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A B S T R A C T   

The clinical presentation of Alzheimer’s disease (AD) varies widely across individuals but the neurobiological 
mechanisms underlying this heterogeneity are largely unknown. Here, we compared regional gray matter (GM) 
volumes and associated gene expression profiles between cognitively-defined subgroups of amyloid-β positive 
individuals clinically diagnosed with AD dementia (age: 66 ± 7, 47% male, MMSE: 21 ± 5). All participants 
underwent neuropsychological assessment with tests covering memory, executive-functioning, language and 
visuospatial-functioning domains. Subgroup classification was achieved using a psychometric framework that 
assesses which cognitive domain shows substantial relative impairment compared to the intra-individual average 
across domains, which yielded the following subgroups in our sample; AD-Memory (n = 41), AD-Executive (n =
117), AD-Language (n = 33), AD-Visuospatial (n = 171). We performed voxel-wise contrasts of GM volumes 
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derived from 3Tesla structural MRI between subgroups and controls (n = 127, age 58 ± 9, 42% male, MMSE 29 
± 1), and observed that differences in regional GM volumes compared to controls closely matched the respective 
cognitive profiles. Specifically, we detected lower medial temporal lobe GM volumes in AD-Memory, lower 
fronto-parietal GM volumes in AD-Executive, asymmetric GM volumes in the temporal lobe (left < right) in AD- 
Language, and lower GM volumes in posterior areas in AD-Visuospatial. In order to examine possible biological 
drivers of these differences in regional GM volumes, we correlated subgroup-specific regional GM volumes to 
brain-wide gene expression profiles based on a stereotactic characterization of the transcriptional architecture of 
the human brain as provided by the Allen human brain atlas. Gene-set enrichment analyses revealed that var
iations in regional expression of genes involved in processes like mitochondrial respiration and metabolism of 
proteins were associated with patterns of regional GM volume across multiple subgroups. Other gene expression 
vs GM volume-associations were only detected in particular subgroups, e.g., genes involved in the cell cycle for 
AD-Memory, specific sets of genes related to protein metabolism in AD-Language, and genes associated with 
modification of gene expression in AD-Visuospatial. We conclude that cognitively-defined AD subgroups show 
neurobiological differences, and distinct biological pathways may be involved in the emergence of these 
differences.   

1. Introduction 

The clinical phenotype of Alzheimer’s disease (AD) dementia is 
typically characterized by prominent memory impairment. However, 
there is considerable variation in the clinical manifestation of AD that 
can also present with substantial deficits in cognitive domains other 
than memory (Lam et al., 2013). At the ends of the clinical spectrum 
reside the atypical variants of AD; posterior cortical atrophy (PCA) 
(Crutch et al., 2017) and logopenic variant primary progressive aphasia 
(lvPPA) (Gorno-Tempini et al., 2008), which are characterized by early 
and predominant impairments in a single cognitive domain (i.e., vi
suospatial and language impairments, respectively). While these atyp
ical variants represent phenotypical extremes, there is substantial inter- 
individual cognitive variability in persons with AD dementia who do not 
meet clinical criteria for these specific variants and thus remain classi
fied under the moniker of “typical AD dementia” (Ossenkoppele et al., 
2019). A framework has been proposed to categorize people with typical 
AD dementia into cognitively-defined subgroups based on their relative 
performance on cognitive domains (Crane et al., 2017). A deeper un
derstanding of the underlying mechanisms that govern differences be
tween cognitively-defined subgroup of typical AD dementia might 
identify differential pathways that play a role in the pathogenesis of AD, 
improve the accuracy of diagnosis and prognosis, and aid in the devel
opment of personalized medicine strategies and design of clinical trials. 

Cognitive phenotypes that characterize atypical AD dementia vari
ants (i.e., lvPPA, PCA) are associated with marked clinical differences 
and regional variations in neurodegeneration (Lam et al., 2013; Ossen
koppele et al., 2015b). Moreover, differences in regional gene expression 
profiles associate with regional differences in anatomical (Whitaker 
et al., 2016) and functional (Richiardi et al., 2015) properties of the 
brain, as well as with selective regional vulnerability to neurodegener
ative disease (Freeze et al., 2019; Grothe et al., 2018; Sepulcre et al., 
2018). Based on these observations, we aimed to address two research 
objectives with regard to cognitively-defined subgroups within the 
broad spectrum of persons with ‘typical’ AD dementia. First, to examine 
whether cognitively-defined subgroups associate with regional varia
tions in gray matter (GM) volumes. And second, to explore possible 
biological drivers of differences in regional susceptibility to neuro
degeneration, by relating subgroup-specific regional GM volumes to 
brain-wide gene expression profiles based on a stereotactic character
ization of the transcriptional architecture of the human brain as pro
vided by the Allen human brain atlas (Hawrylycz et al., 2015). 

2. Material and methods 

2.1. Participants 

For this single-center study, we included participants from the 
Amsterdam Dementia Cohort (ADC). The ADC is located at the 

Alzheimer Center Amsterdam, where patient care and scientific research 
are performed in parallel. All patients that visit the Alzheimer Center 
Amsterdam undergo an elaborate one-day screening battery including 
extensive neuropsychological evaluation, an MRI scan and a lumbar 
puncture. In a subset of the ADC, an amyloid-PET scan is performed (e. 
g., after refusal of a lumbar puncture or in the context of a research 
project). After their baseline visit, patients visit the clinic annually for 
follow-up visits. All patients that visit the Alzheimer Center Amsterdam 
are asked to consent to the use of their clinical data for scientific pur
poses and 99% accepts (van der Flier et al., 2014), whereupon they are 
included into the ADC. Additional information on the set-up, content, 
and data collection procedures within the ADC are described elsewhere 
(van der Flier et al., 2018). 

Written informed consent was obtained from all participants ac
cording to the Declaration of Helsinki and the local medical ethics re
view committee of the Amsterdam UMC approved the study. 

2.1.1. AD participants under investigation 
Participants that undergo categorization into AD-subgroups (see 

section 2.3) were selected based on the following criteria: 1) clinical 
diagnosis of AD dementia (McKhann et al., 2011) at time of dementia 
screening, 2) molecular biomarker profile indicative of AD neuropa
thology (i.e., annual upward drift corrected CSF amyloid-β42 < 813 pg/ 
mL (Tijms et al., 2018); and/or a positive amyloid-β PET scan deter
mined by visual assessment (Ossenkoppele et al., 2015a)), 3) availability 
of a 3Tesla MRI scan, and 4) availability of neuropsychological data to 
compute all cognitive domains assessed (see sections 2.2 and 2.3). 
Exclusion criteria for participants that undergo categorization into AD- 
subgroups were: 1) meeting core criteria for an atypical variant of AD 
dementia, i.e., PCA or lvPPA (Gorno-Tempini et al., 2008; Schott et al., 
2017a), 2) psychiatric or neurological disorders (other than AD de
mentia), and 3) known genetic mutations associated with familial AD. A 
total of 679 participants were included based on these criteria. There 
was no age restriction for inclusion into the sample and the ADC sample 
is characterized by a relatively low mean age (~64 years old) (van der 
Flier et al., 2018). Because of possible differences between younger and 
older individuals with AD dementia, we provide sensitivity analyses in 
the supplement that look at early-onset AD (<65 years at dementia 
screening) and late-onset AD (>65 years at dementia screening) par
ticipants separately. Of the total sample of 679, 282 (42%) were under 
the age of 65. 

2.1.2. Control groups 
We also selected a control group of subjects who were amyloid-β 

negative on PET/CSF and determined to be cognitively healthy in a 
multi-disciplinary meeting based on standardized neuropsychological 
assessment (Groot et al., 2018). This group provided normative GM 
volumes that were used to assess regional GM volumes of the AD- 
subgroups (see section 2.6). 
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Furthermore, to assess how the cognitively-defined AD-subgroups 
relate to established atypical variants of AD, we additionally selected 
“positive control” samples of individuals with lvPPA (n = 20, age 66.9 ±
5.2, 60% male, MMSE 23.1 ± 4.1) and PCA (n = 69, age 62.0 ± 6.1, 41% 
male, MMSE 20.2 ± 4.6) from our previous studies (Bergeron et al., 
2018; Groot et al., 2020), which were diagnosed according to published 
clinical criteria (Gorno-Tempini et al., 2008; Crutch et al., 2017). There 
are currently no consensus diagnostic criteria for selective amnestic or 
behavioral/dysexecutive variants of AD. 

2.2. Cognition 

Neuropsychological tests from the ADC neuropsychological test 
battery were categorized by an expert panel (ET, JM, AS, PC) into 
cognitive domains; memory, executive-functioning, language and 
visuospatial-functioning (Table A1). For the four cognitive domains, 
confirmatory factor analyses (Mplus version 7.419) (Muthén and 
Muthén, 1998) were implemented to generate composite cognitive 
domain scores from the individual test scores. Composite cognitive 
domain scores were then co-calibrated to normative scores that are 
based on metrics obtained for 4,050 people with incident AD dementia 
from our legacy cohort assessed in our previous publications (Crane 
et al., 2017; Mukherjee et al., 2020). This was achieved by implementing 
“anchor items” (same stimulus, and scored identically, in the ADC and 
the legacy cohort; A. Text) to anchor metrics and then co-calibrating the 
ADC composite cognitive domain scores to those from the legacy cohort 
using bifactor models in Mplus. Because the metrics from our legacy 
cohort are based on late-onset AD cases, the scores of younger ADC 
participants (<60 years) were co-calibrated using the parameters from 
the model obtained in older (>60 years) ADC participants. Detailed 
methods on how co-calibration of scores was achieved and brief de
scriptions of the legacy cohorts can be found in the supplement (A. Text) 
and in our previous publications (Crane et al., 2017; Mukherjee et al., 
2020). 

For the purposes of normalizing our scores, we z-transformed the co- 
calibrated cognitive domain scores using the mean and standard devi
ation (SD) from the corresponding score obtained in the Adult Changes 
in Thought (ACT) sample (which was also part of our legacy cohort). 
ACT was used as our reference population because it was our largest 
sample available. The ACT-normalized and co-calibrated cognitive 
scores of the ADC sample are presented in Table A2. 

We additionally obtained mini-mental state examinations (MMSE) 
scores, which were used to assess differences in global cognition be
tween AD-subgroups at baseline, and to assess differences in longitudi
nal decline in cognitive function (i.e., clinical progression). The MMSE 
was selected to measure global cognition and progression as it is a 
widely implemented test to examine clinical progression in clinical 
practice (Doody et al., 2001) and clinical trials (Doody et al., 2014; 
Salloway et al., 2014), and is administered at every follow-up visit in the 
ADC cohort. 

2.3. Subgroup classification 

Subgroup classification relies on scores across all four domains 
assessed (i.e., memory, executive-functioning, language and 
visuospatial-functioning). Classification is achieved by first averaging, 
for each individual, the scores across the four cognitive domains and 
then determining the difference for every domain score from that 
average. We used a difference of 0.80 units (i.e., 0.80 SD from the mean 
in ACT, see section 2.2) to identify domains with scores substantially 
lower than a person’s average score. This threshold was previously 
empirically determined after assessing a range of candidate thresholds 
(see (Crane et al., 2017) for further details). We then considered domain 
(s) with scores substantially lower than the person’s average score to 
assign people to groups (see Fig. A1 for a visual representation of cate
gorization). This classification yields 6 groups. Consistent with our 

previous publications on these subgroups (Crane et al., 2017; Mukherjee 
et al., 2020), these were named according to which domain showed 
substantial relative impairment; memory (AD-Memory), executive- 
functioning (AD-Executive), language (AD-Language), visuospatial- 
functioning (AD-Visuospatial). When more than one domain was rela
tively impaired, subjects were classified as AD-Multiple. When none of 
the domains was relatively impaired a subject was classified as AD-No 
Domains, meaning these individuals had similar levels of impairment 
across all four cognitive domains. Because the AD-No Domains group 
does not show a particular cognitive phenotype, we used this as the 
reference group for comparisons against the other AD-subgroups. It is 
important to note that because the classification of subgroups is based in 
intra-individual differences in impairments across cognitive domains 
relative to the person’s average, the subgroups classification is based 
solely on cognitive profiles rather than overall level of cognitive 
impairment. Table A2 shows that there were differences across AD- 
subgroups with regards to average level of impairment across do
mains. Furthermore, because the normative scores were derived from 
the ACT cohort, classification into a subgroup is based on substantial 
relative impairment compared to an AD population. 

2.4. Neuroimaging 

MRI scans were performed according to standardized acquisition 
protocols including a 3D T1-weighted structural MRI sequence on three 
different 3Tesla MRI scanners (Table A3). We adjusted for scanner type 
in the statistical models (see section 2.6). All the MRI scans were per
formed on the same visit as the neuropsychological examination (i.e., 
baseline dementia screening) or within a very short timeframe. The 
structural T1 images were segmented into gray matter, white matter and 
CSF volumes using the “New Segment” toolbox implemented in Statis
tical Parameter Mapping (SPM) 12 software (Welcome Trust Centre for 
Neuroimaging, UCL, London, UK). To generate a study-specific tem
plate, Diffeomorphic Anatomical Registration Through Exponentiated 
Lie Algebra (DARTEL) was used to align grey matter images non-linearly 
to a common space. Grey matter images were then spatially normalized 
to MNI standard space using the study specific template and individual 
flow fields. Modulation was applied to preserve tissue volume signal and 
images were smoothed using an 8 mm full-width-at-half-maximum 
isotropic Gaussian kernel. After each processing step, the images were 
visually checked for quality. The resulting normalized GM images were 
used as input for voxel-based morphometry analyses assessing regional 
variations in of GM volumes within the AD-subgroups (see section 2.6). 

2.5. Regional gene expression profiles 

Brain-wide gene expression profiles were obtained from microarray 
data from the Allen database of the human brain transcriptome, which is 
publicly available from the Allen brain institute (http://human.brai 
n-map.org). This dataset contains regional gene expression data from 
around 61,000 microarray probes collected from ~ 3700 tissue samples, 
which were obtained from six control subjects who died without any 
evidence of neurologic disease (aged 24–57). Anatomical information 
for each of the probes is provided and can be used to determine the 
location within stereotactic standard space. Microarray data from the ~ 
3700 tissue samples, with their corresponding anatomical locations in 
MNI space provided in the Allen database, were used to interpolate 
brain-wide gene expression at the voxel level using Gaussian process 
regression implemented in the R package gstat (see Gryglewski et al., 
2018; Pebesma, 2004 for detailed methods). Briefly, the method relies 
on the assumption that spatially adjacent sites (i.e., voxels) are more 
similar than voxels that are far apart. First, this spatial dependency of 
each gene’s expression was captured using spatial variogram models. 
Subsequently, Gaussian process regression was used to obtain unbiased 
predictions of gene expression in unobserved voxels (between samples) 
based on data from all available samples (with observed gene expression 
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data) by weighting data according to the variogram model and the 
distance between the observed and predicted voxel. This was performed 
separately for the cerebral cortex, subcortical regions and the cere
bellum, due to the different degree of spatial dependency in gene 
expression between these (ontogenetically distant) parts of the brain. 
Internal cross-validation assessing correlations between predicted and 
observed voxel values as well as correlation of predicted gene expression 
and PET data of corresponding targets support the validity and utility of 
this method. These brain-wide gene expression maps have been made 
publicly available at www.meduniwien.ac.at/neuroimaging/mRNA. 
html. 

These maps represent gene expression data across the entire cerebral 
cortex for each of the 18,686 protein-coding human genes. Microarray 
data from both hemispheres is only available in two subjects (Hawrylycz 
et al., 2012), and, in line with previous examinations (Grothe et al., 
2018; Sepulcre et al., 2018), we restricted all our analyses assessing 
associations between GM volumes and gene-expression to the left 
hemisphere. 

2.6. Statistical analysis 

All statistical analyses were performed in SPM12 or R version 3.5.2. 
Differences in demographic and clinical characteristics between the 
subgroups were assessed using independent-samples t-tests (continuous 
variables), χ2-tests (categorical variables) and Kruskal-Wallis tests (for 
the non-normally distributed education variable). Linear-mixed effects 
models were assessed to examine differences between subgroups in 
global cognition (i.e., MMSE) at baseline and change over time. We ran a 
model using one predictor for all subgroups, with AD-No Domains as the 
reference and adjusted for age, sex and education. To assess the differ
ence in rates of mortality across cognitively-defined subgroups, age- 
adjusted Cox proportional hazard models were performed. Again, we 
ran one model comparing all subgroups to the AD-No Domains group. 
Statistical significance for these models was set at p < 0.05. 

2.6.1. Regional gray matter volumes 
To assess the brain-wide spatial pattern of GM volume for each of the 

subgroups, SPM12 was used to perform voxel-wise contrasts between 
subgroups and the amyloid-β negative, cognitively normal controls, as 
well as between the AD-No Domains subgroup and the other AD- 
subgroups. These analyses were adjusted for age, sex, intracranial vol
ume and scanner type. For the analyses assessing differences between 
AD-No Domains and the other groups, we aimed to consider the possi
bility that one group may have, on average, presented later in the dis
ease course than another group, leading to overall greater atrophy. 
Therefore, we included a term for overall GM to intracranial volume 
ratio in the contrast models for comparisons against the AD-No Domains 
group. Because of the additional correction for global GM volumes, 
differences between AD-subgroups and AD-No Domains reflect the dif
ference in regional GM volumes relative to the total GM volumes across 
the whole cortex, rather than absolute differences in volumes. All voxel- 
wise contrasts yield statistical parametric T-maps that represent the 
voxel-wise difference in GM between comparators. 

The T-maps for the contrasts against cognitively normal controls 
were also used to assess spatial similarities between regional GM vol
umes among cognitively-defined AD-subgroups and the lvPPA and PCA 
reference groups. We determined the overlap between the most atro
phied voxels from the T-maps (meant + 2*standard deviationt) with the 
Sørensen–Dice coefficient (DSC) as: 2*(A ∩ B)/(A + B), with 0 signifying 
no overlap and 1 complete overlap. 

2.6.2. Associations between regional gray matter volumes and regional 
gene-expression profiles 

First, we took the voxel-wise contrasts against the amyloid-β nega
tive cognitively normal control group, as well as the voxel-wise gene 
expression data (available from www.meduniwien.ac.at/neuroimaging/ 

mRNA.html see section 2.5; Fig. 1A) and extracted regional values for 
the 34 Desikan-Killiany regions of interest using the “Marsbar” software 
toolbox for SPM12 (Brett et al., 2002) (Fig. 1B). The 34 regional T-values 
(GM volume differences compared to controls) were then correlated to 
the 34 regional gene expression values using Spearman’s correlations 
(Fig. 1C) (Krienen et al., 2016). This was repeated for each of the 18,686 
genes under investigation. Therefore, this results in 18,686 correlation 
coefficients (one for each gene), each indicating the spatial relationship 
between brain-wide gene expression and regional GM volumes. For 
explorative analyses the correlation coefficients of all 18,686 genes were 
rank ordered according to the strength of the association (Fig. 1D). To 
reduce the wealth of gene-specific correlations into more comprehen
sible data we used gene set enrichment analysis (GSEA). GSEA is a sta
tistical approach developed specifically to condense data from large 
microarrays on single genes into more comprehensible information on 
functional gene sets. GSEA uses the complete spectrum of information 
provided by the rank ordered gene expression-GM volume correlations 
and determines whether known gene sets (i.e., grouped genes with 
related functions) are negatively or positively enriched for a specific 
pattern of GM volumes as a whole. In the present study, we explored 
6,032 different gene sets obtained from the curated Reactome 
(http://reactome.org/; dataset: c2.cp.reactome.version:7.0 from the 
Molecular Signatures Database (MSigDB)), and gene ontology (GO; 
http://www.geneontology.org/; dataset: c5.all version 7.0) databases. 
These gene sets are defined by genes that are commonly associated with 
a specific biological process or GO annotation, respectively. GSEA uses 
the rank ordered correlation coefficients between regional gray matter 
volumes and gene expression as well as the known gene sets as inputs to 
determine positive or negative enrichment of the gene sets by assessing 
whether genes within a set are non-normally distributed (skewed) to
wards one edge of the rank-ordered correlation spectrum (Fig. 1E). We 
ran the “Run GSEA pre-ranked” tool on default parameters and imple
mented version 4.0.3 of the GSEA. software package (available from: 
http://software.broadinstitute.org/gsea/index.jsp). Gene sets that clus
ter towards the positive end show higher than expected neurotypical 
expression levels in brain regions with relatively low GM volumes 
(‘positively enriched’), whereas those clustering towards the negative 
end show lower expression in brain regions with lower GM volumes 
(‘negatively enriched’). The non-normality of the distribution is repre
sented by the normalized enrichment score, which also accounts for 
different sizes of the tested gene sets, and the statistical significance (p) 
of this score was adjusted using the false discovery rate (FDR). The 
threshold for statistical significance was set to P(FDR) < 0.10 (Sub
ramanian et al., 2005). Using this approach, information regarding the 
spatial correlation between GM volumes and regional gene expression is 
summarized into gene sets. 

In order to account for partial redundancy of the enriched gene sets 
and to identify which biological pathways are common across the gene 
set produced by the GSEA approach, we organized the gene sets into a 
network structure using the Cytoscape plug-in ‘Enrichment Map’ (Mer
ico et al., 2010). Grouping into clusters is achieved by assessing common 
genes across enriched gene sets. Results are visualized in an automated 
network layout where related gene sets (nodes) are connected by edges 
that represent the degree of overlapping genes, thus forming clusters 
(see Fig. 1F and figure legend). The gene sets within the resulting 
clusters were then manually examined to identify the common biolog
ical pathway associated with the gene sets. We also ran “Leading-edge” 
analyses in the GSEA 4.0.3. software package to identify the most rele
vant individual genes driving the enrichment signal for the different 
gene sets in a given cluster (“leading-edge genes”). 

The whole process described in this paragraph is performed sepa
rately for each of the AD-subgroups. Therefore, each AD-subgroup yields 
their own set of enriched gene set clusters. These were then compared 
against each other by assessing whether the gene sets within a cluster are 
enriched in multiple subgroups or uniquely enriched in only one sub
group. A gene set cluster was considered uniquely enriched in a 
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Fig. 1. Gene-set enrichment analyses and grouping of gene sets. Panel A displays voxel-wise differences in gray matter volumes between AD subjects and cognitively 
normal controls (top row; T-maps, adjusted for covariates), and brain-wide gene expression values (MAPT as an example) obtained from www.meduniwien.ac.at/neu 
roimaging/mRNA.html (bottom row). Panel B displays the parcellation of the T-map and gene expression values into regions-of-interest (ROI) from the Desikan- 
Killiany atlas. Panel C displays Spearman’s correlations between T-values and gene expression values within ROIs. In this plot, each datapoint represents grey 
matter volume differences with controls within the 34 ROIs on the x-axis and gene-expression values in the corresponding ROI on the y-axis. The steps in panel A 
through C are repeated for all 18,686 genes, yielding a correlation spectrum that is ranked from positive to negative (Panel D). GSEA software then produces an 
enrichment score that indicates whether a gene set, as a whole, preferentially falls towards one end of the correlation spectrum (Panel E; with the gene set ‘synaptic 
plasticity’ as an example). Panel F displays results from the gene set grouping analysis in Cytoscape where significantly enriched gene sets are plotted as interrelated 
nodes connected by edges denoting their overlapping genes. 

Table 1 
Demographic and clinical characteristics of the sample.    

Cognitively-defined Alzheimer’s disease subgroup Reference groups  

All AD- 
subgroups 

AD- 
Memory 

AD- 
Executive 

AD- 
Language 

AD- 
Visuospatial 

AD- 
Multiple 

AD-No 
Domains 

Normal 
controls 

lvPPA PCA 

N (% of all AD- 
subgroups) 

679 41 (6%) 117 (17%) 33 (5%) 171 (25%) 86 (13%) 231 (34%) 127 20 69 

Age at diagnosis 66.3 (7.4) 68.3 (6.6) 68.0 (6.6) 64.4 (6.4) 63.7 (7.3) 66.8 (7.4) 66.9 (7.7) 57.7 (8.8) 66.9 
(5.1) 

62.0 
(6.1) 

Early-onset, % 282 (42%) 11 (27%) 40 (34%) 17 (52%) 95 (56%) 33 (38%) 86 (37%) – 15 (75%) 19 (28%) 
Sex, male 318 (47%) 17 (42%) 60 (51%) 18 (55%) 79 (46%) 48 (56%) 96 (42%) 53 (42%) 10 (53%) 28 (41%) 
MMSE 21.2 (5.1) 23.7 (2.8) 20.4 (5.5) 17.2 (5.7) 22.3 (4.8) 20.0 (5.1) 21.5 (4.8) 28.7 (1.1) 23.1 

(4.1) 
20.2 
(4.6) 

NPI total score 12.0 (13.8) 12.4 
(12.3) 

13.6 (15.1) 7.9 (9.4) 11.6 (13.7) 8.9 (12.4) 12.9 (14.3) 3.9 (8.2) 6.3 (7.3) 8.4 
(10.1) 

GDS 2.8 (2.6) 2.8 (2.7) 2.6 (2.6) 2.4 (2.1) 3.0 (2.3) 2.9 (2.7) 2.8 (2.7) 2.4 (1.6) 2.4 (1.7) 3.3 (2.3) 
Education, median 

(IQR)^ 
5 [4–6] 5 [4–6] 5 [4–6] 5 [5–6] 5 [4–6] 5 [4–6] 5 [4–6] 6 [5–7] 5 [4–6] 5 [4–6] 

APOEε4 positive (%) 467 (69%) 37 (90%) 75 (64%) 17 (52%) 113 (66%) 57 (66%) 168 (73%) 40 (32%) 10 (53%) 38 (55%) 
CSF Amyloid-β in 

pg/ml 
504 (113) 530 (119) 498 (114) 476 (108) 499 (114) 492 (111) 516 (111) 984 (195)  546 

(106) 
CSF Total tau in pg/ 

ml 
734 (426) 829 (431) 697 (419) 781 (438) 735 (419) 681 (359) 748 (457) 229 (94) 741 

(347) 
735 
(275) 

CSF P-tau in pg/ml 90 (39) 103 (37) 87 (38) 96 (43) 89 (36) 85 (37) 91 (43) 44 (16) 88 (32) 93 (34) 
Total GM to ICV 

ratio 
0.38 (0.04) 0.41 

(0.04) 
0.37 (0.04) 0.38 (0.04) 0.39 (0.04) 0.37 

(0.04) 
0.38 (0.04) 0.44 (0.04) 0.38 

(0.04) 
0.39 
(0.03) 

Values depicted are mean (standard deviation), unless otherwise indicated. All pairwise differences between groups are displayed in Table A. 4. APOE – Apolipoprotein 
E, GDS – Geriatric depression scale, NPI – Neuropsychiatric inventory, GM – gray matter, P-tau – phosphorylated tau, ICV-intracranial volume. 
^ - Assessed using the qualitative Dutch Verhage scale (Table A9). 
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subgroup when the majority of the gene sets that make up that cluster 
were not significantly enriched in another subgroup. 

3. Results 

3.1. Subgroup characteristics 

About one third (n = 231/679, 34%) of subjects were classified as 
AD-No Domains. Forty-one subjects (6%) were classified as AD-Memory, 
117 (17%) as AD-Executive, 33 (5%) as AD-Language and 171 (25%) as 
AD-Visuospatial. In addition, 86 subjects (13%) were classified as AD- 
Multiple. Because of the heterogeneous composition of the AD- 
Multiple group, our main analyses are focused on the other subgroups. 
Table 1 displays the demographic and clinical characteristics for the 
whole sample and cognitively-defined AD-subgroups, and pairwise dif
ferences between groups are given in Table A4. Mean age of the total 
sample was 66.2 ± 7.4, 47% were male, MMSE was 21.2 ± 5.1 and 69% 
were APOEε4 positive. Using the AD-No Domains group as the reference 
we observed that AD-Visuospatial were younger (63.7 ± 7.2 vs 66.9 ±
7.7, p < 0.01) and AD-Language had a lower APOEε4 prevalence (51.5 
vs 72.7%, p < 0.01). AD-Memory showed the highest APOEε4 preva
lence (90.2%), which was significantly higher than in AD-No Domains 
(72.7%, p = 0.017). Furthermore, compared to AD-No Domains, AD- 
Executive had lower total GM to intracranial volume ratios (0.37 ±
0.04 vs 0.38 ± 0.04, p < 0.01) and AD-Memory had greater GM to 
intracranial volume ratios (0.41 ± 0.04 vs 0.38 ± 0.04, p < 0.01). 

3.2. Rates of clinical disease progression and mortality 

Baseline MMSE scores were higher in AD-Memory (β(SE) = 1.84 

(0.85), p = 0.03) and AD-Visuospatial (1.19(0.51), p = 0.02), and lower 
in AD-Language (-4.0(0.98), p < 0.01), when compared to AD-No Do
mains. Furthermore, all subgroups progressed faster over time on the 
MMSE than AD-No Domains (-0.50(0.18), p = 0.01 for AD-Executive; 
-1.61(0.57), p < 0.01 for AD-Language; -0.56(0.13), p < 0.01 for AD- 
Visuospatial), except for AD-Memory (-0.29(0.23), p = 0.20; Fig. 2A). 
Using the AD-No Domains group as the reference, we observed a higher 
mortality rate in AD-Executive (HR[95%CI] = 1.94[1.38–2.73], p <
0.01), AD-Language (2.16[1.29–3.63], p = 0.05) and AD-Visuospatial 
(1.48[1.07–2.00], p = 0.02). There were no differences in mortality 
rates between AD-Memory and AD-No Domains (0.80[0.41–1.54], p =
0.5; Fig. 2B). 

3.3. Regional gray matter volumes 

Voxel-wise contrasts between cognitively-defined AD-subgroups and 
cognitively normal controls revealed lower GM volumes in tempor
oparietal areas across all subgroups (Fig. 3A, Fig. A2 and 3), as well as 
subgroup-specific patterns of GM volume differences. The subgroup- 
specific patterns are best appreciated in the voxel-wise contrasts be
tween AD-No Domains and the other AD-subgroups (Fig. 3B). GM vol
ume differences in AD-Memory were prominent in the medial temporal 
lobe – especially in bilateral hippocampus – while AD-Language showed 
temporal predominant GM volume differences with lateralization to the 
disadvantage of the left hemisphere. AD-Executive displayed a wide
spread pattern with greater GM volume differences in widespread 
cortical areas compared to AD-No Domains. For AD-Visuospatial, the 
pattern of GM volume differences with AD-No Domains markedly 
occupied posterior brain areas. 

Fig. 2. Clinical progression and mortality rates across cognitively-defined subgroups. The plot in panel A displays results from linear-mixed effects models assessing 
the effect of subgroup and the interaction effect between subgroup*time on MMSE scores, adjusted for age, sex and education. The model includes one predictor for 
all subgroups with AD-No Domains as the reference. The Kaplan-Meier curves in panel B represents the survival probability over time for the various subgroups. 
Hazard ratios were calculated using a Cox proportional hazard model using AD-No Domains as the reference, and was adjusted for age. Error bands in both panels are 
not included for visualization purposes. * - effect of subgroup on MMSE ** - interaction effect of subgroup*time on MMSE over time. 
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3.4. Regional gray matter volumes in AD-subgroups vs atypical variants of 
Alzheimer’s disease 

Given their clinical resemblances, we aimed to compare the spatial 
patterns of GM volumes differences between AD-Visuospatial and PCA, 
and between AD-Language and lvPPA. A striking similarity can be 
appreciated from Fig. 4A, which displays the voxel-wise contrasts vs 
cognitively normal controls (see Fig. A4 for a more detailed depiction of 
GM volume differences compared to controls in PCA and lvPPA). 
Spearman correlation analyses between GM volumes within the 34 
Desikan-Killiany ROIs for AD-Language vs lvPPA (rho = 0.92, p < 0.01), 
and AD-Visuospatial vs PCA (rho = 0.65, p < 0.01) confirmed a high 
spatial correspondence (Fig. 4B). Furthermore, the Sørensen–Dice co
efficient (DSC) for overlap between the voxels that showed the greatest 
difference with controls (Fig. 4C) for AD-Language and lvPPA was 0.73, 
which far exceeded the DSC for overlap between lvPPA and all other 
groups (AD-Memory: 0.19, AD-Executive: 0.23, and AD-Visuospatial: 
0.19) and also far exceeded the DSC of overlap between AD-Language 
and the other subgroups (AD-Memory: 0.23, AD-Executive: 0.22, and 
AD-Visuospatial: 0.19). The DSC for overlap between AD-Visuospatial 
and PCA (0.33) exceeded the DSC for overlap between PCA and all 
other groups (AD-Memory: 0.04, AD-Executive: 0.17 and AD-Language: 
0.04; Fig. 4D). This DSC between AD-Visuospatial and PCA (0.33) was 
also higher than the DSC for overlap between AD-Visuospatial and AD- 
Memory (0.27) or AD-Language (0.19), though lower than DSC for 
overlap between AD-Visuospatial and AD-Executive (0.50; Fig. 4D). 

3.5. Gene expression profiles associated with gray matter volumes across 
multiple subgroups 

To assess biological drivers that might explain differences in 
subgroup-specific regional GM volumes, we performed exploratory 
GSEA using gene-expression data for the 18,686 genes provided in the 
Allen human brain atlas. Table A5 lists all enriched gene sets for the 

different subgroups that were identified through this approach. Fig. 5 
displays the gene sets grouped into a network structure based on com
mon biological functions across gene sets. Some gene sets could not be 
clustered based on shared biological functions with other gene sets. 
These are displayed as idle nodes and the corresponding gene sets are 
listed in Table A5. Fig. 7 is an overview of the clusters displayed in Fig. 5 
across AD-subgroups in order to facilitate easier comparison of identi
fied gene set clusters between subgroups. 

Clusters of genes associated with synaptic function and plasticity (e. 
g., dopamine release cycle, and long-term synaptic and neuronal plas
ticity) were positively enriched in all subgroups. A cluster comprised of 
gene sets associated with the immune system (e.g., interleukin-7 and 
regulation of alpha/beta t-cell activation) was positively enriched in AD- 
Executive and AD-Language but negatively enriched in AD-Memory, 
AD-Visuospatial and AD-No Domains. In AD-Memory and AD- 
Visuospatial, we observed a large negatively enriched cluster with 
gene sets implicated in mitochondrial respiration (e.g., ATP synthesis, 
respiratory electron transport), a cluster that was also present in AD-No 
Domains. Another large negatively enriched cluster present in multiple 
subgroups (AD-Memory, AD-Executive and AD-Visuospatial) comprised 
gene sets associated with protein metabolism (e.g., methylation, amino 
acetylation), which was also present in AD-No Domains. A smaller 
negatively enriched cluster associated with autophagy (e.g., mitophagy, 
mitochondrial depolarization) was present in AD-Memory and AD-No 
Domains (Figs. 5 and 7; Table A5). 

3.6. Gene expression profiles uniquely associated with subgroup-specific 
patterns of regional gray matter volume 

For AD-Memory, two negatively enriched clusters were not shared 
with AD-No Domains or any of the other subgroups, indicating that these 
are uniquely implicated in AD-Memory. These clusters were associated 
with the cell cycle (e.g., DNA replication, regulation of apoptosis), and 
membrane proteins (e.g., MHC protein and cell lumen). Another 

Fig. 3. Regional gray matter volumes differences across cognitively-defined Alzheimer’s disease-subgroups. Results from voxel-based morphometry analyses, dis
played as T-maps, representing differences in regional gray matter volumes, adjusted for age, sex, scanner, intracranial volume. Higher T-values signify lower GM 
volumes (indicating more atrophy). Panel A displays results from voxel-wise contrasts between AD-subgroups and cognitively normal controls. The T-values from the 
comparisons against controls in Panel A were used as input for the GM volume vs gene expression analyses. Panel B displays results from voxel-wise contrasts 
between the domain-specific subgroups and the AD-No Domains group. These analyses were additionally corrected for overall GM to intracranial volume ratios, 
resulting in images that are indicative of differences in spatial patterns rather than overall level of GM volumes. Voxel-wise contrasts showing only significant voxels 
are displayed in the supplement (Fig. A3). The coronal slice was taken at y = -8 within the MNI template. 
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negatively enriched cluster associated with RNA metabolism (e.g., 
mRNA splicing, precatalytic spliceosome) was present only in AD- 
Memory, while this cluster was positively enriched in AD-Executive. 
For AD-Language, two unique clusters were identified, comprising 
negatively enriched gene sets associated with taste receptor activity and 
positively enriched gene sets associated with metabolism of proteins (e. 
g., genes associated with axon guidance and angiogenesis, and cytosolic 
ribosome), respectively. While other subgroups also showed enrichment 
for gene sets implicated in protein metabolism, these did not overlap 
with the AD-Language specific gene sets and were also negatively rather 
than positively enriched. For AD-Visuospatial, a large negatively 
enriched cluster associated with modification of gene expression (e.g., 
epigenetic regulation and depurination), a smaller negatively enriched 
cluster associated with metabolism of carbohydrates (e.g., gluconeo
genesis, lysosomal lumen), and a small positively enriched cluster of 
gene sets associated with keratinization were unique to this subgroup. 

There were no clusters for AD-No Domains that were unique to this 
group (Figs. 5 and 7; Table A5). 

4. Discussion 

We categorized 679 amyloid-β positive individuals clinically diag
nosed with AD dementia into subgroups based on the distribution of 
impairments across cognitive domains. We found that all subgroups 
except AD-Memory showed faster clinical disease progression and had a 
higher mortality rate compared to AD-No Domains (i.e., no substantial 
relative cognitive impairments). In accordance with findings in atypical 
variants of AD (Crutch et al., 2017; Gorno-Tempini et al., 2011) this 
illustrates that AD-subgroup membership (i.e., displaying a specific 
cognitive phenotype) has clinical implications. Furthermore, all 
cognitively-defined subgroups displayed distinct patterns of regional 
GM volumes, suggesting that cognitive heterogeneity is associated with 

Fig. 4. Similarity between AD-Language and lvPPA, and between AD-Visuospatial and PCA. Panel A displays the voxel-wise contrasts for AD-Language, lvPPA, AD- 
Visuospatial and PCA vs cognitively normal controls, adjusted for age, sex, scanner and intracranial volume. Panel B displays Spearman correlations between T values 
within 34 ROIs from the voxel-based contrasts against cognitively normal controls for AD-Language and lvPPA (top), and AD-Visuospatial and PCA (bottom). Panel C 
displays binarized maps of voxels with the greatest GM volume difference with controls for each T-map according to the threshold: (Meant + 2*SDt), with the mean 
denoting the average within each T-map and the SD the standard deviation within that image. Panel D displays the Sørensen–Dice coefficient (DSC) for overlap 
between voxels with the greatest GM volume difference, which is calculated as: 2*(A ∩ B)/(A + B). 0 indicates no overlap and 1 indicates complete overlap. 
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differences in regional susceptibility to neurodegeneration, even within 
the spectrum of typical AD dementia. More specifically, we observed 
lower medial-temporal GM volumes in AD-Memory, lower medial- 
frontal/parietal GM volumes in AD-Executive, left < right temporal 
GM volumes in AD-Language and lower GM volumes in posterior parts 
of the brain in AD-Visuospatial. The regional GM volume patterns of AD- 
Language and AD-Visuospatial were highly analogous to those observed 
in lvPPA and PCA groups, which might suggest that atypical variants 
and AD-subgroups are part of a clinical-radiological spectrum. To 
explore potential biological drivers that might underlie the observed 
clinical and neurobiological heterogeneity among subgroups, we asso
ciated regional GM volume patterns in AD-subgroups with brain-wide 
gene expression profiles. We found biological pathways that were 
associated with GM volume patterns across multiple subgroups, 
including gene sets involved in metabolism of proteins, mitochondrial 
respiration, the immune system, and synaptic function and plasticity. 
There were also biological pathways that were unique to specific 
cognitively-defined subgroups, including pathways involved in cell 
cycle for the AD-Memory group, certain sets of protein metabolism in 
AD-Language, and modification of gene expression in AD-Visuospatial. 
These findings point to potential biological drivers behind the 

emergence of clinical and neurobiological heterogeneity in AD. 

4.1. Associations between genetics and clinical phenotype in Alzheimer’s 
disease 

The mechanisms underlying clinical-biological heterogeneity in AD 
are still largely unknown. However, previous examinations have 
revealed that there are specific genetic risk factors that influence the 
clinical manifestation of AD. For instance, it is has repeatedly been 
shown that APOEε4 carriers have more extensive medial temporal at
rophy and memory deficits (e.g., van der Flier et al., 2011). In line with 
these findings, the prevalence of APOEε4 in our AD-Memory group was a 
striking 90%, which is substantially higher than what is typically re
ported in AD cohort studies (66% (Mattsson et al., 2018)). The reason for 
this specific association between APOEε4 and AD-Memory is not known 
but the consistency of this finding across examinations (Crane et al., 
2017; Mukherjee et al., 2020; van der Flier et al., 2011) highlights 
APOEε4 positivity as a determinant to develop a memory-predominant 
clinical presentation of AD. In addition to the usual suspect in AD 
research, the APOE gene, previously published genetic association 
studies using the same subgroup classification scheme also observed that 

Fig. 5. GSEA results grouped into clusters of gene 
sets. Displayed are the results from gene set enrich
ment analyses and the clusters represent groupings of 
gene sets, variations in gene expression levels of 
which are spatially associated with regional GM vol
umes in AD-Memory, AD-Executive, AD-Language, 
AD-Visuospatial and AD-No Domains. Red nodes 
represent gene sets that are positively enriched (lower 
volumes -> higher gene expression) while blue nodes 
are negatively enriched. The size of the nodes repre
sent the size of the gene set, larger nodes signify gene 
sets with more genes included. The thickness of the 
edges corresponds to the number of genes that overlap 
between two gene sets (i.e., nodes). Grouping of gene 
sets into clusters was achieved by assessing shared 
biological functions across gene sets (by Cytoscape 
software) and clusters were named (by the authors) 
according to that common biological function. Idle 
nodes represent gene sets that did not overlap with 
other gene sets and could therefore not be clustered 
into groups. Leading-edge analyses (to detect the most 
relevant genes driving the groupings) are presented in 
Fig. 6. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   
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genetic loci previously associated with AD-subgroup-specific associa
tions showed varying odds-ratios (Crane et al., 2017) and novel loci 
were specific for different subgroups (Mukherjee et al., 2020). While 
these examinations of specific loci and individual genes may one day be 
instrumental in determining potential therapeutic targets and person
alized medicine strategies, these approaches are reliant on large sample 
sizes and often require additional fine mapping because top hits are 
often found outside of coding regions and are very rarely the causal 
single-nucleotide polymorphism (SNP). 

4.2. Brain-wide gene expression profiles associated to gray matter volume 
patterns across subgroups 

In order to identify possible biological drivers behind the emergence 
of heterogeneity in AD, we implemented a brain imaging vs gene 
expression co-localization approach that has recently shown promise in 
identifying potential biological pathways implicated in regional sus
ceptibility to pathologic alterations in AD and other neurodegenerative 
diseases (Freeze et al., 2019; Grothe et al., 2018; Sepulcre et al., 2018). 
We observed that gene sets that were enriched in regions that show 
lower GM volumes across multiple subgroups could be grouped into 
genes associated with; mitochondrial respiration, metabolism of pro
teins, immune system and synaptic plasticity. Mitochondrial dysfunction 
is thought to be (potentially causally (Swerdlow et al., 2014)) implicated 
in the pathogenesis of AD (Flannery and Trushina, 2019), possibly 
through an interaction with APOE (Yin et al., 2020). Our findings 
regarding the association between lower GM volumes and lower 
expression of genes associated with mitochondrial respiration could be 
due to increased susceptibility in these regions to mitochondrial 
dysfunction, subsequent oxidative stress, and eventual cell-death and 

atrophy. With regard to gene sets associated with protein metabolism, 
ribosomal protein synthesis is lower in brain tissue that is affected by AD 
(Langstrom et al., 1989), which is in line with our results. This process 
has usually been regarded as a downstream consequence of pathology 
rather than an upstream process (Langstrom et al., 1989) and points to a 
possible avenue for investigations into the pathogenesis of AD. Inter
estingly, leading-edge analyses of the most relevant genes driving the 
enrichment signal for the gene sets in this cluster pointed to genes from 
the mitochondrial ribosomal protein (MRP*) family (see Fig. 6), which 
has previously been proposed as a target to combat mitochondrial 
dysfunction (Sylvester et al., 2004). Other gene sets that were enriched 
in multiple groups consisted of genes associated with immune function. 
We found that lower regional GM volumes in AD-Memory, AD-Executive 
and AD-No Domains were associated with lower expression of genes 
associated with interleukin-7, a cytokine involved in T-cell develop
ment. These findings are in line with a previous study showing that 
genes involved in the immune response are negatively enriched in re
gions vulnerable to AD pathology (Freer et al., 2016) and supports a role 
of inflammation in AD pathogenesis (Gjoneska et al., 2015). However, in 
contrast to these findings, we also observed that expression of genes 
associated with regulation of T-cell activation and differentiation were 
positively enriched in areas where GM volumes were lower in AD- 
Language and AD-Executive. 

We also observed that genes associated with synaptic plasticity were 
enriched in regions with lower GM volumes across all AD-subgroups, 
which replicates a previous examination in an independent sample of 
AD subjects (Grothe et al., 2018). In AD, the spatial pattern of neuro
degeneration closely matches regional distributions of tau-pathology 
(Braak and Braak, 1991; Whitwell et al., 2012), and the most plastic 
brain regions, such as the medial temporal lobe (Gonçalves et al., 2016), 

Fig. 5. (continued). 
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also appear to be the most vulnerable to initial deposition of tau pa
thology (Braak and Braak, 1991; Walhovd et al., 2016). The corre
spondence of regions with both heightened synaptic plasticity and lower 
GM volumes therefore becomes apparent. Initially, plastic brain regions, 
such as the medial temporal lobe, would be assumed to be the most 
resistant to pathology and neurodegeneration, but in the long-term this 

may become maladaptive as the brain ages and pathology sets in (Hill
ary and Grafman, 2017). While in the present study, GM volume dif
ference with controls were most pronounced in AD-Memory, the other 
subgroups were still characterized by an AD-characteristic pattern with 
GM volume differences with controls including the medial temporal 
lobe, which might explain why this cluster was observed across multiple 

Fig. 6. Leading edge gene analysis across subgroups. These panels display which genes (x-axis) overlapped between gene sets (y-axis) and drive the clustering results 
for each of the subgroups, panel A = AD-Memory, B = AD-Executive, C = AD-Language, D = AD-Visuospatial and E = AD-NoDomains. Some gene families which 
showed a lot of overlap are displayed on the borders of the leading-edge results. Axis-labels are removed for visualization purposes. 
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subgroups. 

4.3. Gene-expression profiles associated to patterns of gray matter 
volumes in one subgroup 

We also observed clusters of gene sets that were uniquely associated 
with regional GM volumes in a single subgroup. For AD-Memory, we 
found a large cluster of negatively enriched gene sets associated with the 
cell-cycle. Associations between the cell-cycle and AD have been 
demonstrated before and involves the dysfunction of neuronal cell-cycle 
re-entry, leading to the two-hit hypothesis. The first hit involves 
dysfunctional cycle re-entry, which would normally result in apoptosis 
and no development of AD pathology. However, chronic oxidative stress 
can cause a second hit that prevents normal apoptosis and allows the 
build-up of AD pathology (Moh et al., 2011). More research is necessary 
to determine why this mechanism would be more pronounced in AD- 
Memory than in other subgroups. For AD-Language, we found that 
gene sets associated with metabolism of proteins were positively 
enriched in the regions with lowest GM volumes (indicating more at
rophy) in this subgroup, while in the other subgroups gene sets associ
ated with metabolism of proteins were negatively enriched in the most 
atrophied regions. However, while the gene sets were related to over
lapping biological functions (protein metabolism), the specific gene sets 
implicated in AD-Language were different form the ones implicated in 
the other subgroups. While, given the current state of research, it is hard 
to establish a causative role between higher ribosomal protein expres
sion and AD-Language specific GM volumes (i.e., lower left temporal GM 
volumes than right), this finding does indicate that potential therapeutic 
approaches aimed at modulating expression of these proteins might not 
be beneficial to all AD patients and may even be detrimental in some 
cases (Caccamo et al., 2015). In AD-Visuospatial, we found a rather 
large, unique cluster of negatively enriched gene sets associated with 
gene expression modification. Gene sets within this cluster were mainly 
associated with epigenetic modifications (e.g., methylation, acetylation) 
and enrichment within this gene set cluster was mainly driven by the 
histone cluster protein (HIST*) gene family (Fig. 6), which is associated 
with packaging and ordering DNA into nucleosomes (Esposito and 
Sherr, 2019). Previous studies have shown that gene expression modi
fication is implicated in AD through what is called an epigenetic 
blockade, referring to a large-scale decline in gene expression that is 
affected by post-translational histone modification (Gräff et al., 2012). 
Studies in mouse models have shown that this epigenetic blockade might 

be reversible (Gräff et al., 2012), opening up potential targets for ther
apeutic interventions. This epigenetic modification has previously been 
linked to an AD phenotype in animal models (Kosik et al., 2012), but 
there is no previous evidence that this points to a specific relation with 
visuospatial impairments and GM volume reduction in posterior brain 
regions. However, a recent genome-wide association study examining 
genetic loci associated with regional gray matter volumes (van der Lee 
et al., 2019) reported a distinct locus (rs12411216) specifically associ
ated with occipital volumes. This locus is located in an intron 
of MIR92B and THBS3, showing a signal peak covering >20 genes with 
promotor histone marks overlapping the variant. This is an intriguing 
similarity to our findings and warrants further investigation. 

Taken together, our results regarding variations in gene expression 
associated with distinct GM volume patterns across subgroups revealed 
several distinct clusters of biologically coherent gene sets, some of which 
showed unique associations with subgroup-specific GM volume pat
terns. Of note, several of the identified biological pathways have been 
previously implicated in AD through diverse lines of genetic and mo
lecular research. We further add to these findings by showing that 
expression levels of genes associated with these pathways are spatially 
linked to region-specific brain GM volume patterns, and we provide 
several potential molecular targets for future investigations. By out
lining that certain biological pathways are uniquely implicated in spe
cific cognitively-defined subgroups, we also show that not all 
therapeutic targets might be equally beneficial for everybody with AD 
and highlight the need for examinations into personalized medicine 
strategies. 

4.4. Strengths and limitations 

Strengths of the study include a relatively large sample size from a 
single center with consistent assessments of AD biomarker positivity and 
well phenotyped individuals with dementia who had 3Tesla MRI 
available as well as information from multiple sources (i.e., clinical, 
imaging and genetics). Furthermore, in contrast to previous examina
tions that focused on categorization of individuals with AD based on 
structural properties (Ossenkoppele et al., 2019; Risacher et al., 2017; 
Ten Kate et al., 2018; Zhang et al., 2016), structural properties in 
combination with cognition (Sun et al., 2019), neuropathological fea
tures (Murray et al., 2011; Whitwell et al., 2012), or clustering analyses 
(Scheltens et al., 2017; Stopford et al., 2008) and factor scoring (Sevush 
et al., 2003) of cognitive data, we used a classification scheme that relies 

Fig. 7. Overview of shared and unique gene set clusters associated with regional patterns of gray matter volumes across AD-subgroups. The venn-diagram displays 
which gene set clusters were negatively (left) and positively (right) enriched in each of the AD-subgroups. These are taken from the named clusters in Fig. 5. The 
circles and ovals were shaped in order to show which clusters are unique or shared between AD-subgroups but the shape and size of the shaded areas have no 
inherent meaning. 
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on the intra-individual distribution of impairments across cognitive 
domains. This relatively simple method relies on patient-specific profiles 
of impairments across cognitive domains and can be performed on an 
individual basis, which is in contrast to approaches such as clustering 
analyses that rely on large sample sizes and sufficiently distributed data. 
Our study also has several limitations. First, the relative group sizes of 
the cognitively-defined subgroups presented in this work may not be 
representative of group sizes in other cohorts. The ADC is a tertiary 
memory clinic which specializes in, and is therefore enriched for, early 
onset and atypical AD clinical presentations (van der Flier et al., 2014). 
Indeed, 41.5% of our sample consisted of participants with early-onset 
AD (EOAD), while EOAD comprises only around 5–6% of all AD cases 
(Mendez, 2017). Since the classification of subgroups was based on 
normative scores from an late-onset AD (LOAD) population (the ACT 
cohort) and LOAD is generally characterized by less non-amnestic 
impairment compared to EOAD (Mendez, 2017), EOAD subjects might 
have had an increased chance of being classified into the single-domain 
subgroups other than AD-Memory. This might have contributed to our 
observation that there are more AD-Visuospatial EOAD subjects 
compared to LOAD (Table A6, 7 and 8). While this might limit the direct 
generalizability of our findings to other cohorts, and replication in more 
clinically representative cohorts is needed, the variety in clinical profiles 
in the ADC cohort allowed us to obtain sufficiently large subgroup sizes 
to obtain robust estimates of the differential regional susceptibilities to 
reductions in GM volumes and their related gene expression profiles. 
Furthermore, we have outlined results from stratified groups of early- 
onset (<65 years) and late-onset (>65 years) subjects in the supple
ment (Tables A6, 7 and 8; Fig. A5 and 6 and 8), and show that, although 
GM volume differences compared to controls are generally more pro
nounced in EOAD, the spatial pattern across subgroups (which de
termines the GM vs gene-expression associations) is very similar to what 
we see in LOAD (Fig. A5 and 6). Another limitation of the present study 
is that the Allen human brain database contains limited bi-hemispheric 
data (Hawrylycz et al., 2012), which prevented us from assessing 
possible biological drivers to lateralization of GM volumes. This may 
particularly be an issue for the AD-Language subgroup, as the GM vol
ume pattern in this subgroup showed a marked hemispheric asymmetry. 
Our cross-sectional study design also comes with inherent limitations, 
which includes our inability to conceptually assess atrophy (i.e., gray 
matter volume loss over time) but rather GM volume differences at a 
specific timepoint (i.e., time of AD dementia diagnosis). Longitudinal 
assessments are needed in order to establish whether the spatial patterns 
of GM volume differences observed in the present study correspond to 
areas displaying faster rates of atrophy. 

4.5. Clinical-radiological spectrum of Alzheimer’s disease 

Elucidating associations between clinical and neurobiological het
erogeneity in AD is crucial in understanding pathogenesis and mean
ingful stratification into distinct subgroups based on cognitive data 
might prove useful in future diagnostic and prognostic work-ups, and 
may even aid in developing future personalized medicine strategies. 
Although none of the participants in our AD-subgroups fulfilled diag
nostic criteria for recognized atypical variants of AD, the subgroups 
were both clinically and radiologically distinct and the AD-Language 
and AD-Visuospatial groups were very reminiscent to lvPPA and PCA. 
Our results regarding distinct associations between regional GM vol
umes and gene expression also suggest that specific biological pathways 
may differentially affect the emergence of differences in AD-related 
neurodegeneration between subgroups. 

While atypical presentations are increasingly recognized and 
included in diagnostic criteria, the vast majority of AD patients do not 
meet the rather strict clinical criteria for an atypical variant and are, 
therefore, by default regarded as typical AD. We would propose that 
future diagnostic criteria should also account for the considerable het
erogeneity among these individuals and. in line with observations in 

previous work (Snowden et al., 2007; Stopford et al., 2008), we propose 
that phenotypic presentations of AD are more accurately arrayed along a 
clinical-radiological spectrum (Fig. 8). The hypothetical model depicted 
in Fig. 8 is a work in progress and more research is needed to map the 
clinical and neurobiological heterogeneity in AD in all its complexity 
into one model. For instance, it is necessary to properly identify and 
define a distinctive, selective amnestic variant of AD, if it exists. Findings 
concerning the clinical (slower progression (Mez et al., 2013b, 2013a)), 
neurodegenerative (medial temporal atrophy (Lam et al., 2013)), and 
genetic characteristics (APOEε4 prevalence (Crane et al., 2017; 
Mukherjee et al., 2020); partly unique GM volume-related gene 
expression profile) all indicate that there is a distinction between 
memory-predominant (amnestic) AD and the typical clinical presenta
tion with heterogeneous impairments across domains that is most often 
observed in AD (such as seen in our AD-No Domains group). The degree 
to which this amnestic variant overlaps with the AD-Memory subgroup 
defined by our approach is currently unclear. Largely the same argu
ments hold true for the relationship between the AD-Executive subgroup 
of our study and the dysexecutive variant of AD (Dickerson and Wolk, 
2011; Ossenkoppele et al., 2015c), for which provisional research 
criteria were recently proposed (Townley et al., 2020). Furthermore, the 
framework we have developed to categorize subgroups emphasizes 
patterns of cognitive functioning at the time of AD diagnosis, and ig
nores behavioral and personality changes. We suspect there may be a 
behavioral variant where behavioral aspects are more prominent than 
expected for the overall level of clinical impairment. While previous 
research has tried to delineate such a behavioral variant of AD (Dubois 
et al., 2007; Ossenkoppele et al., 2015c), this is difficult to study as 
behavior is rarely assessed as comprehensively as cognition in the 
research evaluation of people with newly diagnosed AD dementia. 
Furthermore, it has yet to be determined whether a possible behavioral 
variant can be distinguished from a dysexecutive variant (Ossenkoppele 
et al., 2015b; Townley et al., 2020). We denote these uncertainties in our 
model, and highlight this as a potential area for future investigation. 

Fig. 8. Hypothetical model of the Alzheimer’s disease clinical-neurobiological 
spectrum. Solid lines represent differences in categories that are either outlined 
in this manuscript or provided by established clinical criteria (i.e., for lvPPA 
and PCA). Dashed lines represent suspected differences in categories that are 
not yet established and are under investigation or need to be assessed in new 
lines of research. Note that relative sizes of the partitions are not representative 
for prevalence of the categories. 
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Future research will need to continue outlining the clinical and 
neurobiological disparities within the spectrum of AD (e.g., by mapping 
tau (Braak and Braak, 1991; Whitwell et al., 2008) and amyloid-β 
(Lehmann et al., 2013) pathology) and to examine factors that are 
involved in their emergence (e.g., pre-morbid learning disabilities 
(Miller et al., 2018, 2013) and structural properties of the pre-morbid 
brain (Batouli et al., 2014)). These efforts will advance the ongoing 
quest to answer fundamental questions about the mechanisms that are 
involved in the etiology of AD and the emergence of clinical and 
radiological heterogeneity among individuals with AD dementia. 

5. Conclusions 

We demonstrate that classifying individuals within the spectrum of 
typical AD based on cognitive profiles yields subgroups that show 
different rates of clinical progression, mortality rates and which show 
differential patterns of regional GM volumes. We also show that the 
cognitively-defined subgroups show similarities to established atypical 
variants of AD, suggesting that cognitive subgroups may be an inter
mediate category between individuals without a specific cognitive 
phenotype and the atypical variants of AD. Our gene-set enrichment 
analyses revealed that GM volume patterns of AD-subgroups are 
differentially associated to gene-expression profiles, which suggest that 
specific biological drivers might underlie clinical and neurobiological 
heterogeneity in AD. These findings may inform future investigations 
into possible targets for disease-modifying treatments against AD and 
one day aid in the development of personalized medicine strategies. 
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Weiskopf, N., Callaghan, M.F., Wagstyl, K., Rittman, T., Tait, R., Ooi, C., Suckling, J., 
Inkster, B., Fonagy, P., Dolan, R.J., Jones, P.B., Goodyer, I.M., Bullmore, E.T., 2016. 
Adolescence is associated with genomically patterned consolidation of the hubs of 
the human brain connectome. Proc. Natl. Acad. Sci. U. S. A. 113 (32), 9105–9110. 
https://doi.org/10.1073/pnas.1601745113. 

Whitwell, J.L., Dickson, D.W., Murray, M.E., Weigand, S.D., Tosakulwong, N., 
Senjem, M.L., Knopman, D.S., Boeve, B.F., Parisi, J.E., Petersen, R.C., Jack, C.R., 
Josephs, K.A., 2012. Neuroimaging correlates of pathologically defined subtypes of 
Alzheimer’s disease: a case-control study. Lancet Neurol. 11 (10), 868–877. https:// 
doi.org/10.1016/S1474-4422(12)70200-4. 

Whitwell, J.L., Josephs, K.A., Murray, M.E., Kantarci, K., Przybelski, S.A., Weigand, S.D., 
Vemuri, P., Senjem, M.L., Parisi, J.E., Knopman, D.S., Boeve, B.F., Petersen, R.C., 

Dickson, D.W., Jack, C.R., 2008. MRI correlates of neurofibrillary tangle pathology 
at autopsy: a voxel-based morphometry study. Neurology 71 (10), 743–749. https:// 
doi.org/10.1212/01.wnl.0000324924.91351.7d. 

Yin, J., Reiman, E.M., Beach, T.G., Serrano, G.E., Sabbagh, M.N., Nielsen, M., Caselli, R. 
J., Shi, J., 2020. Effect of ApoE isoforms on mitochondria in Alzheimer disease. 
Neurology 94 (23), e2404–e2411. https://doi.org/10.1212/ 
WNL.0000000000009582. 

Zhang, X., Mormino, E.C., Sun, N., Sperling, R.A., Sabuncu, M.R., Yeo, B.T.T., 2016. 
Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories 
in Alzheimer’s disease. Proc. Natl. Acad. Sci. 113 (42), E6535–E6544. https://doi. 
org/10.1073/pnas.1611073113. 

C. Groot et al.                                                                                                                                                                                                                                   

https://doi.org/10.1073/pnas.1601745113
https://doi.org/10.1016/S1474-4422(12)70200-4
https://doi.org/10.1016/S1474-4422(12)70200-4
https://doi.org/10.1212/01.wnl.0000324924.91351.7d
https://doi.org/10.1212/01.wnl.0000324924.91351.7d
https://doi.org/10.1212/WNL.0000000000009582
https://doi.org/10.1212/WNL.0000000000009582
https://doi.org/10.1073/pnas.1611073113
https://doi.org/10.1073/pnas.1611073113

	Differential patterns of gray matter volumes and associated gene expression profiles in cognitively-defined Alzheimer’s dis ...
	1 Introduction
	2 Material and methods
	2.1 Participants
	2.1.1 AD participants under investigation
	2.1.2 Control groups

	2.2 Cognition
	2.3 Subgroup classification
	2.4 Neuroimaging
	2.5 Regional gene expression profiles
	2.6 Statistical analysis
	2.6.1 Regional gray matter volumes
	2.6.2 Associations between regional gray matter volumes and regional gene-expression profiles


	3 Results
	3.1 Subgroup characteristics
	3.2 Rates of clinical disease progression and mortality
	3.3 Regional gray matter volumes
	3.4 Regional gray matter volumes in AD-subgroups vs atypical variants of Alzheimer’s disease
	3.5 Gene expression profiles associated with gray matter volumes across multiple subgroups
	3.6 Gene expression profiles uniquely associated with subgroup-specific patterns of regional gray matter volume

	4 Discussion
	4.1 Associations between genetics and clinical phenotype in Alzheimer’s disease
	4.2 Brain-wide gene expression profiles associated to gray matter volume patterns across subgroups
	4.3 Gene-expression profiles associated to patterns of gray matter volumes in one subgroup
	4.4 Strengths and limitations
	4.5 Clinical-radiological spectrum of Alzheimer’s disease

	5 Conclusions
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


