = σ
1 + log(2N) , and μ2(N): = log(2)

N(1 + log(2N))  and let

a(δ, σ): = exp δσ 1
σlog2(2)

+ 1
log(2) 2σ + 2 1 + 1

log(2)
π
2σ .

Furthermore, define the following constants:

C2(σ): = 1 + 1
log2

π
2σ

− 1
2, δ*(σ): = elog(2) − 1

C2(σ) , C1(σ, δ): = 4C(σ)a(δ, σ)
eδσ ,

μ3 σ, δ*, N =
σδ*C2(σ)

1 + 2log(2N), C σn : = 2
eσn − 1

, and

ℒ σ, δ*, N : =
max 1, C1 σ, δ* N

exp σδ*C2(σ)
C1 σ, δ*

|1 − C1 σ, δ* | ,

Suppose that we use a nested CC sparse grid. If w >
Ns + Ng

log2  then From Theorem 3.11 [36], 

the following sub-exponential estimate holds:

∥ ϵ ∥Lρ
2 Γs × Γg; V ⩽ ℒ σ, δ*, Ns + Ng ημ3 σ, δ*, Ns + Ng exp

Ns + Ng σ

−2
1

Ns + Ng

ημ2 Ns + Ng

(29)

otherwise the following algebraic estimate holds:

∥ ϵ ∥Lρ
2 Γs × Γg; V ⩽ C1 σ, δ*(σ)

|1 − C1 σ, δ*(σ) |max 1, C1 σ, δ*(σ) Ns + Ngη−μ1 . (30)

Remark 6.—Note that for the convergence rate given by equation (29) there is an implicit 
assumption that the constant M u zs, q, t : = maxzs ∈ Θβ, q ∈ ℱ u zs, q, t V , for t ∈ (0, T ), is 

equal to one. This assumption was introduced in [36] to simplify the overall presentation of 
the convergence results. This constant for t ∈ (0, T ) can be easily reintroduced in equations 

(29) and (30). However, it will not change the overall convergence rate.

6. Numerical results

In this section numerical examples are executed that elucidate the truncation and Smolyak 

sparse grid convergence rates for parabolic PDEs. Define the reference domain to be the unit 

square U := (0, 1) × (0, 1) and is stochastically reshaped according to the following rule:
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F η1, η2 = η1, η2 − 0.5 1 + ce ω, η1 + 0.5 if η2 > 0.5
F η1, η2 = η1, η2 if 0 ⩽ η2 ⩽ 0.5

where c > 0. This deformation rule only stretches (or compresses) the upper half of the 

domain and fixes the button half. For the top part of the square, the Dirichlet boundary 

condition is set to zero. The rest of the border is set to Neumann boundary conditions with 
∂u
∂ν = 1 (See Figure 5 (a)). Furthermore, the diffusion coefficient is set as a(x) = 1, x ∈ D(ω), 

and the forcing function f = 0. The stochastic model e ω, η1  is defined as

eS ω, η1 : = Y1(ω) πL
2 + ∑n = 2

Ns λnφn η1 Yn(ω);

eF ω, η1 : = ∑n = Ns + 1
N λnφn η1 Yn(ω),

where Y n n = 1
N  are independent uniform distributed in ( − 3, 3). Note that through a 

rescaling of the random variables Y 1(ω), …, Y N(ω) the random vector 

Y(ω): = Y 1(ω), …, Y N(ω)  can take values on Γ. Thus the analyticity theorems and 

convergence rates derived in this article are valid.

To make comparison between the theoretical decay rates and the numerical results the 

gradient terms λnsupx ∈ U Bn(x)  are set to decay linearly as n−k, where k = 1 or k = 1/2, 

thus for n = 1, …, N let λn: = ( πL)1/2
n , n ∈ ℕ, and

φn η1 : =
n−1sin

n/2 πη1
Lp

if n is even

n−1cos
n/2 πη1

Lp
if n is odd

With this choice supx ∈ Uσmax Bn(x) , for n = 1, …, N, is bounded by a constant, which 

depends on N, and gradient of the deformation map decays linearly.

The QoI is defined on the non-stochastic part of the domain D(ω) as

Q(u(ω, T)): = ∫(0, 1)∫(0, 1/2)φ η1 φ 2η2 u η1, η2, ω, T dη1dη2,

where φ(x): = exp −1
1 − 4(x − 0.5)2

. The chosen QoI Q can, for example, represent the weighed 

total chemical concentration in the region defined by (0, 1) × (0, 1/2) given uncertainty in 

the region. Other useful applications include sub-surface aquifers with soil variability, heat 

transfer, etc.
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To solve the parabolic PDE a finite element semi-discrete approximation is used for the 

spatial domain. For the time evolution an implicit second order trapezoidal method with a 

step size of td and final time T.

For each realization of the domain D(ω) the mesh is perturbed by the deformation map F. In 

Figure 5 the original reference domain (a) is shown. An example realization of the deformed 

domain from the stochastic model and the contours of the solution for the final time T = 1 

are shown in Figure 5 (a) & (b). Notice the significant deformation of the stochastic domain.

Remark 7.—For N = 15 dimensions, k = 1 and k = 1/2 the mean E[Q(u(y))] and variance 
var[Q(u(y))] are computed with a dimensional adaptive sparse grid method collocation with 
≈ 10, 000 collocation points and a Chebyshev abscissa [17]. For the linear decay, k = 1, the 
computed normalized mean value is 0.9846 and variance is 0.0342 (0.1849 std). This 
indicates that the variance is non-trivial and shows significant variation of the QoI with 
respect to the domain perturbation.

6.1. Sparse Grid convergence numerical experiment

In this section numerically analyze the convergence rate of the Smolyak sparse grid error 

without without the truncation error. The purpose is to validate the regularity of the solution 

with respect the stochastic parameters.

For N = 3, 4, 5 dimensions, the mean E[Q] and variance var[Q] calculated with an isotropic 

Smolyak sparse grid (Clenshaw-Curtis abscissas) using the software package Sparse Grid 
Matlab Kit [3]. In addition, for comparison, E[Q] and var[Q] are also calculated for N = 3, 4, 

5 using a dimension adaptive sparse grid algorithm from the (Sparse Grid Toolbox V5.1 [17, 

29, 28]). The abscissas are set to Chebyshev-Gauss-Lobatto.

In addition the following parameters and experimental conditions are set to:

i. Let a(β) = 1 for all β ∈ U and set the stochastic model parameters to L = 19/50, 

LP = 1, c = 1/2.175, N = 15,

ii. The reference domain is discretized with a triangular mesh. The number of 

vertices are set in a 513 × 513 grid pattern. Recall that for the computation of the 

stochastic solution the fixed reference domain numerical method is used with the 

stochastic matrix G(y). Thus it is not necessary to re-mesh the domain for each 

perturbation.

iii. The step size is set to td := 1/1000 and final time T := 1.

iv. The QoI Q(u) is normalized by Q(U ) with respect the reference domain.

In Figure 6, for Ns = 2, 3, 4, the normalized mean and variance errors are shown. Each black 

marker corresponds to a sparse grid level up to w = 4. For (a) we observe a faster than 

polynomial convergence rate. Theoretically, the predicted convergence rate should approach 

sub-exponential. This is not quite clear from the graph as a higher level (w ≥ 5) is needed to 

confirm the results. However, this places the simulation beyond the computational 
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capabilities of the available hardware. In contrast, for (b), the variance error convergence 

rate is clearly sub-exponential, as the theory predicts.

Remark 8.—In this work for simplicity we only demonstrate the application of isotropic 
sparse grids to the stochastic domain problem. However, a significant improvement in error 
rates can be achieved by using an anisotropic sparse grid. By adapting the number of knots 
across each dimension to the decay rate of λn, n = 0, 1, …, N a higher convergence rate can 
be achieved. In particular, if the decay rate of λn is relative fast it will be not necessary to 
represent all the dimensions of Γ to high accuracy.

6.2. Truncation experiment

The truncation error as a function of Ns is analyzed and compared with respect to Q(u(y)) for 

N = 15 dimensions, k = 1 and k = 1/2. The coefficient c is changed to 1/4.35. In Figure 7 the 

truncation error is plotted for the mean and variance as a function of Ns. The decay is set to 

linear (k = 1).

From these plots observe that the convergence rates are close to quadratic, which is at least 

one order of magnitude higher than the predicted theoretical truncation error rate. In 

addition, in Figure 8 the mean and variance error are shown for k = 1/2. As observed, the 

decay rate appears at least linear, which is at least twice the decay rate of the theoretical 

convergence rate. The numerical results shows that in practice a higher convergence rate is 

achieved than what the theory predicts.

6.3. Forcing function truncation experiment

For the last numerical experiment the decay of the forcing function truncation error (II) is 

tested with respect to the number of dimensions Ng. The mean and variance errors of Q(g, 

ys) with respect to Q(f, ys) are compared, where

f x, f, ys, t = ∑
n = 1

Nf
cn t, fn ξn x, ys , &f x, g, ys, t = ∑

n = 1

Ng
cn t, fn ξn x, ys ,

x ∈ D(ω) and Nf > Ng. The maps ξn : D(ω) 1, n = 1,...,N, are defined as

ξn x1, x2 : = exp
− x1 − an 2

σ exp
− x2 − bn 2

σ ,

where σ = 0.001. The coefficients an, bn ∈ ℝ are given such that ξn are centered in a 4 by 4 

grid. Let a: = 1
4

5
12 , 7

12 , 3
4 b: = 5

8
17
24 , 19

24 , 7
8 , then for i = 1, …, 4 and j = 1, …, 4 let 

a4 * (i − 1) + j: = a[i], b4 * (i − 1) + j: = b[j]. Furthermore,

i. For n = 1, …, Nf, fn are independent and uniformly distributed in ( − 3, 3), and 

cn t, fn = fn
2/n (linear decay of the coefficients).
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ii. The stochastic PDE is solved on the domain D(ω) with a 513 × 513 triangular 

mesh.

iii. Nf = 12, Ns = 2, Ng = 2, …, 7 and c = 1/4.35.

iv. E Q ys, f  and var Q ys, f  are computed with a dimensional adaptive sparse grid 

with ≈ 15, 000 collocation points and a Chebyshev abscissa [17].

v. For Ng = 2, …, 7E Q ys, g  and var Q ys, g  are calculated with the Sparse Grid 

Matlab Kit [3]. An isotropic Smolyak sparse grid with Clenshaw-Curtis abscissas 

is chosen.

By setting the coefficients to cn t, fn = fn
2/n we have a non-linear mapping from the forcing 

function to the solution. From Theorem 4 the errors |E Q u ys, f − E Sw
m, g Q u ys, g | and 

|V ar Q u ys, f − V ar Sw
m, g Q u ys, g | decay as

∑
n = Ng + 1

Nf
E cn2 t, fn

1/2
∼ 1

Ng
.

In Figure 9 the error of the mean and variance are plotted as a function of the number of 

dimensions Ng. The error decay appears to be faster than the theoretically derived rate of ∼ 
1/Ng.

7. Conclusions

A detailed mathematical convergence analysis is performed in this article for a Smolyak 

sparse grid stochastic collocation method for the numerical solution of parabolic PDEs with 

stochastic domains. The following contributions are achieved in this work:

• An analysis of the regularity of the solution of the parabolic PDE with respect to 

the random variables Y 1, …, Y N shows that an analytic extension onto a well 

defined region Θβ × ℱ ⊂ ℂN + Nf exists.

• Error estimates in the energy norm for the solution and the QoI are derived for 

sparse grids with Clenshaw Curtis abscissas. The derived subexponential 

convergence rate of the sparse grid is consistent with numerical experiments.

• A truncation error with respect to the number of random variables is derived. 

Numerical experiments show a faster convergence rate.

From the numerical experiments and theoretical convergence rates of an isotropic Smolyak 

sparse grid is efficient for medium size stochastic domain problems. Due to the curse of 

dimensionality, as shown from the derived theoretical convergence rates, it is impractical for 

larger dimensional problems. However, the approach described in this paper can be easily 

broaden to the anisotropic setting [41, 35]. Moreover, new approaches, such as quasi-optimal 

sparse grids [34], are shown to have exponential convergence.
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Appendix

In the proof of Theorem 2, we take derivatives with respect to w and s respectively on (16) 

and pass derivatives through integration and exchange with other derivatives. In order to do 

this, we need the ζ to be differentiable with respect to w and s. In the following lemma, we 

show that under the same assumption as in Theorem 2, if ζ ∈ L2(0, T ; V), ∂tζ ∈ L2 0, T ; V*

solves (16), then there exist a couple of functions ϕ ∈ L2(0, T ; V), ∂tϕ ∈ L2 0, T ; V*  and 

φ ∈ L2(0, T ; V), ∂tφ ∈ L2 0, T ; V*  (which solves equations (32) and (33) below respectively) 

such that within the region Θβ × ℱ

∂wζ = ϕ, ∂sζ = φ .

Remark 9.

For Lemma 8 to be valid extra conditions on f , g,G,C have to be placed beyond analyticity 

in Θβ × ℱ that follows from Assumptions 5, 6, 7. Now, extend f , g,G,C from z ∈ Θ to all 

z ∈ ℂN by letting f, g, G, C approach to zero if any Re zi, Im zi ∞, i = 1, …, n. Note that 

this extension beyond Θβ does not have to be analytic, thus we are free to choose such an 
extension. Thus assumption does not affect the uniqueness of analytic extension within the 
bounded domain Θβ × ℱ.

Lemma 8.

Let ζ, C, v,G, f, g, w, s be defined the same as in Theorem 2. Let C, G, f, g satisfy the 

assumption in Remark 9. Suppose ζ ∈ L2(0, T ; V), ∂tζ ∈ L2 0, T ; V*  is the unique solution of

∫
U

∂tζTC(z)Tv + ∇ζTG(z)T ∇v dβ = ∫
U
f(z, q, t) ⋅ v dβ + ∑

τ ∈ T
∫Br0

g ⋅ v dx′

in U × (0, T )
ζ = ζ0 onU × t = 0

(31)

for all v ∈ V and ϕ ∈ L2(0, T ; V), ∂tϕ ∈ L2 0, T ; V*  is the unique solution of
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∫
U

∂tϕTC(z)Tv + ∇ϕTG(z)T ∇v dβ = ∫
U

− ∂tζT ∂wC(z)Tv −

∇ζT ∂wG(z)T ∇v + ∂wf(z, q, t) ⋅ v dβ + ∑
τ ∈ T

∫Br0
∂wg ⋅ v dx′

(32)

in U × (0, T) for all v ∈ V and

ϕ = ∂wζ0 on U × t = 0 .

Furthermore, if φ ∈ L2(0, T ; V), ∂tφ ∈ L2 0, T ; V*  is the unique solution of

∫
U

∂tφTC(z)Tv + ∇φTG(z)T ∇v dβ = ∫
U

− ∂tζT ∂sC(z)Tv −

∇ζT ∂sG(z)T ∇v + ∂sf(z, q, t) ⋅ v dβ + ∂sd(z) ⋅ v + ∑
τ ∈ T

∫Br0
∂sg ⋅ vdx′

(33)

in U × (0, T) for all v ∈ V and

φ = ∂sζ0 on U × t = 0 .

Then we conclude that within the region Θβ × ℱ, ζ is differentiable in w, s in the sense that

∂wζ = ϕ, ∂sζ = φ .

PROOF.

The main strategy of this proof is the application of the Fundamental Theorem of Calculus 

(FTC) and the Dominated Convergence Theorem (DCT). The existence and uniqueness of 

the solutions of (31) and (33) are given by Theorem 1 in Section 2, since G(z) is uniformly 

positive definite then (31) - (33) have a unique solution whenever z ∈ Θβ.

We prove ∂wζ = ϕ first. Note that in equations (31) - (33), the gradient ∇ is in β direction. 

Note also that due to Remark 4, we know that Θβ is a bounded set. So for any point 

z1, …, bzn − 1, w + is : = z′, w + is ∈ Θβ, we integrate (32) in Re zn direction from −∞ to w, 

we have

∫
−∞

w ∫
U

∂tϕ z′,w′, s TC z′,w′, s Tv + ∂tζT ∂wC z′,w′, s Tv dβ dw′

+ ∫
−∞

w∫
U

∇ϕ z′,w′, s TG z′,w′, s T ∇v + ∇ζT ∂wG z′,w′, sz T ∇v dβdw′

= ∫
U
f(z, q, t) ⋅ v dβ + ∑

τ ∈ T
∫Br0

g ⋅ v dβ

.

(34)
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Now, compare (34) with (31) and conclude that

∫
U

∂tζTC z′,w, s Tv + ∇ζTG z′,w, s T ∇v dβ

= ∫
−∞

w∫
U

∂tϕ z′,w′, s TC z′,w′, s Tv + ∂tζT ∂wC z′,w′, s Tv dβdw′

+ ∫
−∞

w∫
U

∇ϕ z′,w′, s TG z′,w′, s T ∇v + ∇ζT ∂wG z′,w′, sz T ∇v

dβdw′

(35)

One choice of ζ such that (35) is satisfied is

ζ z′, w, s = ∫
−∞

w
ϕ z′,w′, s dw′ . (36)

To check this, we observe that by plugging in the expression (36) and using the First FTC on 

the first term in the left side can be written as

∫U
∂t ∫−∞

w
ϕ z′,w′, s dw′ C z′,w, s Tv dβ

= ∫−∞
w

∂ω ∫U
∂t ∫−∞

w
ϕ z′,w″, s dw″ C z′, w, s Tv dβ |

w = w′
dw′ .

Now, by applying the Second FTC and the DCT to exchange the integral limits with the 

derivatives ∂t and ∂w we have that

∫−∞
w

∂ω ∫U
∂t ∫−∞

w
ϕ z′,w″, s dw″ C z′, w, s Tv dβ |

w = w′
dw′

= ∫U∫−∞
w

∂tϕ z′, w′, s TC z′, w′, s Tv + ∂tζT ∂wC z′,w′, s Tv dw′dβ,

which is exactly the same as the first term in right side of equation (35). This is also true for 

the second term on both sides, respectively.

Note that by Remark 9, ∫U ∂t ∫−∞
w ϕ z′,w′, s dw′ C z′,w, s Tvdβ does vanish when w − ∞

and hence the FTC gives us the desired result.

We now show that this choice is unique. Notice that any choice

ζ z′, w, s = ∫−∞
w

ϕ z′,w′, s dw′ + K,

for K ∈ ℝ satisfies equation (35). Thus we must show that the only choice is K = 0. This 

follows by the uniqueness of equation (35) by using the standard argument.
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Taking derivatives with respect to w on both sides of (36), we conclude that within Θβ × ℱ
that

∂wζ = ϕ .

By the same argument, we conclude also that ∂sζ = φ in Θβ × ℱ.
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Figure 1: 
Bijection map graphic example of the reference domain U and the domain D(ω) with respect 

to the realization ω ∈ Ω. The drawing is rendered from a TikZ modification of the code 

provided in [43].
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Figure 2: 

Graphical representation of the sets Γ and Γf. (a) Θβ ⊂ ℂN is the extension of the set Γ as a 

function of the parameter β. (b) Extension of Γf into the region ℱ ⊂ ℂNf.
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Figure 3: 
Index sets for Smolyak (SM) sparse grid for N = 2 and w = 3. The Hyperbolic Cross (HC) 

index set is also shown for N = 2 and w = 9, see [8] for details.
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Figure 4: 

Embedding of the polyellipse ℰσ1, …, σNs: = Πn = 1
Ns ℰn, σn in Σ ⊂ Θβ. Each ellipse ℰn, σn is 

embedded in Σn ⊂ Θβ for n = 1, …, Ns.
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Figure 5: 
Random shape deformation of the reference U. (a) Reference square domain with Dirichlet 

and Neumann boundary conditions. (b) Realization according the deformation rule. (c) 

Contours of the solution of the parabolic PDE for T = 1 on the stochastic deformed domain 

realization.
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Figure 6: 
Isotropic Smolyak sparse grid stochastic collocation convergence rates for N = 2, 3, 4 with k 
= 1 (linear decay). (a) Mean error: Notice that the convergence rate is faster than 

polynomial. (b) Variance error: From the graph the convergence rate appears to be 

subexponential.
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Figure 7: 
Truncation error results with linear decay stochastic model i.e. k = 1. (a) From the mean 

error graph, the truncation error decays quadratically. This is twice the theoretical truncation 

convergence rate. (b) The variance error also show at least a quadratic convergence rate.
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Figure 8: 
Truncation Error with sqrt decay k = 1/2 of stochastic model coefficients. (a) Mean error. (b) 

Variance error. In both cases, the mean and variance decay linearly, which at twice the 

theoretical convergence rate. This result is consistent with the linear decay k = 1 truncation 

error experiment.
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Figure 9: 
Forcing function truncation error vs the number of dimensions Ng. The decay of the 

coefficients cn(t, fn), for n = 1, …, Nf are set to 1/n. The decay of the (a) Mean truncation 

error and the (b) Variance truncation error appears to be faster than linear, which is at least 

twice the forcing function theoretically predicted rate.
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