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IGFBP-1 expression is reduced in human type 2 diabetic glomeruli
and modulates β1-integrin/FAK signalling in human podocytes
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Abstract
Aims/hypothesis Podocyte loss or injury is one of the earliest features observed in the pathogenesis of diabetic kidney disease
(DKD), which is the leading cause of end-stage renal failure worldwide. Dysfunction in the IGF axis, including in IGF binding
proteins (IGFBPs), is associated with DKD, particularly in the early stages of disease progression. The aim of this study was to
investigate the potential roles of IGFBPs in the development of type 2 DKD, focusing on podocytes.
Methods IGFBP expression was analysed in the Pima DKD cohort, alongside data from the Nephroseq database, and in ex vivo
human glomeruli. Conditionally immortalised human podocytes and glomerular endothelial cells were studied in vitro, where IGFBP-1
expression was analysed using quantitative PCR and ELISAs. Cell responses to IGFBPs were investigated using migration, cell
survival and adhesion assays; electrical cell-substrate impedance sensing; western blotting; and high-content automated imaging.
Results Data from the Pima DKD cohort and from the Nephroseq database demonstrated a significant reduction in glomerular
IGFBP-1 in the early stages of human type 2 DKD. In the glomerulus, IGFBP-1 was predominantly expressed in podocytes and
controlled by phosphoinositide 3-kinase (PI3K)–forkhead box O1 (FoxO1) activity. In vitro, IGFBP-1 signalled to podocytes via
β1-integrins, resulting in increased phosphorylation of focal-adhesion kinase (FAK), increasing podocyte motility, adhesion,
electrical resistance across the adhesive cell layer and cell viability.
Conclusions/interpretation This work identifies a novel role for IGFBP-1 in the regulation of podocyte function and that the
glomerular expression of IGFBP-1 is reduced in the early stages of type 2DKD, via reduced FoxO1 activity. Thus, we hypothesise that
strategies to maintain glomerular IGFBP-1 levels may be beneficial in maintaining podocyte function early in DKD.
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Abbreviations
DKD Diabetic kidney disease
ECIS Electrical cell-substrate impedance sensing
EBM-2 Endothelial cell growth basal medium-2

ECM Extracellular matrix
FA Focal adhesion
FAK Focal-adhesion kinase
FoxO1 Forkhead box O1
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GBM Glomerular basement membrane
IGFBP IGF binding protein
IGF-IR IGF-I receptor
MTS 3-(4,5-Dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium

NIDDK National Institute of Diabetes and
Digestive and Kidney Diseases

PI3K Phosphoinositide 3-kinase
TNE Tris-NaCl-ethylenediaminetetraacetic acid

Introduction

Diabetic kidney disease (DKD) occurs in approximately one-
third of diabetic individuals and is the leading cause of end-
stage renal failure worldwide. Albuminuria often presents
early during the development of DKD and is an important risk
factor for the progression to both end-stage renal failure and
cardiovascular disease [1].

Podocytes are highly specialised, terminally differentiated
epithelial cells which line the urinary side of the glomerular
basement membrane (GBM) in the kidney. These cells have
essential roles in filtration barrier maintenance and, as such,
podocyte loss or injury is a major cause of albuminuria in
numerous settings, including DKD. Both the effacement of

podocyte foot processes and reduction in podocyte number
or density (as a result of cell detachment and apoptosis) occur
early in the pathogenesis of DKD, as well as predicting the
progression of DKD [2, 3]. Thus, further understanding of the
mechanisms involved in podocyte dysfunction in the setting
of DKD is desirable.

The mammalian IGF axis comprises IGF-I and -II;
their respective receptors, the IGF-I receptor (IGF-IR)
and IGF-II/mannose-6-phosphate receptor (IGF-IIR/
M6PR); and a family of six IGF binding proteins
(IGFBP-1–6). Dysregulation of IGF signalling is associ-
ated with several metabolic conditions including the
development and progression of DKD, particularly in the
early stages of disease [4]. IGFBPs have also been linked
to the pathogenesis of albuminuric renal disease [5–7].

Although the primary functions of the IGFBPs were once
thought to be binding IGF-I and -II within the circulation,
prolonging their half-life as well as regulating their passage
into tissues, it is now well recognised that IGFBPs can bind to
the cell surface, exerting cell-specific, IGF-independent
effects on cell growth, differentiation and survival [8–10].

While it is known that both IGF-I and IGF-II signalling can
directly influence podocyte biology [11, 12], the roles of
IGFBPs in this context are not well understood. However,
there is evidence that podocytes can also respond to IGFBP
stimulation [5, 6]. The effects of IGFBPs in podocytes in the
context of DKD have not been reported. In this study, we
explored the local, glomerular production of IGFBPs in
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DKD and the IGF-independent effects of IGFBPs on
podocytes.

Methods

Human samples IGFBP expression was analysed in pre-
collected gene expression data from the Pima DKD cohort,
alongside existing expression data in the Nephroseq database.
Background information from the Pima DKD study is as
follows: Protocol human kidney biopsies were obtained from
Pima Indians (n = 69) with type 2 diabetes from the Gila River
Indian Community. The study participants were enrolled in a
randomised, double-blinded, placebo-controlled intervention-
al clinical trial funded by the National Institute of Diabetes and
Digestive and Kidney Diseases (NIDDK) [13]. The study was
approved by the Institutional Review Board of the NIDDK
and each participant signed an informed consent document.
Kidney tissue processing and microarray preparation were
described previously [14]. Gene expression profiling and
pre-processing were done using GeneChip Human Genome
series U133A and Plus 2.0 Array (Affymetrix, Santa Clara,
CA, USA) [15, 16]. Further details are listed in the Electronic
supplementary material (ESM) Methods.

Nephroseq Data from the Nephroseq (www.nephroseq.org,
University of Michigan, Ann Arbor, MI, USA) and
Nephrocell (http://nephrocell.miktmc.org/) databases were
extracted to further examine gene expression in human
kidney. IGFBP expression data were obtained from the
datasets: ‘Woroniecka Diabetes Glom’ [17]; ‘Lindenmeyer
Normal Tissue Panel’ [18].

Ex vivo human glomeruli For ex vivo glomerular studies,
glomeruli were isolated from human kidneys that were unsuit-
able for transplantation. Perfused kidneys were placed on ice
and glomeruli were isolated by passing sequentially through
sieves with pore sizes 425 μm, 180 μm, 125 μm and 90 μm,
as described previously [19]. All studies on human kidney
tissue were approved by national and local research ethics
committees (Institutional Ethical Committee, South West–
Central Bristol National Health Service Research Ethics
Committee, UK; and East Midlands–Leicester National
Health Service Research Ethics Committee, UK), and
conducted in accordance with the tenets of the Declaration
of Helsinki.

Cell culture and stimulations Conditionally immortalised
human podocytes [19] were grown to 80% confluence in
RPMI-1640 containing L-glutamine and NaHCO3, and
supplemented with 10% FBS (Sigma Aldrich, UK), at 33°C
with 5% CO2 before thermo-switching to 37°C in 5% CO2,
and allowed to differentiate for 9–12 days. Conditionally

immortalised glomerular endothelial cells [20] were main-
tained in Endothelial Cell Growth Basal Medium-2 (EBM-
2), containing microvascular SingleQuots Supplement Pack
in 5% FBS (Lonza, UK). All cells were free of mycoplasma
contamination. Human podocytes expressing forkhead box
O1 (FoxO1)-clover were generated as previously described
[21], using pLenti-FoxO1-clover (a gift from P. Rotwein,
Addgene plasmid no. 67759; http://n2t/addgene:67759;
RRID:Addgene_67759).

Differentiated cells were incubated with serum-, insulin-
and IGF-free RPMI-1640, or EBM-2, for 2–6 h, before indi-
cated stimulation. The FoxO1 inhibitor, AS1842856 (Merck,
Watford, UK), was used at 50 ng/ml for the stated times.
Insulin (100 nmol/l, unless otherwise stated), Wortmannin
(phosphoinositide 3-kinase [PI3K] inhibitor, 200 nmol/l) and
GSK694002 (Akt inhibitor, 200 nmol/l) were purchased from
R&D Systems (Abingdon, UK). Human recombinant IGFBP-
1–6 were obtained from Gropep Bioreagents (Australia) and
R&D Systems. Doses of IGFBPs were taken from previous
publications [9, 22, 23]. Pre-treatment with the anti-β1-
integrin antibody, P5D2 (Merck), was at 100 ng/ml or
1000 ng/ml for 30 min.

Quantitative RT-PCR Total RNA was isolated using an
RNeasy Mini Kit (QIAGEN, Germany), and cDNA was
synthesised using a high-capacity RNA-cDNA kit
(ThermoFisher Scientific, UK). Quantitative RT-PCR was
performed using SYBR green (Sigma Aldrich) in a
StepOnePlus system (ThermoFisher Scientific) for human
IGFBP-1 (forward: TTTTACCTGCCAAACTGCAACA,
reverse: CCCATTCCAAGGGTAGACGC) normalised to
B-ACTIN (forward: GACAGGATGCAGAAGGAGAT
TACT, reverse: TGATCCACATCTGCTGGAAGGT).

IGFBP-1 ELISA Cellular and secreted IGFBP-1 levels were
quantified using an IGFBP-1 ELISA (R&D Systems), as per
the manufacturer’s instructions. For quantification of secreted
IGFBP-1 levels, cell-free medium was collected after a 6 or
24 h incubation with cells or glomeruli, 100 μl was added to
the ELISA and IGFBP-1 levels were normalised to total
protein concentration, quantified using bicinchoninic acid
(BCA) (ThermoFisher Scientific) and Bradford assays
(Abcam, Cambridge, UK).

Western blotting Total protein lysates were extracted using
RIPA lysis buffer (Sigma Aldrich), resolved using SDS–
PAGE and blotted onto PVDF membranes. Membranes were
incubated in primary antibodies overnight at 4°C, before
washing and incubation with the appropriate horseradish
peroxidase (HRP)-conjugated secondary antibody (Sigma
Aldrich) at 1:10,000 dilution. Immunoreactive bands were
visualised using Clarity ECL Western Blotting Substrate
(Bio-Rad, Hemel Hempstead, UK) on a AI600 imager (GE

1692 Diabetologia  (2021) 64:1690–1702

http://www.nephroseq.org
http://nephrocell.miktmc.org/


Healthcare, Amersham, UK) and quantified using ImageJ
(NIH, https://imagej.nih.gov/ij/). Primary antibodies are
listed in the ESM Methods.

Active β1-integrin immunoprecipitation Proteins were
extracted in Tris-NaCl-ethylenediaminetetraacetic acid
(TNE) (100 mM Tris–HCl [pH 7.4], 150 mM NaCl, 0.1 mM
EDTA) containing 2% NP40 and protease inhibitors (Sigma
Aldrich). Clarified lysates were incubated with 1 μg of active
β1-integrin (Merck) or isotype-matched IgG control, over-
night at 4°C, under constant rotation, before incubation with
15 μl of protein-A/G Sepharose for 3 h at 4°C, under rotation.
Immune complexes were pelleted at 1000 g and washed in
chilled TNE. Lysates were resolved on 10% SDS–PAGE gels
and probed with a total-β1-integrin antibody (NEB,
Hertfordshire, UK).

Cell motility assay Cell motility was measured using a modi-
fied wound healing assay to model cytoskeletal regulation, as
previously described [24]. Cells were grown to confluence in
CELLSTAR tissue-culture (TC)-treated six-well culture
plates with no additional protein coating; starved of serum,
insulin and IGF; and wounded with a sterile 0.2 mm tip.
Images were acquired at 0 and 14 h, following stimulation
with IGFBPs, and the distance of migration was measured in
ImageJ.

InnoCyte cell adhesion assay InnoCyte extracellular matrix
(ECM) cell adhesion assays (Merck) were performed accord-
ing to the manufacturer’s instructions. Briefly, differentiated
podocytes were resuspended in serum-free RPMI at densities
between 100,000 and 500,000 cells/ml. Then, 100 μl of the
cell suspension was added to wells of the ECM protein-coated
plate and incubated for 2 h at 37°C. The cell suspension was
then discarded, and the plate washed with PBS before the
addition of a calcein-AM solution and further incubation at
37°C for 1 h. The fluorescence in each well was measured at
an excitation wavelength of ~485 nm and an emission wave-
length of ~520 nm.

Puromycin cell survival studies The Promega CellTiter 96
AQueous One Solution Cell Proliferation Assay (3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium; MTS assay) was utilised to
examine the number of living cells after treatment.
Puromycin dihydrochloride (Sigma Aldrich) was used at
50 μg/ml for 18 h to induce cell death.

Electrical Cell-substrate Impedance Sensing Resistance
measurement was performed using an automated cell moni-
toring system, electrical cell-substrate impedance sensing
(ECIS) (ECIS 1600R, Applied Biophysics, NY, USA), as
previously described [25]. Briefly, human podocytes were

seeded onto gold microelectrode ECIS arrays (Applied
Biophysics) at a density of 1×106 cells/cm2. Following differ-
entiation, podocytes were serum-starved for 4 h and stimulat-
ed with IGFBP-1–6 or vehicle. Resistance was measured
(ohms) at regular intervals for 24 h and presented as a ratio
to vehicle-treated cells.

Semi-automated immunofluorescent imaging and analysis
Podocytes were grown in 96-well plates (Greiner,
Stonehouse, UK), stimulated as indicated before fixation and
immunostaining. Image acquisition was automated using an
IN Cell Analyzer 2200 (GE Healthcare) imaging platform,
with a ×10 or ×20 objective, and quantified using IN Cell
Analyzer work station 3.5 software, as previously described
[26, 27]. At least three technical replicates were performed
within each experiment, with four fields of view per well,
yielding data for >600 cells per condition, per experiment.
For FoxO1-translocation assays, individual cell measurements
were used to calculate the percentage of podocytes positive for
nuclear FoxO1, where a positive cell had a ratio of nuclear to
cytoplasmic (N:C) FoxO1 fluorescence greater than 1. For
quantification of phosphorylated FAK and Paxillin, measure-
ments of fluorescence intensity at focal adhesions were used.
Phalloidin staining was used to visualise F-actin, the quantifi-
cation of which was automated using IN Cell Developer soft-
ware. Additional details can be found in the ESM Methods.

StatisticsData are presented as mean ± SEM unless otherwise
stated, with further details of statistical analysis provided in
relevant figure legends. Analysis was performed using
GraphPad Prism v8 (GraphPad Software, CA, USA), where
statistical significance was calculated with one-way ANOVA
with Tukey’s multiple comparison test or t tests. For
Nephroseq data, statistical significance is presented as p values
computed using Welch’s t test and q values (exported from
Nephroseq) corrected using the Benjamini–Hochberg meth-
od. For gene expression analysis in the Pima diabetic cohort,
differential expression was estimated using R (https://www.r-
project.org/) with the limma package [28, 29], comparing
control participants and early DKD, and adjusting for age
and sex. The p values were adjusted using the Benjamini–
Hochberg correction.

Results

Glomerular IGFBP-1 expression is reduced in human type 2
DKDTo determine whether any differences in local glomerular
expression of IGFBPs occurred in DKD, we initially analysed
existing data from the renal transcriptomics database
Nephroseq. In the ‘Woroniecka Diabetes Glom’ dataset [17],
IGFBP-1, -2 and -5 were downregulated in the glomeruli of
diabetic individuals, with IGFBP-1 being the most highly
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downregulated gene (−3.83 fold change, p = 9.6 × 10−4) (Fig.
1a–f). Transcriptome data from normal human kidney [18]
indicated that IGFBP-1, IGFBP-2 and IGFBP-5 were
en r i ched in g lomeru l i i n compar i son wi th the
tubulointerstitium (Fig. 1g–l).

We further analysed IGFBP expression in the Pima DKD
cohort [13], where we also found a reduction in glomerular
IGFBP-1 in individuals with early-stage disease, compared
with living donors (Table 1), which, notably, is unlikely to
be purely a consequence of podocyte loss in this cohort.
IGFBP-4 was also significantly reduced in the glomeruli of
this cohort.

Collectively, these results demonstrate a local production
and control of IGFBPs in the kidney in type 2 DKD, with a
consistent reduction in glomerular IGFBP-1 observed in both
diabetic cohorts.

PI3K–Akt–FoxO1 signalling regulates podocyte IGFBP-1
expression Given that we observed a consistent reduction in
glomerular IGFBP-1 expression in both diabetic cohorts, we
further explored the mechanisms behind IGFBP-1 regulation.
Analysis of single-cell kidney transcriptome data [30] and
conditionally immortalised human glomerular cells demon-
strated that IGFBP-1 expression and protein secretion were

most prominent in podocytes, with some signal in glomerular
endothelial cells (ESM Fig. 1).

As IGFBP-1 expression is regulated by activity of the tran-
scription factor FoxO1 in other cell types [31], which is in turn
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Fig. 1 Changes in glomerular IGFBP expression are observed in type 2
DKD. Data extracted from Nephroseq ‘Woroniecka Diabetes Glom’ and
‘Lindenmeyer Normal Tissue Panel’ datasets comparing expression
(median-centred log2) of (a) IGFBP1 (q = 0.02), (b) IGFBP2 (q = 0.18),
(c) IGFBP3 (q = 0.04), (d) IGFBP4 (q = 0.41), (e) IGFBP5 (q = 0.04) and
(f) IGFBP6 (q = 0.09), in glomeruli from DKD (n = 9) vs healthy living
donors (n = 13), *p < 0.05, **p < 0.01, Welch’s t test, q values adjusted

using Benjamini–Hochberg method; and (g) IGFBP1 (q = 0.006), (h)
IGFBP2 (q = 1.23×10−7), (i) IGFBP3 (q = 0.06), (j) IGFBP4 (q =
0.001), (k) IGFBP5 (q = 1.19×10−7) and (l) IGFBP6 (q = 0.46) in glomer-
uli vs tubulointerstitium, n = 6 each group, **p < 0.01, ***p < 0.001,
Welch’s t test, q values adjusted using Benjamini–Hochberg method.
LD, living donor; Glom, glomeruli; Tubul, tubulointerstitium

Table 1 Glomerular IGFBP-1 is reduced early in type 2 DKD

Symbol Early DKD (n=69) vs LD (n=18)

FC log FC Adj. p value

IGFBP1 0.67 −0.58 0.04

IGFBP2 1.31 0.39 0.00

IGFBP3 1.13 0.18 0.53

IGFBP4 0.85 −0.24 0.02

IGFBP5 0.87 −0.21 0.09

IGFBP6 1.39 0.48 0.02

Glomerular expression (log2 mRNA intensity) of IGFBPs in the Pima
type 2 diabetes cohort with early DKD (n = 69) vs healthy living donors
(n = 18)

Differential expression was estimated using limma, adjusting for age and
sex

p values were adjusted for multiple testing using the Benjamini–
Hochberg correction

Adj., adjusted; FC, fold change; LD, living donor
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regulated by PI3K–Akt signalling [32], we hypothesised that
insulin–PI3K–Akt signalling would control FoxO1-driven
IGFBP-1 expression in glomeruli. To first determine the
involvement of FoxO1 in glomerular IGFBP-1 expression,
we studied human glomeruli ex vivo alongside glomerular
transcriptomics data from diabetic individuals and condition-
ally immortalised cell lines. In normal human kidney [18]
FOXO1was expressed in both glomerular and tubular regions
(ESM Fig. 2). In glomeruli of individuals with type 2 DKD
[17], we observed a reduction in FOXO1 expression (Fig. 2a)
along with consistent regulation of other reported FoxO1-
target genes [33] (ESM Fig. 3), indicating that glomerular
FoxO1 is negatively regulated in type 2 DKD. Analysis of
the Pima DKD cohort [13] indicated that FOXO1 suppression
occurred early in DKD progression (Fig. 2b). In ex vivo
human glomeruli , the inhibit ion of FoxO1 (with
AS1842856) caused a consistent decrease in IGFBP-1
mRNA (Fig. 2c) and reduced IGFBP-1 protein secretion
(Fig. 2d) in each of the three different human glomerular frac-
tions studied. Conditionally immortalised human podocytes
also displayed a reduction in IGFBP-1 mRNA expression
after 6 h of FoxO1 inhibition (Fig. 2e), with a corresponding
reduction in cellular (Fig. 2f) and secreted (Fig. 2g) IGFBP-1
protein. In contrast, in glomerular endothelial cells, FoxO1

inhibition had no effect on IGFBP-1 levels (ESM Fig. 4),
which may suggest another mechanism of regulation in these
cells, such as the mammalian target of rapamycin (mTOR)-
dependent (FoxO-independent) regulation of IGFBP-1 which
has been described by others [34]. Under basal conditions,
FoxO1 overexpression had no effect on IGFBP-1 levels in
podocytes (ESM Fig. 5), suggesting that it is not solely the
expression levels of FoxO1 that are important in regulating gene
transcription. Treatment with AS1842856 had no effect on
podocyte number over the course of the experiment, indicating
there were no toxic effects of this compound (ESM Fig. 6).

Investigating the role of insulin–PI3K–Akt signalling in
this pathway, in FoxO1-clover reporter podocytes [21] both
FoxO1 inhibition with AS1842856 and insulin stimulation
reduced the nuclear levels of FoxO1 (Fig. 3a–c) and increased
FoxO1 phosphorylation (Fig. 3d). In the presence of PI3K or
Akt inhibitors, the dose-dependent effect of insulin on nuclear
FoxO1 exclusion was abolished (Fig. 3e), indicating that insu-
lin–PI3K–Akt signalling inhibits FoxO1 nuclear localisation
and activity in human podocytes. Furthermore, insulin stimu-
lation alone reduced cellular IGFBP-1 mRNA (Fig. 3f) in
podocytes at 6 h, although we did not detect any significant
changes in IGFBP-1 protein by insulin at this time (Fig. 3g, h),
which may be due to assay sensitivity or sensitivity of other
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Fig. 2 IGFBP-1 expression is controlled by FoxO1 in human glomeruli
and podocytes. (a) Nephroseq: FOXO1 expression in the ‘Woroniecka
Diabetes Glom’ dataset, healthy living donor (n = 13) vs DKD (n = 9),
*p = 0.02, Welch’s t test (q value = 0.10). (b) Expression (log2 mRNA
intensity) of FOXO1 in the Pima type 2 diabetes cohort with early DKD
(Early DKD, n = 69) vs living donors (LD, n = 18), †q = 0.0003. (c) qPCR
results of IGFBP-1mRNA in ex vivo human glomeruli and (d) IGFBP-1
concentration in glomerular media after FoxO1 inhibition (50 ng/ml

AS1842856 FoxO1 inhibitor) for 10 days, n = 3 individuals, *p < 0.05,
**p < 0.01, t test. (e) qPCR results of IGFBP-1mRNA expression (n = 4),
**p < 0.01 one-way ANOVA with Tukey’s multiple comparison test. (f)
IGFBP-1 levels in podocyte lysates normalised to total protein (n = 4),
**p = 0.007, t test. (g) IGFBP-1 concentration in cell-free podocyte media
following 6 h FoxO1 inhibition (50 ng/ml AS1842856) (n = 4), *p = 0.03,
t test, 6 h vs basal. FoxO1i, FoxO1 inhibitor; qPCR, quantitative PCR
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necessary co-factors to insulin stimulation within the time
frame. The effects of insulin on IGFBP-1 mRNA expression
were also abolished when PI3K was inhibited (ESM Fig. 7).

Thus, increased insulin–PI3K–Akt signalling inhibits
FoxO1 transcriptional activity in human podocytes and
FoxO1 inhibition leads to suppression of IGFBP-1 in
podocytes and in human glomeruli.

IGFBPs influence podocyte function Podocyte function at the
filtration barrier depends on cell adhesion to the GBM and co-
ordinated regulation of foot process dynamics, largely by

control of the actin cytoskeleton. To investigate whether
IGFBP-1 could have effects on these responses we performed
ECIS, migration, adhesion and survival assays on condition-
ally immortalised human podocytes that were starved of
serum and IGF and stimulated with IGFBPs.

Measuring electrical resistance across adherent podocytes
in vitro, which indicates changes in cell–cell junctions or
cellular adhesion [25], we found an increase in electrical resis-
tance following treatment with IGFBP-1, which was signifi-
cant at 12 h (Fig. 4a, b).We also observed increased resistance
following stimulation with IGFBP-2, IGFBP-3 and IGFBP-4
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Fig. 3 Insulin–PI3K–Akt signalling regulates FoxO1 activity and
IGFBP-1 expression in human podocytes. (a) Representative images
(scale bar, 50 μm) of human podocytes stably expressing FoxO1-clover
and quantification of nuclear FoxO1-clover levels following (b) FoxO1
inhibition (50 ng/ml AS1842856) or (c) insulin stimulation (100 nmol/l),
n = 4 experiments, **p < 0.01, ***p < 0.001, one-way ANOVA with
Tukey’s multiple comparison test. (d) Representative western blots and
matched densitometry demonstrating an increase in phosphorylation of
FoxO1 (Ser 256) following insulin stimulation (100 nmol/l), n = 4,
*p < 0.05 at 0.5 h, 1 h and 6 h, one-way ANOVA with Tukey’s multiple
comparison test. (e) Quantification of nuclear FoxO1-clover in podocytes

following 30 min insulin stimulation at the stated doses, with or without
additional inhibition of PI3K (200 nmol/l wortmannin) or Akt (200 nmol/
l GSK694002), n = 3, ***p < 0.001, one-way ANOVA with Tukey’s
multiple comparison test. (f) qPCR results of IGFBP-1mRNA following
insulin stimulation (100 nmol/l), *p < 0.05, one-way ANOVA with
Tukey’s multiple comparison test, n = 4. (g) IGFBP-1 levels (pg) to total
protein (mg) in podocyte lysates, p = 0.17, unpaired t test, and (h) cell-
free podocyte media, following insulin stimulation (100 nmol/l), p = 0.88,
unpaired t test, n = 4. Akti, Akt inhibitor; Ctrl., control; FoxO1i, FoxO1
inhibitor; N:C, ratio of nuclear to cytoplasmic; PI3Ki, PI3K inhibitor

1696 Diabetologia  (2021) 64:1690–1702



(ESM Fig. 8), indicating that several IGFBPs may have direct
effects on podocyte structure and function.

Studying podocyte motility (as an indication of cytoskele-
tal signalling and foot process dynamics in vitro), we observed
an increase in the migratory response in cells stimulated with
IGFBP-1 (Fig. 4c, ESM Fig. 9a), suggesting an increase in
cytoskeletal organisation. Using protein-specific adhesion

assays, we also observed an increase in podocyte adhesion
to type IV collagen, a major component of the mature GBM
[35], following stimulation with IGFBP-1 (Fig. 4d) and
IGFBP-4 (ESM Fig. 9b), suggesting that these IGFBPs may
improve podocyte attachment to the GBM. Finally, we
assessed the direct role of IGFBPs in podocyte survival.
Following pre-treatment with puromycin, we found IGFBP-1

c d e

−
−

Puromycin
−

Puromycin
IGFBP-1

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

 a
bs

or
ba

nc
e

re
ad

in
g 

(4
90

nm
)

**

0 12
0.8

0.9

1.0

1.1

1.2

1.3

IGFBP-1, time (h)

R
es

is
ta

nc
e 

(o
hm

)
(f

ol
d 

vs
 b

as
al

)

*

b

Basal IGFBP-1
0.8

1.0

1.2

1.4

D
is

ta
nc

e 
m

ig
ra

te
d

(f
ol

d 
vs

 b
as

al
)

**

0 1 2 3 4 5 6 7 8 9 10 11 12
0.95

1.00

1.05

1.10

Time (h)

R
es

is
ta

nc
e 

(o
hm

)
(f

ol
d 

vs
 b

as
al

)

Control

IGFBP-1

a

Basal IGFBP-1
0.0

0.5

1.0

1.5

2.0

2.5
C

ol
la

ge
n 

IV
 a

dh
es

io
n

(f
ol

d 
vs

 b
as

al
)

*
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4 h before IGFBP-1 stimulation (5 nmol/l). (a) ECIS analysis over 12 h
suggesting increased resistance across adherent human podocytes follow-
ing IGFBP-1 treatment, normalised to time 0 and vehicle-treated cells,
repeated measures one-way ANOVA, p = 0.11. (b) Bar chart of ECIS
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assessed over a period of 12–14 h and normalised to the mean of the basal
(unstimulated) conditions, **p = 0.002, unpaired t test, n = 6. (d) Change
in podocyte adhesion to collagen IV following IGFBP-1 stimulation, n =
4, *p = 0.04, unpaired t test. (e) Cell viability after exposure of podocytes
to puromycin. Human podocytes were treated with puromycin (50 μg/ml,
18 h) with or without IGFBP-1 treatment. A significant increase in the
number of viable cells was apparent with IGFBP-1 treatment, determined
byMTS assays, **p < 0.01, n = 3, one-way ANOVAwith Tukey’s multi-
ple comparison test
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stimulation significantly increased podocyte viability,
measured using MTS assays (Fig. 4e).

Collectively, these observations indicate that IGFBP-1 can
influence a variety of podocyte functional responses in vitro.
We found IGFBP-2–6 also had effects on podocytes and, as
such, further study of other IGFBPs in this context is warrant-
ed in the future.

IGFBP-1 regulates β1-integrin and focal adhesion signalling in
podocytes Given that we found IGFBP-1 influenced multiple
processes in human podocytes, we also further explored
IGFBP-1-mediated podocyte signalling, focusing on signal-
ling responsible for controlling cell adhesion/migration and
the actin cytoskeleton. Interestingly, IGFBP-1 contains func-
tional integrin-binding Arg-Gly-Asp (RGD) domains, and is
thought to exert its IGF-independent actions via β1-integrin
signalling [8, 10]. As β1-integrins are central in controlling
cellular adhesion and migration, we investigated whether
IGFBP-1 influenced β1-integrin activity in podocytes. Using
antibodies recognising the active (‘extended’) conformation
of β1-integrin, we found a higher proportion of active β1-
integrin following IGFBP-1 treatment, when compared with
basal cells (Fig. 5).

Protein complexes termed focal adhesions (FAs) link
integrins to the actin cytoskeleton and act as mediators of
integrin signalling. In human podocytes stimulated with
IGFBP-1, we found an increase in focal-adhesion kinase
(FAK) phosphorylation at both the auto-phosphorylation site,

Y397, and the Src-regulated phosphorylation site, Y925 (Fig.
6a, ESM Fig. 10a), with no effect on the IGF-IR (phosphory-
lation at Tyr1135/1136) (ESM Fig. 10b). The pre-treatment of
podocytes with the β1-integrin blocking antibody, P5D2 [36,
37], reduced IGFBP-1-stimulated FAK phosphorylation (Fig.
6a), although some variability in the response was observed
with higher doses of P5D2. We observed no effects on FAK
phosphorylation with P5D2 treatment alone at these concen-
trations. Using automated imaging and analysis, we found that
changes in FAK phosphorylation did not occur within the
nucleus (ESM Fig. 11) and that this response occurred along-
side a small increase in the phosphorylation of paxillin (Y118)
at FAs (ESM Fig. 12a, b).

We used automated imaging and analysis to quantify
changes in the actin cytoskeleton and found a reduction in
length of F-actin fibres after 60 min of IGFBP-1 treatment
(Fig. 6b), indicating an increase in F-actin remodelling,
although no significant changes in F-actin structures were
observed at the shorter time point (ESMFig. 13). These results
suggest that, similar to other cell systems [9, 38], IGFBP-1 can
regulate β1-integrin/FA/F-actin signalling in human
podocytes.

Discussion

IGFBP-1 is a circulating peptide which is often implicated in
metabolic homeostasis. Lower levels of IGFBP-1 in the
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circulation predict type 2 diabetes [39], the metabolic
syndrome [40] and the risk of developing cardiovascular
disease [41]. Furthermore, disruptions to IGFBP-1 have also
been associated with diabetic nephropathy [42], with poly-
morphisms in IGFBP-1 associated with kidney disease in type
2 diabetes [7].

In the present study, we investigated the local control and
actions of IGFBPs in the glomerulus and found that glomeru-
lar IGFBP-1 was significantly reduced in individuals with
type 2 DKD, where it was expressed and secreted by
podocytes, demonstrating local glomerular control of
IGFBP-1. Furthermore, we found IGFBP-1 had direct, IGF-
independent effects on podocytes, by increasing podocyte
adhesion and migration in vitro as well as increasing electrical
resistance across the adhesive cell layer, responses that relate
to control of the actin cytoskeleton and are important for cell
function at the filtration barrier. It also had pro-survival effects
on puromycin-treated podocytes.

Mechanistically, we found that glomerular IGFBP-1
expression was controlled by FoxO1 activity, which was in
turn regulated by insulin–PI3K–Akt signalling in podocytes,
consistent with findings in other tissues including the liver, the
major source of circulating IGFBP-1 [32]. Indeed, reductions
in circulating IGFBP-1 are often attributed to the inhibitory
effects of hyperinsulinaemia on hepatic IGFBP-1 expression,
prior to the development of hepatic insulin resistance. As
podocytes are insulin-sensitive cells, with both insulin resis-
tance and excessive signalling activity being detrimental to
cell function [26, 27, 43], it is plausible that the reduced
glomerular IGFBP-1 observed early in type 2 DKD could also
be a consequence of excessive insulin signalling, prior to the
development of podocyte insulin resistance, in this regard
mirroring the regulation of IGFBP-1 expression in the liver
early in diabetes.

Our study also supports the notion that reduced FoxO1
expression and activity occurs in DKD [44], as we
found both a reduction in glomerular FOXO1 in two
diabetic cohorts and consistent regulation of FoxO1-
target genes. In contrast to these findings, an increase
in Igfbp-1 has previously been reported in the kidney
and liver of db/db mice [45], with an apparent decrease
in phosphorylated FoxO1. These contradictory results
may in part be explained if insulin resistance was appar-
ent in the kidneys of the db/db mice at the time point
studied, which would plausibly increase FoxO1 activity,
similar to the increased Igfbp-1 expression observed in
rodent models of type 1 diabetes [46] which occurs due
to an absence of insulin and insulin signalling. Notably,
others have previously shown that FoxO1 overexpres-
sion is beneficial in DKD, at least in part by the protec-
tion of podocytes against epithelial–mesenchymal transi-
tion [47]; based on our findings it would be interesting
to determine the role of IGFBP-1 in this pathway.

Further exploring the IGF-independent IGFBP-1 signalling
responses in podocytes, we found an increase in active β1-
integrin following IGFBP-1 treatment. This is in line with
other cell systems, where the effects of IGFBP-1 on cellular
adhesion, motility and survival have been attributed to the
modulation of β1-integrin/FAK [9, 10]. In podocytes, the
regulation of β1-integrin is particularly important, as
highlighted in podocyte-specific β1-integrin-knockout mice,
which develop a severe proteinuric renal disease from birth
[48, 49], and in patients where stabilising β1-integrin activa-
tion protects against proteinuria [50, 51], implicating an
important, IGF-independent role of IGFBP-1 in podocyte
health via its ability to modulateβ1-integrin activity. This also
indicates the mechanism by which IGFBP-1 may influence
podocyte motility, adhesion and electrical resistance.

Downstream of β1-integrin, we found that IGFBP-1 stim-
ulated the phosphorylation of FAK, a central component of
FAs involved in cell migration, adhesion, spreading and
survival [52], which was blocked in the presence an anti-β1-
integrin antibody known to suppressβ1-integrin function [36,
37]. Furthermore, we observed a reduction in F-actin stress
fibres after IGFBP-1 treatment, supporting a role of IGFBP-1
in regulating FA signalling and the podocyte cytoskeleton.
Importantly, these responses were demonstrated in the
absence of IGF-I and occurred with no change in activation
of IGF-IR.

As podocyte function at the filtration barrier depends on
adhesion to the GBM, with detachment from the basement
membrane being a major driving factor in albuminuria [53],
and changes in podocyte motility and cytoskeletal organisa-
tion often associated with changes in foot process dynamics
in vivo [54], the ability of IGFBP-1 to control these responses
has important implications for podocyte function. Indeed,
increased FAK activity has been associated with collagen
adhesion [55] and pro-survival signalling, relating to F-actin
modulation [56], indicating there are beneficial roles of FAK
activity in podocyte biology, which mirrors our findings.
However, there is also evidence that increased FAK activity
occurs in glomerular disease, with podocyte-specific knock-
down of FAK protecting against foot process effacement
in vivo, corresponding with increased stress fibre formation
and reduced cell migration in vitro [57]. These differences
likely reflect the complexity of FA signalling and the necessity
for controlled regulation of these signalling pathways.
Whether the activation of FAK is ultimately beneficial or
detrimental also likely depends on context and localisation
within cells. Additionally, it is increasingly acknowledged that
2D in vitro cell culture conditions have an impact on these
pathways. As such, studies on the dynamic regulation of these
signalling pathways by IGFBP-1 in vivo will be beneficial in
future.

Others have also previously found that transgenic mice
overexpressing human IGFBP-1 from the liver developed
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glomerular disease [58], suggesting persistent increases in
systemic IGFBP-1 may be detrimental. Although the mecha-
nisms of this glomerular phenotype were not defined, it is possi-
ble that this was a consequence of reduced IGF-I bioavailability
during kidney development. There is also evidence that IGFBP-1
may increase in nephrotic syndrome [5, 6]. Further work is clear-
ly required to determine whether increasing (or maintaining)
glomerular IGFBP-1 expression is beneficial to podocyte func-
tion early in type 2 DKD in addition to defining the IGF-
dependent effects of IGFBP-1 in renal cells.

Although the effects of increasing IGFBP-1 in podocytes in
type 2 DKD in vivo are to be determined, protective effects of
IGFBP-1 in diabetes and insulin resistance have been shown
in models of cardiovascular disease, where it can improve
blood pressure, NO production, atherosclerosis and vascular
repair via its integrin-binding RGD domain [23, 38, 59].
Interestingly, increased circulating IGFBP-1 has also been
shown to improve insulin sensitivity of pancreatic beta cells
and skeletal muscle, again by increased RGD signalling [23].
It is therefore also possible that a loss of glomerular IGFBP-1
expression could contribute towards podocyte insulin resis-
tance in type 2 diabetes. Given the importance of regulated
insulin signalling in podocytes [26, 43, 60], it would also be
interesting to determine whether maintaining IGFBP-1 (RGD)
signalling has similar beneficial effects on podocyte insulin
sensitivity in this context.

In summary, this study demonstrates that IGFBP-1 can
have direct, IGF-independent effects on podocyte function,
modulating β1-integrin-FA pathways. We observed a signif-
icant reduction in glomerular IGFBP-1 early in type 2 DKD,
where it is expressed by podocytes and regulated by the tran-
scription factor FoxO1. We further confirm the regulation of
FoxO1 activity by insulin–PI3K–Akt signalling in podocytes
and provide additional evidence that FoxO1 is suppressed in
the glomerulus in type 2 DKD. Thus, increased insulin signal-
ling in early diabetes, prior to the development of glomerular
insulin resistance, may suppress FoxO1 activity and IGFBP-1
expression in the glomerulus and associated signalling.
Strategies to maintain IGFBP-1 levels in diabetes may support
podocyte function and be therapeutically beneficial.
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