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SUMMARY

Rheumatoid arthritis (RA) is an autoimmune disease characterized in seropositive individuals by 

the presence of anti-cyclic citrullinated protein (CCP) antibodies. RA is linked to the intestinal 

microbiota, yet the association of microbes with CCP serology and their contribution to RA is 

unclear. We describe intestinal phage communities of individuals at risk for developing RA, with 

or without anti-CCP antibodies, whose first-degree relatives have been diagnosed with RA. We 

show that at-risk individuals harbor intestinal phage compositions that diverge based on CCP 

serology, are dominated by Streptococcaceae, Bacteroidaceae, and Lachnospiraceae phages, and 

may originate from disparate ecosystems. These phages encode unique repertoires of auxiliary 

metabolic genes which associate with anti-CCP status, suggesting that these phages directly 

influence the metabolic and immunomodulatory capability of the microbiota. This work sets the 
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stage for the use of phages as preclinical biomarkers and provides insight into a possible 

microbial-based causation of RA disease development.

eTOC BLURB

Mangalea et al. characterize intestinal bacteriophage communities from humans at-risk of 

developing rheumatoid arthritis. Bacteriophage profiles diverge based on anti-cyclic citrullinated 

protein autoantibody status compared to healthy controls. Bacteriophage profiling could 

complement existing diagnostics as a microbial biomarker for preclinical rheumatoid arthritis.

Graphical Abstract

INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disease with a global prevalence of 

approximately 1%. The development of RA in at-risk individuals is dependent on a 

combination of genetics, epidemiology, and systemic immune dysregulation (Holers et al., 

2018). The heritability of RA is estimated to be 40%–60%, with increased familial risk 

evident among first-degree relatives (FDRs) of individuals with diagnosed RA (MacGregor 

et al., 2000; Deane et al., 2017). Analyses of at-risk FDRs, even those without serum 

RArelated autoantibodies, have identified patterns of mucosal inflammation whereby anti-

cyclic citrullinated peptide (anti-CCP) antibodies, rheumatoid factors, and cytokines and 

chemokines are expressed locally in a subset of individuals (Chang et al., 2016; Demoruelle, 
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2019; Demoruelle et al., 2018). In addition, autoantibodies are present in the blood for years 

prior to the onset of RA and their presence as well as circulating cytokines and chemokines 

is predictive of future RA development (Demoruelle et al., 2017; Hughes-Austin et al., 2013; 

Willis et al., 2013). To probe the ‘‘mucosal origins’’ hypothesis (Holers et al., 2018) and 

mounting evidence implicating intestinal microbiota perturbations in RA etiopathogenesis 

(Brusca et al., 2014), it is necessary to characterize the ecological associations of the 

microbiota in at-risk individuals susceptible to RAStudies that have linked the role of the 

intestinal microbiota to systemic autoimmune diseases have predominantly relied on 16S 

ribosomal gene analyses of bacteria within the microbiome and have expanded our 

understanding of disease-specific alterations in the RA intestine. Individuals with 

established RA harbor a microbiota dominated by Prevotella copri (Scher et al., 2013; 

Maeda et al., 2016), enriched with Gram-positive bacteria (Zhang et al., 2015), and with 

decreased carriage of bifidobacteria (Vaahtovuo et al., 2008), Gram-negative Bacteroides, 

and Firmicutes (Toivanen et al., 2002; Zhang et al., 2015). The association of enriched 

Prevotellaceae, including P. copri, has also been described in individuals with preclinical RA 

(Alpizar-Rodriguez et al., 2019), indicating that intestinal P. copri is immunerelevant to the 

pathogenesis of RA (Pianta et al., 2017).

The presence of P. copri may therefore represent a biological indicator and additional risk 

factor for RA development and progression (Drago, 2019). However, associating a single 

organism to RA etiology neglects the interactions of bacteria with their surrounding 

environment and other bacterial community members whose populations can be influenced 

by predatory bacteriophages (phages).

In contrast to the recent enthusiasm for characterizing microbial links to the etiology of RA, 

little is known concerning the composition of phage communities in the intestine as it relates 

to RA disease risk. Phages of the intestinal microbiota can fluctuate in community 

composition in response to immune system function and disease, which suggests that they 

could be exploited as biomarkers for early disease detection (Duerkop, 2018). Metagenomic 

sequencing strategies have revealed extensive and diverse populations of phages in the 

human intestine (Minot et al., 2011, Manrique et al., 2016, Shkoporov et al., 2019), in which 

phage community dynamics correlate with distinct disease states (Duerkop et al., 2018, 

Clooney et al., 2019, Khan Mirzaei et al., 2020). Specific intestinal phage genomic 

signatures precede autoimmunity development of type 1 diabetes in a cohort of diabetes-

susceptible children, with disease-associated phages correlating to the bacterial component 

of the microbiota (Zhao et al., 2017). Phages also adhere to mucosal surfaces, significantly 

impacting microbial colonization (Barr et al., 2013) and host mucosal immunity 

development (Quistad et al., 2017). Evidence is emerging that phages are also 

immunomodulatory through intrinsic anti-inflammatory properties, and are capable of direct 

lymphocyte regulation through the ability to translocate to multiple tissues (Gorski et al., 

2017). Despite these observations and potential implications for systemic autoimmune 

diseases like RA, evaluation of intestinal phages in the context of RA disease risk has yet to 

be described.

The interplay between intestinal bacteria, their phages, and the host immune system, whose 

interactions have consequences not only for compositional modifications but 
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immunomodulation, must be considered in the etiopathogenesis of RA. The microbiome, 

and more recently the virome, have been implicated in a range of human diseases including 

cancers (Minot et al., 2019, Yu et al., 2020), inflammatory bowel diseases (Norman et al., 

2015, Gevers et al., 2014), and arthritis (Scher et al., 2013, Lee et al., 2019). By 

characterizing the phage populations in an at-risk RA cohort; further sub-grouped with 

regard to autoantibody status as defined by the presence of anti-CCP antibodies and 

compared to healthy controls, we have begun to address this question. Anti-CCP serology is 

a strong indicator of future RA development, but lacks sensitivity to definitively exclude 

disease development in seronegative individuals (Braschi et al., 2016). The cohort contains 

individuals that do not have inflammatory arthritis or established RA disease but are first-

degree relatives to an individual with diagnosed RA, which alone increases RA risk. 

Studying the microbiomes of at-risk individuals could lead to the identification of novel 

biomarkers corresponding to existing diagnostic serology tests and therapeutic targets 

independent of confounding by the use of drugs in subjects with active arthritis.

We used metagenomics to define intestinal phage populations of anti-CCP positive (CCP+) 

and negative (CCP-) individuals in a cohort at-risk for RA. Phage matching to bacterial hosts 

showed divergent intestinal phage communities dependent on anti-CCP serology status. We 

observed significant shifts in phages targeting Bacteroidaceae and Streptococcaceae bacteria 

in CCP+ at-risk FDRs as well as phages targeting Bacteroidaceae and Ruminococcaceae 

bacteria in CCP- at-risk FDRs. Importantly, analysis of the metabolic traits encoded in phage 

metagenomes revealed intra-cohort profiles reflecting distinct immunomodulatory potential. 

Phages with auxiliary metabolic genes (AMGs) that modify lipopolysaccharide and other 

outer membrane glycans of host bacteria were differentially abundant, implicating 

modifications to bacterial antigenicity (Van Belleghem et al., 2018) and bacterial fitness 

(Rodriguez-Valera et al., 2009) in RA-associated communities. Phages targeting 

Lachnospiraceae (Clostridium scindens) and Actinomyces (A. oris), including several 

AMGs, were over-abundant among CCP+ and CCP- individuals, respectively, compared to 

healthy controls. Our data show that there are unique and abundant intestinal phages specific 

to RA-susceptibility status, and this highlights their potential as biomarkers for preclinical 

RA and the need for further study of communitylevel bacteria-phage interactions during the 

development and progression of RA.

RESULTS

First-degree relatives to individuals with rheumatoid arthritis

A total of 25 human subjects were identified from the Studies of the Etiology of Rheumatoid 

Arthritis (SERA) (Kolfenbach et al., 2009), including 16 FDRs of individuals with RA and 9 

age- and sex-matched healthy controls (HC). FDR subjects for which a detectable level of 

anti-CCP autoantibody was present (defined by a value ofR20 units/mL in either ELISA 

assay for anti-CCP3.1 IgA/IgG or anti-CCP3 IgG; Demoruelle et al., 2013) were designated 

the CCP+ group (n = 8). FDRs with no detected anti-CCP were designated the CCP group (n 

= 8) (Table 1). The mean age for the three groups in this study were 61.3 ± 11.0 for CCP+, 

49.0 ± 15.7 for CCP, and 44.4 ± 13.6 for HC. The distribution of sexes for each group is 

reported as percent female, with 88.9% for CCP+, 62.5% for CCP, and 66.7% for HC. 
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Among the CCP+ and HC groups, 3/9 and 2/9 of individuals reported ever smoking (a risk 

factor associated with RA), respectively (Table 1).

Generation and curation of de novo-assembled VLP contigs

Individual fecal samples from subjects were obtained at the time of autoantibody and 

clinical evaluations and were used for total genomic DNA isolation for shotgun 

metagenomic sequencing using an untargeted amplification-independent approach (Duerkop 

et al., 2018; Kang et al., 2017). In total, 3.56 million (Mio) contigs were assembled and 

pooled from the 25 individual metagenomes, with 80,762 contigs longer than 5 kb (Figure 

1A).We used a three-pronged approach of independent phage discovery methods (Figures 

1A and S1); (i) P/M ratio, a mapping strategy comparing ratios of reads mapped to VLP 

contigs (Duerkop et al., 2018), (ii) viral protein family (VPF) homology (Paez-Espino et al., 

2017), and (iii) VIBRANT (Virus Identification By iteRative ANnoTation) (Kieft et al., 

2020), identifying 2117, 4785, and 4758 putative phage contigs respectively (see STAR 

Methods). To consolidate this list, we identified contigs that were shared between all three 

phage discovery methods, resulting in a curated list of 660 contigs (Figures 1A and 1B). To 

assess host bacterial contamination among these contigs, we employed CheckV to assess the 

quality of viral genomes (Nayfach et al., 2020a). CheckV analysis revealed a reduced level 

of host bacterial contamination and an increase of pure viral genomes in the final list of 660 

curated contigs (Figure 1C). We estimated completeness of our curated contigs using 

CheckV and determined a greater distribution of “high quality” contigs relative to contig 

length, in comparison to the three independent methods (Figure S2) (Roux et al., 2019). 

Further, using the VIBRANT platform for integrated provirus prediction, we describe 

communities of predominantly lytic viral genomes belonging to the Siphoviridae (Figure 

S3). By using a combination of approaches for viral contig discovery and assessing the 

overlap among these methods, we have extracted a set of 660 predicted phages which are of 

overall high quality, both in terms of viral contig completeness and lack of bacterial 

contamination than those from each of the individual methods (Figures 1C and S2), which to 

date have been used primarily in isolation to identify and characterize viral metagenomes.

Clustering of metagenomic viral contigs reveals distinct viral ecological composition.

Next we compared our set of curated contigs to over 2.3 Mio viral whole genome and 

metagenome sequences from the IMG/VR database (Roux et al., 2020). Of the 660 contigs, 

346 (52.4%) clustered into 255 clusters that contained 7,736 additional metagenomic viral 

contigs (mVCs) from IMG/VR. The remaining 314 contigs (47.6%) did not cluster with any 

other sequence and were classified as singletons, which distributed evenly among all three 

groups (Figure S4A). Of the curated contigs that did cluster, cluster sizes ranged from 2 to 

646 members with 78.4% of the groups containing more than 2 members, 36.5% containing 

more than 10 members, and 65.9% between 2 – 10 members (Figure S4B). Among these 

255 clusters, 14 included reference prophages and lytic phages, and 318 (48.2%) of our 

original contigs clustered with classified mVCs, thus assigning multiple levels of taxonomy 

(Figures 2A, 2B, and Table S1).

Although host assignments were made using sequence-based clustering, host specificity was 

further determined by aligning Clustered Regularly Interspaced Short Palindromic Repeat 
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(CRISPR) spacer sequences to our 660 curated contigs. CRISPR spacer host assignments at 

the family level were present in 207 of 660 contigs (31.4%). All CRISPR spacer queries 

considered for these analyses, ranging in length from 18 to 70 bp, were matches of 93.1–

100% identity across the full length of the query and allowing for 0–2 mismatches and up to 

1 gap throughout (Paez-Espino et al., 2016) (Table S2). Among predicted phages, total 

assigned CRISPR spacers were evenly distributed, yet CCP+ sample containing phages 

predicted to target Lachnospiraceae, Ruminococcaceae, Streptococcaceae, and 

Veillonellaceae bacterial families were disproportionately abundant (Figures 2A and 2B). In 

total, 21 bacterial families were identified as hosts via CRISPR spacer matching, 

supplementing the phage-host interactions discerned from sequence-based clustering (Figure 

2A). Among all samples in this study, phages were predicted to target Lachnospiraceae (261 

CRISPR spacers), Ruminococcaceae (126), Clostridiaceae (98) and Bacteroidaceae (96) 

bacteria with highest frequency of total CRISPR spacers (Figure 2A, Table S3)). Phage-host 

interactions were also measured in terms of host range specificity, showing that while the 

majority of the phages were predicted to have narrow host ranges, several spacers were 

linked to multiple hosts across family level and higher taxa (Figure 2C), consistent with 

prior observations of diverse viromes (Paez-Espino et al., 2016). Broad host range phages 

were found across all cohorts, with a slight yet insignificant skew among CCP+ sample 

contigs (Figure 2D).

We further explored the association of sample cohorts to phage hosts using read mapping to 

determine differential host abundance profiles (Figure 3). Reads from all samples were 

mapped to assembled phage contigs whose host assignments were deduced using CRISPR-

spacer matching and Markov clustering to quantify sequence abundances by measuring 

cohort-based read recruitment (Moreno-Gallego et al., 2019, Duerkop et al., 2018, Roux et 

al., 2017, Liang et al., 2020). In comparing the differential read recruitment to phages 

predicted to infect separate bacterial families, we observed differences based on reads 

originating from either the CCP+ or CCP- groups in relation to the HC cohort (Figure 3). 

Phage contigs targeting Bacteroidaceae recruited significantly more reads from CCP+ 

viromes than either HC or CCP- individuals (Figure 3A). In contrast, phages predicted to 

target Clostridiaceae bacteria were evenly abundant across all three groups (Figure 3B). 

Lachnospiraceae phages were evenly distributed among the groups with a slight elevation in 

CCP+ individuals that was not statistically significant (Figure 3C). Ruminococcaceae 

phages were significantly skewed when comparing HC to CCP- individuals (Figure 3D) and 

a major shift in phage read recruitment abundance was evident for Streptococcaceae phages, 

as a greater percentage of CCP+ reads were mapped to these phages in relation to either HC 

or CCP- virome reads (Figure 3E). This skew among CCP+ individuals is supported by prior 

works showing elevated Streptococcal phage abundances in intestinal viromes of humans 

with inflammatory bowel disease (Norman et al., 2015) and a murine model of colitis 

(Duerkop et al., 2018). No significant differences were observed for read recruitment to 

Veillonellaceae-targeting phages (Figure 3F). Thus, differences in the host specificities were 

evident between CCP+, CCP-, and HC groups with respect to read mapping abundance 

profiles for Bacteroidaceae, Ruminococcaceae, and Streptococcaceae phages.
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CRISPR spacer host metadata reveal CCP+ phages represent greater variability in 
microbial host ecology.

To further explore the phage ecology from our subject cohort, we analyzed the host and 

mVC metadata from the Joint Genome Institute’s (JGI) Genomes OnLine Database (GOLD) 

(Mukherjee et al., 2019). Using the GOLD Biosample Ecosystem Classification system, we 

analyzed the ecosystem distributions for all CRISPR spacers identified in our curated contig 

list and discovered that the majority of host assigned contigs fell within four distinct 

ecosystem classification levels; from broad to specific environments: host-associated, 

human-associated, digestive system, and large intestine (Figure 4). For each of the four 

ecosystem categories, the most abundant classifications were used to compare across the 

study cohorts. At the highest order GOLD Ecosystem distribution, the host-associated (i.e., 

human, mammal, plant, arthropod, fungi) origin classification per contig was comparable for 

the HC and CCP- groups but not for the CCP+ group (Figure 4A). A similar pattern was 

evident at the lower order metadata distributions, with phage contigs derived from CCP+ 

individuals being more divergent from the other cohorts for contigs of human-associated 

origin (Figure 4B), digestive system origin (Figure 4C), and large intestine origin for the 

Ecosystem Subtype (Figure 4D).

Multiple CRISPR spacer ecosystem distributions revealed homogeneity among phages 

derived from HC and CCP- samples, and indicated greater disparity in communities across 

CCP+ samples, suggesting that CCP+ individuals harbor disparate phage communities that 

are more likely to originate from non-host associated sources. The putative origins of these 

phages are related to environmental metadata of CRISPR spacers in the JGI GOLD database 

describing the origin of bacterial DNA samples across ecologically diverse biomes 

worldwide (Nayfach et al., 2020b); and increased heterogeneity in the CCP+ phages 

suggests a condition-dependent host intestinal environment with increased diversity. At the 

highest Ecosystem classification level, with only three unique classification terms, these 

non-host associated sources that are more prevalent in the CCP+ group, correspond to a 

higher degree of spacers matching organisms originating from environmental and/or 

engineered habitats as archived in GOLD (Figure S5). Examples of engineered habitats 

include wastewater and food production, while the environmental ecosystem broadly 

encompasses microbes originally identified as aquatic, terrestrial, or airborne, indicating 

multiple possible combinations for organism habitats. Our analysis of GOLD metadata for 

all phages with predicted host isolates within our study reveals the possibility of divergent 

habitat origins for CCP+ derived contigs.

Quantitative read mapping reveals differentially abundant contigs despite sample 
cohesiveness.

We next asked whether certain phage community members are present in different 

abundances among the members of the cohort at-risk for rheumatoid arthritis compared to 

healthy controls. To assess differences between phages among the sample groups, we used a 

viral read recruitment strategy whereby VLP reads from all samples were mapped to the 660 

curated contigs (Moreno-Gallego et al., 2019, Duerkop et al., 2018). Using read count 

matrices for all contigs as input in the DEseq2 statistical package for differential analysis of 

comparative count data (Love et al., 2014), we analyzed three pairwise comparisons for 
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over- or under-abundant viral contigs (Figure 5). Initial comparisons of normalized and log-

transformed count matrices were performed to evaluate differences across all samples. 

Principal component analyses reveal minimal variance explained by the first two principal 

components for CCP+ vs HC samples (Figure 5A), CCP- vs HC samples (Figure 5B), and 

CCP+ vs CCP- samples (Figure 5C), indicating that total sample community signatures 

cannot be readily differentiated based on at-risk or healthy control cohorts. We further 

explored the sample similarities by comparing Euclidian sample-to-sample distances of 

normalized log-transformed count matrices. Hierarchical clustering of sample-to-sample 

distances did not reveal any discernable clustering for CCP+ vs HC samples (Figure 5D), 

and only minimal similarities between two CCP- samples when compared to the HC (Figure 

5E) and CCP+ (Figure 5F) groups, suggesting general sample cohesiveness between cohorts.

Considering the rationale that samples with complex communities are better explored at the 

level of each unique member (Gevers et al., 2014), we next analyzed specific members of 

the intestinal phage community. Visualization of the principal components incorporating the 

viral identification metrics used in the VIBRANT neural network for our 660 curated 

contigs shows minimal differentiation among phage scaffolds based on scaffold quality 

(Figure S6A) or predicted phage state (i.e., lytic or lysogenic) (Figure S6B), although 

fragmentation of smaller sized contigs is evident for both analyses. Further, grouping of 

contigs at the sample type level does not differentiate any specific cluster (Figure S6C), 

which is consistent with the minimal variance observed at the sample level (Figures 5A, 5B, 

and 5C). Finally, we assessed the differential abundance of read recruitment counts for the 

set of 660 contigs and estimated fold changes based on the negative binomial generalized 

linear model provided by DESeq2 (Love et al., 2014). Using thresholds of log2-fold change 

greater than 1 or less than −1 (equivalent to fold change of ± 2) and Benjamini-Hochberg 

adjusted p-values < 0.001, we identified a total of 178 differentially abundant contigs (27% 

of the 660 phages) across three pair-wise abundance comparisons. For CCP+ vs HC samples 

a total of 59 contigs (30 over- and 29 under-abundant) (Figure 5G), for CCP- vs HC a total 

of 66 contigs (27 over- and 39 under-abundant) (Figure 5H), and for CCP+ vs CCP- a total 

of 53 contigs (27 over- and 21 under-abundant) (Figure 5I) passed our thresholds for 

significance. These data indicate that these cohort groups represent minimal sample-sample 

variation, but may provide clues related to detection of biomarkers via specific community 

members. The top phage contigs associated with either CCP+ or CCP- individuals were 

Clostridium scindens (Lachnospiraceae) and Actinomyces oris (Actinomycetaceae), 

respectively, over-abundant at log2 fold changes of 25.9 and 23.5 compared to the healthy 

control samples. A comparison of the bacterial relative abundances via 16S amplicon 

sequencing confirmed an expansion of Lachnospiraceae bacteria among samples originating 

from CCP+ individuals (Figure S7A). The bacterial composition across all cohorts was 

relatively even in terms of richness (Figures S7B and S7C), evenness (Figure S7D), and 

species diversity (Figure S7E). Conversely, phage host abundances in the CCP- cohort 

relative to healthy controls were not correlated to a family-level differentiation in bacterial 

taxa relative abundance.
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Phage auxiliary metabolic gene abundances highlight cohort-associated disparities in 
metabolic potential.

To determine the functional potential and metabolic capabilities of intestinal phages, we 

quantified AMGs assigned to specific metabolic pathways in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database across at-risk and healthy cohorts. Since their 

identification as viral drivers of host metabolism (Breitbart et al., 2007), phage-encoded 

AMGs have been recognized to redirect host functional capacities thereby directly 

influencing bacterial ecology (Thompson et al., 2011, Breitbart et al., 2018). We compared 

our set of phage contigs against a previously curated list of 2,835 AMGs with KEGG 

annotations (Kieft et al., 2020). Among our 660 phage contigs, 161 (24%) were found to 

encode at least 1 AMG, with 252 AMGs in total across all samples (Table S4). HC phages 

accounted for 131 metabolic signatures, while CCP+ and CCP- had less AMGs with 77 and 

44, respectively (Figure S8A). Among the most represented metabolic categories across all 

phages, amino acid metabolism and the metabolism of cofactors and vitamins contained 121 

and 88 AMGs, respectively, with energy metabolism being the next largest category with 22 

AMG hits (Figure S8B). These general pathway results indicate that phages in the intestine 

presumably affect host metabolism through the consumption of metabolic resources needed 

for their own biogenesis, as described in phage-host infection studies of pathogens 

(Chevallereau et al., 2016, De Smet et al., 2016, Chatterjee et al., 2020) and marine virocells 

(Howard-Varona et al., 2020).

Hierarchical clustering grouped all AMGs into 5 distinct metabolic clusters relative to HC 

and at-risk CCP cohorts (Figure 6A). Among these groups, the gene coding for phnP 

(K06167), a phosphonate phosphodiesterase, stands apart from the others, both in terms of 

clustering and also for relative pathway abundance (Figure 6A). For group-associated 

differences in AMG abundances, there are notable absences among both CCP+ and CCP- 

groups, including several clustered transferases such as the mannose-phosphate transferases 

(algA, xanB, rfbA, wbpW, pslB), manno-heptose transferases (gmhC, hldE, waaE, rfaE), 

and the galE epimerase and glmS transaminase (Figure 6A). Considering the impact of such 

transferases on bacterial cell wall polysaccharides and biofilm formation (Valvano et al., 

2002, Nakao et al., 2006), these results point to a baseline of phage-driven bacterial surface 

modifications from HC-derived phages. Conversely, AMGs involved in lipopolysaccharide 

(LPS) biosynthesis such as the waaL O-antigen ligase and the gmhB phosphatase are only 

present in CCP+ phages or at greater abundance in CCP+ phages, respectively, indicating a 

possible role in immune evasion. Within the CCP- cohort, one of the most abundant AMGs, 

KEGG ortholog entry K23144 encoding for a polyketide sugar transferase important in 

peptidoglycan biosynthesis is completely absent from the HC cohort and present at lower 

levels for CCP+ samples. Phage-encoded bacterial surface modifying enzymes such as the 

sugar transferases and LPS/peptidoglycan biosynthetic genes are differentially represented 

across the cohorts in this study, which has implications for bacterial fitness in the intestinal 

ecosystems and their interactions with the immune system.

We next incorporated the AMG characterization of genomes within our curated set of 

phages to those that were significantly over- or under-abundant in previous differential 

abundance analyses (Figures 5G, 5H, and 5I). Among the 20 differentially abundant contigs 
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from the CCP+ vs HC pairwise comparison that contained CRISPR spacer-predicted hosts, 8 

of these encoded at least one AMG (Figure 6B). The 9 under-abundant phages in this 

comparison encode 5 AMGs, including manno-heptose transferases (gmhC, hldE, waaE, 

rfaE), mannose-1-phostphate transferases (algA, xanB, rfbA, wbpW, pslB) and ahbD 

AdoMet-dependent heme synthase all together on 1 contig, and cysH and iscS genes on 2 

other contigs (Figure 6B). Among the 11 significantly over-abundant contigs, 3 of these 

encode the phnP phosphodiesterase; 3 phages predicted to infect Flavonifractor sp. 

(Ruminococcaceae) and one predicted to infect Clostridiales bacteria. The remaining AMG 

found in CCP+-associated over-abundant phages encodes for a cobalamin biosynthesis 

protein cobS, which is considered a core component of marine phage genomes (Ignacio-

Espinoza et al., 2012) and also ubiquitous in phage genomes that infect E. coli (Breitbart, 

2012). Our identification of a CCP+ over-abundant phage contig targeting Bacteroides 

fragilis and carrying the cobS AMG (Figure 6B) reinforces the universal nature of this AMG 

that is conserved across hosts and environments (Kieft et al., 2020). We also identified 16 

unique phage contigs with definitive CRISPR spacer-predicted hosts that were differentially 

abundant and associated with the CCP- cohort (Figure 6C). Within these contigs, 9 are 

significantly under-abundant compared to healthy controls, with 3 of these encoding AMGs. 

CCP- associated phages were identified as carrying cobS, DNMT3A, thiF, and iscS 

metabolic genes (Figure 6C).

DISCUSSION

RA is a complex disease with an unknown etiology that puts a burden on quality of life 

resulting in a strong societal impact (Markenson, 1991, Hunter et al., 2017). In addition to 

multiple epidemiological factors being associated with RA development, including genetic 

and familial risk, environmental factors and biological sex (Deane et al., 2017), the 

microbiota remains an important and understudied aspect that likely influences RA 

autoimmunity (Scher et al., 2011). Given the widespread occurrence and diversity of phages 

in the human intestinal microbiota and their impact on intestinal microbial ecology during 

health and disease (Duerkop, 2018, Minot et al., 2011, Mirzaei et al., 2017), we analyzed 

this neglected component of the microbiota as it relates to RA etiopathogenesis.

Using three separate database-independent approaches, we describe a collection of 660 

phage contigs, their potential metabolic capability, and their differential abundance. Through 

a combination of CRISPR spacer matching and Markov clustering with viral metagenomic 

sequences from diverse environments, we predicted host assignments for 285 or 43.2% of 

these phages, which is a high level of taxonomic assignments relative to recent reports of 

approximately 10 – 30% host assignment identification (Moreno-Gallego et al., 2019, Bin 

Jang et al., 2019, Duerkop et al., 2018). By analyzing a core set of de novo assembled phage 

contigs paired with taxonomy, we identified differential phage communities associated with 

the at-risk RA individuals compared to healthy controls, while adding phage-host 

assignments to previously unidentified intestinal phages (Sutton et al., 2019, Roux et al., 

2015).

Phage-host assignments were dominated by Lachnospiraceae-targeting phages, some of 

which were over-abundant in CCP+ individuals. This expansion of phages also correlated 
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with increased abundances of Lachnospiraceae bacteria in the CCP+ cohort compared to 

either CCP- or the healthy cohort, suggesting a link to this family of Firmicutes and CCP 

autoantibody production in the human intestine. Increased abundance of Lachnospiraceae 

has been observed in two previous studies of intestinal microbiotas of mice following 

collagen-induced arthritis (Liu et al., 2016, Jubair et al., 2018). We report increased 

Lachnospiraceae phage-host interactions in CCP+ individuals at-risk for developing RA. 

Given that the FDR individuals included in this study do not show clinical signs of 

established RA, our identification of a preclinical cohort with increased Lachnospiraceae 

phage-host interactions could serve as a biological indicator of disease. The contribution of 

phages targeting Lachnospiraceae and thus influencing important bacterial metabolites 

warrants further investigation considering a potential link to self-antigen tolerance and 

autoimmune disease (Vacca et al., 2020). We also describe an expansion of Bacteroidaceae-

targeting phages associated with the CCP+ and CCP- groups, yet no change in 

Bacteroidaceae bacteria (Figure S7A), which have been shown to be expanded following 

induced arthritis in mice (Liu et al., 2016). In addition to these phages serving as potential 

biomarkers of disease in humans at risk for RA, our data indicate that Bacteroidaceae and 

Lachnospiraceae-targeting phages designate a distinction between CCP serology status that 

may serve as an additional indicator of disease progression and/or future disease severity 

(Braschi et al., 2016). Notably, bacteria in the Lachnospiraceae and Ruminococcaceae 

families have been linked to the pre-diabetic intestinal microbiota and diabetic pathogenesis, 

while Bacteroidaceae are associated with disease protection in a murine model of diabetes 

(Krych et al., 2015). The identification of cohort-specific phage-host interactions sheds light 

on potential preclinical biomarkers connecting specific intestinal microbial communities to 

possible regulation of microbiota-mediated mucosal inflammation (Holers et al., 2018, 

Chriswell et al., 2019).

We observed over-abundant phages targeting Clostridium scindens, Flavonifractor sp., 

Actinomyces oris, among others, when comparing CCP+ to HC. A member of the 

Lachnospiraceae, C. scindens is an intestinal commensal bacterium involved in maintaining 

homeostatic large intestinal bile acid composition and providing host protection from 

opportunistic Clostridioides difficile blooms (Studer et al., 2016, Buffie et al., 2015). Phages 

targeting C. scindens in CCP+ at-risk individuals may influence bile acid dysmetabolism, 

which is linked to inflammatory bowel diseases (Duboc et al., 2013, Atarashi et al., 2013). 

Comparing CCP- to HC groups revealed several phages targeting Bacteroidaceae and 

Bacteroides species, bacteria involved in multiple reactions of bile acid metabolism 

promoting host metabolic health (Gerard, 2013, Yao et al., 2018). Recently, phage BV01 

was shown to reduce Bacteroides bile acid metabolism (Campbell et al., 2020), further 

implicating phages in the mammalian intestinal metabolic cycle. Our findings suggest 

individuals at risk for RA harbor divergent communities of phages with potential to alter 

intestinal metabolism through either reduction of key bacterial species and thus reducing 

endogenous metabolic function, or through phage-derived introduction of specific AMGs.

Changes to the intestinal metabolome can lead to compositional microbiota transitions that 

impact host nutrient uptake and immune homeostasis (Lozupone et al., 2012). Considering 

that manipulations of microbial metabolic pathways in the intestine can influence 

inflammation and dysbiosis (Zhu et al., 2018), our identification of phage communities with 
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differential abundances of AMGs points to divergent metabolic landscapes associated with 

at-risk RA cohorts. We were surprised to identify three phages that were over-abundant in 

the CCP+ cohort, two with Flavonifractor sp. predicted hosts and one Clostridiales-targeting 

phage, encoding phnP. The phosphonate phosphodiesterase accounts for 10% of the total 

AMGs represented in our phage genomes and is differentially abundant among the CCP+ 

cohort samples. The PhnP phosphodiesterase, part of a 14-gene operon originally described 

in Escherichia coli, plays a crucial intermediary role in the carbon-phosphorous lyase 

pathway by degrading a dead-end cyclic phosphonate byproduct (He et al., 2011). The 

presence of phnP across phages derived from at-risk and healthy cohorts (Figure 6A), 

suggests phage-driven organophosphonate degradation. Phosphonate degradation is 

important for phosphorus assimilation in enteric bacteria (Lee et al., 1992), although 

phosphonate metabolism has not been described for Flavonifractor species and a phnP 

homolog is not available for this genus in the KEGG database (K06167). In a recent study 

characterizing microbiota KEGG orthologs as predictors of methotrexate responsiveness for 

RA treatment, a gene in the phosphonate transport system, phnC (K02041), exhibited high 

median random forest importance as a predictor of drug response in new-onset RA subjects 

(Artacho et al., 2020). The contribution of the phosphonate metabolic pathway in bacteria 

and phages will require further exploration in the context of RA pathogenesis and treatment. 

It is possible that these phage-encoded metabolic products are supplementing phosphorous 

uptake among Ruminococcaceae and Lachnospiraceae bacteria that predominate in CCP+ 

individuals prior to RA clinical symptoms. Our analysis is limited in that we did not measure 

a longitudinal progression of microbial metabolic pathways in these human samples, yet 

these metabolic associations warrant further investigations into causality and the potentially 

cascading effects on interbacterial interactions (Hsu et al., 2019).

Our results point to divergent communities of phages with multiple bacterial host targets that 

group according to anti-CCP serology in individuals predisposed to developing RA. At-risk 

individuals endure a prolonged asymptomatic period before pathological early RA develops 

in those who are at a higher disease susceptibility in the preclinical RA state (Holers et al., 

2018). Current approaches for RA diagnosis rely mostly on anti-CCP serology which has up 

to 93% specificity but as low as 67% sensitivity (for the CCP3.1 assay used here) 

(Demoruelle et al., 2013), indicating that a negative result does not preclude development of 

clinical RA. Phage community composition analyses may complement existing diagnoses 

for RA, considering that intestinal phages can play important roles in immune tolerance, 

mucosal immunity, and microbial homeostasis (Chatterjee et al., 2018). Given that phage 

community alterations have been shown to precede autoimmunity development in children 

at risk for developing type 1 diabetes (Zhao et al., 2017), phage community structure should 

be considered as a biomarker for diseases such as RA that are influenced by non-genetic 

microbial factors (Duerkop, 2018). To that end, we have characterized the intestinal viromes 

of RA at-risk individuals corresponding to anti-CCP serology. We measured species-specific 

phage-host interactions and identified over-abundances of C. scindens and A. oris targeting 

phages in CCP+ and CCP- individuals, respectively. Divergent metabolic profiles evident by 

differential abundance of AMG-encoding phages in both conditions warrant further 

interrogation during models of RA-like disease. Future work should investigate the potential 

of phages in a murine arthritis model to determine the influence of RA-associated phages 
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with immunomodulation and inflammatory disease progression. This preclinical RA study 

implicates specific intestinal phages that could open new avenues to assess the basis for 

phage involvement in other microbiota-associated diseases.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Breck A. Duerkop (breck.duerkop@cuanschutz.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The VLP and whole metagenome DNA sequencing reads 

as well as the final curated phage contigs generated in this study are available at the 

European Nucleotide Archive under the Study titled “Intestinal VLP reads and predicted 

phage contigs for at-risk RA individuals” (accession numbers PRJEB42612 and 

ERP126498). The VLP and whole metagenome raw unmapped read sets are available for 

each of the 25 individual samples included in this study and are available under the Study 

Primary Accession PRJEB42612. The 660 curated contigs are compiled in a multifasta file 

deposited as Sample SAMEA7856466 under the same Study PRJEB42612.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Subjects and Fecal Samples—Fecal samples were obtained from individuals 

recruited for the SERA (Studies of the Etiology of Rheumatoid Arthritis) initiative, aimed at 

understanding the mechanisms that prelude the preclinical development of RA. SERA is a 

multicenter prospective cohort study that has identified first-degree relative (FDR) probands 

defined as a parent, full sibling, or offspring of individuals with diagnosed clinical RA 

(Kolfenbach et al., 2009). FDR probands were evaluated in extensive clinical research visits, 

longitudinal follow-ups, and autoantibody testing to determine CCP status (Kolfenbach et 

al., 2009). FDR probands were split into cohorts VLPs were further treated with 50 mg/mL 

proteinase K and 0.5% SDS for 30 min at 56°C before addition of 100 μL phage lysis buffer 

(4.5 M guanidiniumisothiocyanate, 44 mM sodium citrate pH 7.0, 0.88% sarkosyl, 0.72% 2-

mercaptoethanol) (Shkoporov et al., 2018) and incubated for 10 min at 65°C. VLP DNA was 

precipitated and extracted with an equal volume of phenol/chloroform/isoamyl alcohol 

25:24:1, spun at 7800g for 5 min, and further extracted with an equal volume of chloroform. 

VLP DNA was precipitated with 0.3M NaOAc (pH 5.2) and an equal volume of isopropanol, 

washed with ice-cold 70% ethanol, and resuspended in sterile water.

Metagenomic DNA Sequencing—Samples were physically separated into whole 

metagenome (M), including all genomic DNA present in the sample, and virus-like particle 

(VLP) fractions, which were subjected to phage-specific precipitation (Figure S1A). VLP 

sequencing reads were used for de novo contig assembly of VLP metagenomes. Illumina 

sequencing resulted in an average of 123.8 ± 32.2, 135.2 ± 40.4, and 104.7 ± 45.9 million 

(M) paired end reads per sample for CCP+, CCP- and HC whole metagenomes, respectively, 

and an average of 67.3 ± 29.5, 73.2 ± 33.7, and 89.6 ± 47.8 M paired reads per sample for 
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CCP+, CCP- and HC VLP fractions, respectively (Figure S1B). VLP contigs longer than 5 

kb were distributed evenly across the three sample groups, totaling 2908.6 ±1461.3, 3209.0 

± 2573.8, and 3535.7 ±2826.4 contigs per sample for CCP+, CCP- and HC respectively 

(Figure S1C). VLP and whole metagenomic DNA was sequenced using the Illumina 

NovaSEQ 6000 platform with paired-end 150-cycle sequencing chemistry. DNA libraries 

were generated using the Ovation Ultralow System v2 (Nugen, part no. 0334) library 

preparation kit including 12 cycles of amplification. TruSeq adapters (Illumina) were used 

for multiplexing. Libraries were quantified using a Qubit and quality was measured using a 

Tapestation. All library preparation, quantification, quality assessment and control, were 

performed by the University of Colorado Anschutz Medical Campus Genomics and 

Microarray Core.

16S rRNA Amplicon Sequencing and Analysis—16S rRNA gene analysis was 

performed using fecal samples that were processed for isolation of whole metagenomic 

DNA using a ZymoBIOMICS DNA kit (Zymo Research) and stored at 80 °C. Amplicons of 

the 16S rRNA gene V4 region were amplified using Earth Microbiome Project primers 515F 

and 806R (Caporaso et al., 2011) with custom barcodes. Samples were sequenced on the 

Illumina MiSeq platform with paired end 250 bp reads using bTEFAP technology (Dowd et 

al., 2008) by MR DNA (Molecular Research LP, Shallowater, TX), and processed using 

mothur v.1.44.0 (Schloss et al., 2009). Sequenced reads, which averaged 607,915 ± 

112,641.7 per sample, were demultiplexed, assembled as contigs, and processed to remove 

chimeras and erroneous sequences per the Kozich protocol (Kozich et al., 2013) and mothur 

MiSeq SOP (https://mothur.org/wiki/miseq_sop/ accessed 07/16/2020). Sequences were 

aligned to the Greengenes core reference alignment for taxonomy using the 2013 release 

(gg_13_8_99) (DeSantis et al., 2006). Sequences were differentiated into amplicon sequence 

variants (ASVs) using the make.shared command, resulting in a total of 8,108,071 

sequences. Subsampling was performed using 186,745 sequences, which corresponded to 

the smallest sample in our dataset. Diversity measurements were performed using mothur 

calculators to estimate community richness (Chao1 estimator), community evenness 

(Shannon evenness), and community diversity (inverse Simpson index).

Decontamination and Read Processing—Metagenomic reads were decontaminated 

and trimmed as previously described (Duerkop et al., 2018) using BBMap short read aligner 

v38.56 (Bushnell, 2019). Briefly, raw reads were mapped to the internal Illumina phage 

genome control phiX174 (J02482.1), human reference genome (hg38), and potential 

laboratory contaminants including mouse genome (mm10), Enterococcus faecalis V583 

genome (NC_004668.1), E. faecalis OG1RF genome (NC_017316.1), and E. faecalis phage 

VPE25 (LT546030.1) using the bbsplit algorithm with default settings. Unmapped reads 

were trimmed of adapter sequences, with low quality reads and reads of insufficient length 

removed using the bbduk algorithm with the following parameters: ktrim = lr, k = 20, mink 

= 4, minlength = 20, qtrim = f, as previously described (Duerkop et al., 2018).

Metagenomic Assembly—Decontaminated and trimmed R1 and R2 reads were 

interleaved using the fq2fa --merge command from the IDBA-UD package (Peng et al., 

2012). Whole metagenome and VLP assemblies were performed using the MEGAHIT 
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assembler v1.2.7 (Li et al., 2016) using the default setting plus the following flags: --presets 

meta-large (--k-min 27 --k-max 127 --k-step 10) for large and complex metagenomes.

Quantitative Read Mapping and Construction of the Curated VLP Contig Database VLP 

reads were assembled into 25 individual sample sets, corresponding to the 25 individual 

fecal samples included in our study. All contigs resulting from MEGAHIT assembly were 

filtered to a minimum length of 5kb, resulting in a pool of 80,762 total contigs from all 

samples. Three separate independently published methods were employed to identify 

putative phages from the pooled set of contigs over 5kb in length. First, the P/M read 

mapping approach was used whereby each sample’s VLP and whole metagenome reads 

were mapped to their corresponding assembled contigs, using BBMap as previously 

described (Duerkop et al., 2018). After pooling, the top 100 largest ratios of VLP reads to 

whole metagenome reads for all 25 read-mapping sets for each sample were identified and 

pooled. Redundancy was removed using cd-hit-est at an identity threshold of 95% resulting 

in 2117 unique contig sequences. Next, we identified an independent set of phage contigs by 

aligning all open reading frames of the 80,762 VLP contigs against a set of 25,281 curated 

viral protein families (VPFs) (Paez-Espino et al., 2017). Separate filters were applied for 

VPF hits calculated in relation to total genes, microbial genes, and percent non-viral Pfams. 

2,902 contigs were identified that contained 5 or more VPF hits and with non-viral Pfam hits 

below 20%. 263 contigs were identified with 5 or more VPF hits with less than 50% non-

viral Pfam hits on a contig, and 644 contigs were identified with 2 – 4 VPF hits and 0 

microbial gene hits. Finally, 976 contigs were identified with only 1 VPF hit per contig, and 

were included regardless of microbial gene content. In total, after dereplication, the viral 

contigs arising from all above filters resulted in 4,785 unique viral contigs using the VPF 

method. For the third and final approach we employed VIBRANT (Virus Identification By 

iteRative ANnoTation) v1.2.1, a sequence-independent algorithm that uses neural networks 

of viral protein signatures to identify lytic and lysogenic phages (Kieft et al., 2020). 

VIBRANT identified 4,758 unique phage contigs. After combining these three independent 

approaches used to identify unique sets of phages, all sets were combined and the 

overlapping 660 contigs were used for analysis as the curated contig set. To assess contig 

completion and contamination levels, CheckV v0.6.0 was used with standard operating 

parameters.

Differential Abundance Analyses—To calculate differential abundance in pairwise 

analyses, we first generated read mapping count matrices by mapping all VLP reads to the 

curated contig set of 660 contigs. The bbmap algorithm from the BBMap suite of tools was 

used with the following parameters: ambiguous = random, qtrim = lr, minid = 0.97. Total 

raw read counts were aggregated per contig and assembled into 25 count matrices for all 

samples, which were then used as input for DESeq2 v1.20.0 (Love et al., 2014) running in R 

version 3.6.3 for comprehensive differential abundance analysis. Raw un-normalized read 

count coverage values were used to compare fold changes across three pairwise 

comparisons: CCP+ vs. HC, CCP- vs. HC, and CCP+ vs. CCP- groups. The standard 

workflow for differential analysis within DESeq2 was used, producing logarithmic fold-

change values incorporating Wald tests for p-value calculations and the Benjamini-Hochberg 

multiple testing correction for the adjusted p-value. In total, 178 phage contigs from our set 
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of 660 were found to be differentially abundant using thresholds of log2 Fold Change < −1 

or > 1 and adjusted p-value < 0.001 (Table S5).

VLP Clustering, Phage Host Matching, and AMG Identification—Clustering of all 

viral contigs within the RA virome described in this study was performed using two lists of 

contigs, the total 4,785 viral sequences identified by all filters of the VPF method, as well as 

the final curated set of 660 contigs. First, all 4,785 sequences were screened against the most 

recent iteration of the public viral database IMG/VR v3.0 (Roux et al., 2020) using blastn 

with 95% sequence similarity over 85% of each 1kb region of the contig, which resulted in 

19,892 viral sequences. Then, a total of 24,926 sequences were screened against each other 

using blastn with the same parameters and omitting duplicate hits. Markov clustering of 

these 9.4 million connections resulted in a total of 1,193 clusters encompassing 22,306 total 

sequences. Overall, 2,420 of the 4,785 total RA virome sequences were clustered into 1,184 

clusters. Of these clusters, 41 contained a reference viral isolate, 1,037 contained another 

metagenomic viral contig from IMG/VR, and 106 were identified as originating from RA 

metagenomic sequencing projects. Lastly, clustering was also calculated for the 660 curated 

viral sequences, which resulted in 266 individual clusters containing 336 (roughly 48% of 

curated set) unique sequences.

Phage host assignments were determined via bacterial CRISPR spacer matching as 

previously described (Duerkop et al., 2018), requiring at least 93% sequence identity match 

over the entire spacer length and allowing for up to 2 mismatches. CRISPR-Cas serves as a 

snapshot of previous phage infections in the form of acquired spacer sequences that 

represent invading viral genomes (Barrangou et al., 2007), and these sequences can be used 

for accurate identification of phage-host interactions in intestinal microbiomes (Stern et al., 

2012, Duerkop et al., 2018). Of our 660 curated contig list, 207 (31.4%) had CRISPR 

spacers matching reference isolates therefore leading to host predictions for a third of our 

final contigs. VIBRANT v1.2.1 was used to identify auxiliary metabolic genes (AMGs) 

according to KEGG metabolic pathway annotations. VIBRANT annotates using VOG, 

Pfam, and KEGG databases; therefore, if the best HMM hit is to the KEGG database and 

also if the annotation is in a metabolic pathway, the hit gets called as an AMG. A majority of 

the AMGs identified in our analysis make up a group of 14 genes conserved across many 

environments (Kieft et al., 2020), indicating their functional importance in core metabolism.

GOLD Ecosystem Metadata Analysis—The JGI GOLD database contains metadata 

from over 100,000 biosamples and over 350,000 sequencing projects involving genomic and 

metagenomic sequencing data from biological isolates worldwide. Moreover, recent work 

has contributed an additional 52,515 metagenome-assembled genomes from diverse 

ecologies and geographic distributions (Nayfach et al., 2020b), further enhancing microbial 

host ecosystem analysis. For phages that were previously identified as having CRISPR 

spacer host assignments, total spacer alignments as identified by blastn ranging from 1 to 

825 per contig, were tallied and used to calculate the uniformity of spacer origins per contig 

(Table S6). In total, 438 contigs were identified with CRISPR spacers matched to queries 

from the JGI GOLD database annotated with metadata at the following levels: GOLD 

Ecosystem, GOLD Ecosystem Category, GOLD Ecosystem Subtype, and GOLD Ecosystem 
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Type. CRISPR spacer alignments to the GOLD database ranged from 18 to 116 bp, at 100% 

identity, with up to 1 mismatch and 0 gaps for all queries (Table S6). Percentages for each 

metadata level were calculated relative to the majority designations corresponding to each 

category; “Host-associated” (Ecosystem), “Human” (Ecosystem Category), “Large 

intestine” (Ecosystem Subtype), and “Digestive system” (Ecosystem Type). Data points per 

contig were plotted in R v3.6.3 using tidyverse v1.3.0 and ggplot2 v3.3.3. Statistical 

significance was calculated in R using the pairwise Wilcoxon test with the Benjamini-

Hochberg adjustment method. An additional analysis was performed to calculate the 

percentages of metadata uniformity relative to the other 2 Ecosystem categories 

“Environmental” and “Engineered”, (Supplemental Figure 5) which were performed in 

similar conditions to the “Host-associated” analysis (Figure 4).

Data Visualizations—Various R packages were used, including DESEq2, ggplot2, 

ComplexHeatmap, pheatmap, corrplot, RColorBrewer, and EnhancedVolcano. Graphpad 

Prism v8.4.3 was used for all supplemental calculations. Lastly, SankeyMATIC (https://

github.com/nowthis/sankeymatic) and meta-chart (https://www.meta-chart.com/venn) were 

used to create the Sankey and Venn diagrams depicted in Figure 1, respectively.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses for each experiment were performed as described in each figure legend 

and detailed in the Results and corresponding Method Details sections. Sample groups were 

quantified as follows: CCP+ (n=8), HC (n=9), CCP- (n=8), for a total of 25 individual stool 

samples. Statistical significance was calculated with either Prism version 8.4.3 or R version 

3.6.3

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Unique intestinal phage compositions correlate to at-risk RA anti-CCP 

serology

• Lachnospiraceae phage-host interactions dominate in CCP+ individuals at-

risk for RA

• Phages from CCP+ individuals may originate from disparate ecological 

niches

• Phage auxiliary metabolic genes (AMGs) contribute to cohort-associated 

differences
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Figure 1. 
Generation and curation of de novo assembled VLP contigs. (A) De novo assembled contigs 

resulted in a total of 3,557,500 contigs for the entire sample set. Three independent methods 

were used to identify putative phages from the list of 80,762 contigs resulting in 2,117 

contigs from the P/M ratio method, 4,785 contigs from the Viral Protein Families method, 

and 4,758 contigs using VIBRANT. (B) A Venn diagram shows the overlap of redundant 

contigs identified among the three methods. 660 unique contigs were identified 

independently by all phage identification methods. (C) CheckV contamination analysis of 

the three separate methods as well as the final set of curated contigs.
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Figure 2. 
Clustering with metagenomic viral contigs reveals viral ecological composition. (A) Host 

assignments for the set of curated phages based on Markov clustering to the IMG/VR 

database metagenomic viral clusters or direct match to bacterial CRISPR spacers, based on 

cohort abundance. (B) Cladogram of the complete host phylogeny at the genus level for all 

spacers identified from total RA virome via the VPF method. The pie chart at the center 

represents all 958 CRISPR spacers from the family level quantified in panel A. Total host 

hits were quantified at the genus level and are represented in relative size by colored circles, 
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indicating host assignments that were discerned via clustering (dark grey) and those that 

were identified via direct CRISPR spacer matching (light grey). Total CRISPR spacers per 

contig with family level host taxonomy assignments were tabulated per cohort group (C) and 

differentiated as narrow or broad phage host ranges (D) based on target uniformity to 

bacterial family. See also Tables S1, S2, S3.
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Figure 3. 
Phage-host assignments for curated VLP contigs reveal cohort-based differential read 

recruitment among several bacterial families. Relative abundances were calculated for all 

VLP reads mapped to phages predicted to target Bacteroidaceae (A), Clostridiaceae (B), 

Lachnospiraceae (C), Ruminococcaceae (D), Streptococcaceae (E), and Veillonellaceae (F) 

bacterial families. Scaffold abundances were averaged across all samples and statistics were 

determined by nonparametric Wilcoxon tests (* p < 0.05, ** p < 0.01, **** p < 0.0001).
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Figure 4. 
CRISPR spacer host metadata reveal CCP+ phages represent greater variability in microbial 

host ecology. (A) JGI/GOLD Ecosystem Distribution showing the percent host-associated 

spacers calculated for each contig based on cohort distribution. (B) Ecosystem Category 

distribution showing the percent human-associated spacers. (C) Ecosystem Type distribution 

showing the percent of contigs that contain spacers originating from the digestive system. 

(D) Ecosystem Subtype showing the percent of contigs that contain spacers originating from 

the large intestine microenvironment. Statistical significance was determined using pairwise 

Wilcoxon rank sum tests for comparisons between the three groups, using the Benjamini-

Hochberg correction for multiple testing comparisons (* p = 0.023, **** p < 2 × 10−16). See 

also Figure S4 and Table S6.
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Figure 5. 
Quantitative read mapping exposes differentially abundant contigs despite sample 

cohesiveness. (A, B, C) Analyses of the first and second principal components of sample-to-

sample DESeq2 analyses revealed minimal variance explained across all comparisons. (D, E, 

F) Euclidian distances for sample-sample read-based coverages were used for hierarchical 

clustering across all pairwise comparisons reveal minimal clustering based on sample type. 

(G, H, I) Volcano plots reveal 9%, 10%, and 8% of contigs included in our analysis are 

differentially abundant respective to CCP+ vs. HC, CCP- vs. HC, and CCP+ vs. CCP- 

group-based comparisons of specific contig community members. See also Table S5.
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Figure 6. 
Phage auxiliary metabolic gene abundances highlight cohort-associated disparities in 

potential metabolic function. (A) Total counts per KEGG Pathway were used to normalize 

relative abundance of AMGs per sample, which were clustered using the ComplexHeatmap 

package in R. Areas in black indicate no AMG hits were present for the entire cohort for the 

660 contig samples. See also Table S4. (B) Differentially abundant contig for the CCP+ to 

HC pairwise comparison, visualizing only the contigs which had CRISPR spacer-predicted 

hosts. Color-coded stars belong to a list of AMGs and indicate association with the contig 

they are adjacent to. (C) Differentially abundant contigs for the CCP- vs HC comparison.
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Table 1.

Summary of Subject Characteristics for the Samples Included in the Study

VARIABLE HC CCP+ CCP−

Count 9 8 8

Age (mean) 44.4 61.3 49

Age (SD) 13.6 11 15.7

Sex (% female) 66.7 88.9 62.5

Serum CCP+ (%) 0 100 0

Ever smokers (%) 22.2 33.3 0
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

25 individual fecal samples SERA study N/A

Chemicals, Peptides, and Recombinant Proteins

SM+ buffer (50mM Tris, 5mM NaCl, 8mM MgSO4, 5mM 
CaCl2, pH = 7, prepare beforehand and filter sterilize)

Duerkop et al., 2016 N/A

DNase buffer (10 mM CaCl2, 50 mM MgCl2) Shkoporov et al., 2018 N/A

DNase I Roche 11284932001

RNase Roche 10109134001

proteinase K Sigma-Aldrich 1.24568

phage lysis buffer (4.5 M guanidiniumisothiocyanate, 44 
mM sodium citrate pH 7.0, 0.88% sarkosyl, 0.72% 2-
mercaptoethanol)

Shkoporov et al., 2018 N/A

phenol/chloroform/isoamyl alcohol 25:24:1 Sigma-Aldrich P3803

PEG8000 Fisher BioReagents BP233

Critical Commercial Assays

Zymo BashingBead Lysis tube ZymoResearch S6012–50

ZymoBIOMICS DNA kit ZymoResearch D4303

Ovation Ultralow System v2 Nugen 0334

TruSeq Nano DNA Library Prep Kit Illumina 20015965

Deposited Data

Raw virome sequencing data This paper PRJEB42612

Raw metagenome sequencing data This paper PRJEB42612

660 curated phage contigs This paper PRJEB42612

Oligonucleotides

Earth Microbiome Project primers 515F and 806R Caporaso et al., 2011 N/A

Software and Algorithms

GraphPad Prism v8.4.3 GraphPad Software N/A

RStudio version 1.2.5001 RStudio, Inc. N/A

R version 3.6.3 R Foundation for Statistical Computing N/A

MegaHit assembler v1.2.7 Li et al., 2016; https://github.com/voutcn/megahit RRID:SCR_018551

IDBA-UD Peng et al., 2012; http://i.cs.hku.hk/~alse/hkubrg/
projects/idba_ud/

RRID:SCR_011912

SankeyMATIC https://github.com/nowthis/sankeymatic N/A

meta-chart https://www.meta-chart.com/venn N/A

BBtools (BBmap) v38.56 Bushnell, 2019; http://sourceforge.net/projects/bbmap RRID:SCR_016965

VIBRANT v1.2.1 Kieft et al., 2020 N/A

IMG/VR v3.0 Roux et al., 2020 N/A

tidyverse v1.3.0 https://cran.r-project.org/package=tidyverse RRID:SCR_019186
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REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 v1.24.0 Love et al., 2014; https://bioconductor.org/packages/
release/bioc/html/DESeq2.html

RRID:SCR_015687

ggplot2 v3.3.3 https://cran.r-project.org/web/packages/ggplot2/
index.html

RRID:SCR_014601

ComplexHeatmap https://bioconductor.org/packages/release/bioc/html/
ComplexHeatmap.html

RRID:SCR_017270

Pheatmap v1.0.12 https://www.rdocumentation.org/packages/pheatmap/
versions/0.2/topics/pheatmap

RRID:SCR_016418

EnhancedVolcano v1.7.16 https://bioconductor.org/packages/EnhancedVolcano/ RRID:SCR_018931

corrplot v0.84 https://github.com/taiyun/corrplot N/A

matrixStats v0.57.0 https://github.com/HenrikBengtsson/matrixStats N/A

Mothur v1.44.0 Schloss et al., 2009; http://www.mothur.org/ RRID:SCR_011947
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