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Abstract The dynamics and motion of multi-ciliated microswimmers with a spherical body and a small
number N (with 5 < N < 60) of cilia with length comparable to the body radius, is investigated by
mesoscale hydrodynamics simulations. A metachronal wave is imposed for the cilia beat, for which the wave
vector has both a longitudinal and a latitudinal component. The dynamics and motion is characterized by
the swimming velocity, its variation over the beat cycle, the spinning velocity around the main body axis, as
well as the parameters of the helical trajectory. Our simulation results show that the microswimmer motion
strongly depends on the latitudinal wave number and the longitudinal phase lag. The microswimmers are
found to swim smoothly and usually spin around their own axis. Chirality of the metachronal beat pattern
generically generates helical trajectories. In most cases, the helices are thin and stretched, i.e., the helix
radius is about an order of magnitude smaller than the pitch. The rotational diffusion of the microswimmer
is significantly smaller than the passive rotational diffusion of the body alone, which indicates that the
extended cilia contribute strongly to the hydrodynamic radius. The swimming velocity is found to increase
with the cilia number N with a slightly sublinear power law, consistent with the behavior expected from
the dependence of the transport velocity of planar cilia arrays on the cilia separation.

1 Introduction

Cilia and flagella are the ubiquitous machinery in
eukaryotic cells and organisms to generate fluid flow
and to propel cells and microorganisms in a fluid envi-
ronment [1,2]. While many eukaryotic flagella have the
beat pattern of a sinusoidal traveling wave and are
usually employed to propel single cells like sperm [3],
cilia typically have two distinct phases in their beat
cycle—the power and the recovery stroke—and often
work together in pairs like in Chlamydomonas rein-
hardtii [4], or in large cilia carpets. Examples for the
concerted action of cilia in carpets are the transport
of mucus in the airways [5,6], the flow generation of
the cerebrospinal fluid in brain ventricles [7–9], and the
swimming of multi-ciliated microorganisms, such as the
green alga Volvox [10], the protozoan Paramecium [11],
and the placidozoan Opalina [12].

A remarkable feature of cilia carpets is that the beat
is highly coordinated in the form of metachronal waves
[12–17], where the beat cycles of neighboring cilia have
a fixed phase shift The power-stroke direction can be
parallel or antiparallel to the propagation direction of
the metachronal wave, which is denoted as symplec-
tic or antiplectic wave, but can also point right-wise
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or left-wise from the wave direction, which is denoted
dexioplectic or laeoplectic wave. The latter wave form
clearly requires some chirality in the system, which can
either be in the aplanarity of the ciliary beat [18], or
result from the spatial arrangement of cilia.

The origin and effect on the transport efficiency of
the ciliary beat and of the metachronal wave is fasci-
nating and has thus been investigated intensively. It
is now well established that hydrodynamic interactions
are strong enough to cause coordination between neigh-
boring cilia [19–23] and suffice to explain the formation
of metachronal waves in cilia arrays [17]. It has also
been shown that the transport efficiency can be much
higher than for perfect beat synchronization, related
to the fact that always a fraction of the cilia is in the
power stroke, thus avoiding a forward-backward motion
of the fluid. Additionally, flow generated by the power
stroke at the wave crest experiences only small resis-
tance from cilia in the neighboring wave trough, which
can all remain close to the anchoring surface during the
recovery stroke—both without much steric hindrance
[14,17,18]. A further interesting issue is the coordina-
tion of the beat directions in cilia carpets, which is now
believed to be a self-organized process mediated by the
fluid flow [6,7,14,22,23]. On the other hand, the syn-
chronization of the beat of the two flagella of Chlamy-
domonas reinhardtii arise from an elastic mechanical
coupling at their basal foot [24,25].
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More complex is the cilia coordination in multi-
ciliated spherical or spheroidal microorganisms. One
reason is the well-know “hairy-ball” theorem, which
states that there is no non-vanishing continuous tan-
gent vector field on a surface of spherical topology [26].
This implies that the power-stroke directions of neigh-
boring cilia cannot be parallel everywhere on a spherical
surface, but there have to be at least two defects, which
can either be of hedgehog or of swirl type. A second rea-
son is that plane metachronal waves are not possible on
curved surfaces.

Volvox is a perfect model system for experimen-
tal studies of swimming and cilia synchronization [27–
29]. These studies reveal the existence of a sym-
plectic metachronal wave [27], and that the average
metachronal coordination is punctuated by periodic
phase defects during which synchrony is partial and lim-
ited to specific groups of cells [28]. Under conditions of
decreasing nutrient concentration, Volvox colonies were
found to grow larger and increase their flagellar length,
separating the somatic cells further, with the opposing
effects of increasing beating force and flagellar spacing
balance, not significantly affecting the fluid speed at the
colony surface [29].

The theoretical description of the swimming of multi-
ciliated microorganisms has lead to the early develop-
ment of the squirmer model [30,31], in which the effect
of the ciliary beating is mimicked by a prescribed sur-
face velocity. This model has been generalized more
recently to spheriodal shapes [32] and is employed
nowadays to describe the collective swimming behavior
of many types of microswimmers [1,33]. The squirmer
model has also been generalized to capture the effect
of metachronal waves and to include azimuthal swirl
on the continuum level [34]. This model predicts mean
swimming speeds and angular velocities as a function
of the colony radius qualitatively correct, but underes-
timates both velocities quantitatively [34].

The squirmer model applies in the limit that the
cilia length and the separation of their anchoring points
on the surface is much smaller than the body size.
The dynamics and flow generation of individual cilia
becomes more important in the opposite limit. A model
with explicit cilia and a prescribed metachronal wave
has been introduced recently [35,36]. The model facil-
itates the calculation of hydrodynamic interactions
between cilia and the cell body under free-swimming
conditions. An antiplectic metachronal wave is pre-
dicted to be optimal in the swimming speed with var-
ious cell-body aspect ratios, which is consistent with
former theoretical studies [15,37]. The swimming veloc-
ity of model ciliates is found to be well represented by
the squirmer model. The effect of oblique wave prop-
agation is also briefly touched and is found to lead to
a helical swimming trajectory [35]. Further analysis of
this model showed that for constant number of cilia, the
swimming velocity scales with the inverse body radius
squared, which is explained by solving the axisymmetric
Stokes equation around the squirmer [36]; this implies
a cilia density for optimal swimming velocity, which
nearly independent of the swimmer radius.

Also, there has been significant progress recently on
the experimental techniques for cilia characterization
[38], as well as the construction of artificial, externally
actuated cilia carpets [39], which relates to the goal
of the construction of soft microbots [40]. Soft robots
with antiplectic waves have been shown to exhibit much
higher locomotion speed than those with symplectic
waves [39].

We employ a similar model of ciliated microorgan-
isms as studied in Ref. [35], but focus on the regime of a
smaller number of longer cilia—comparable in length to
the body radius. Volvocalean algae which falls into this
parameter range are, for example, the 16-celled Pan-
dorina and the 32-celled Eudorina [29,41]. We focus
on the efficiency of metachronal waves for translational
and rotational motion of the swimmer. In particular,
we investigate the influence of the wave direction, the
phase lag between neighboring cilia, and the cilia den-
sity, on the swimming efficiency and the persistence
of the swimming trajectory. In particular, we identify
parameter combinations for which helical swimming
trajectories emerge.

2 Ciliated microswimmer and
hydrodynamic simulation

The ciliated microswimmer is modeled as a spherical
body of radius R, to which several cilia are attached
(see Fig. 1). The body consists of Nb point particles,
which are covering the surface of a sphere homoge-
neously, with an additional particle at its center. The
particles on the surface are connected to their neighbors
by stiff harmonic springs to form a triangular network,
as well as to the center particle to form an essentially
rigid sphere. Two points on the surface, which lie on a
straight line through the center, are selected to define
a body-fixed polar axis.

Following Refs. [17,42], we model a cilium of length L
by three semi-flexible polymers, which are arranged on
the surface of a (hypothetical) cylinder with triangular
cross section. Each semi-flexible polymer is described
by a bead-spring model, consisting of Nc beads con-
nected by harmonic springs with rest length �c and
spring constant kc. The three polymers are intercon-
nected by springs in order to retain the cylindrical
shape over time. The cilia are anchored in the body with
a “clamped” boundary condition, which is achieved by
extending the filament by a segment of length (3/16)R
inside the body. This anchoring is implemented by stiff
springs which connect the sub-surface part of the cilium
to the sphere surface, mimicking the embedding of the
basal bodies of the cilia in the cell body. In detail, the
first and fourth particle of each of the three polymers
constituting the cilium are connected to the closest par-
ticle on the sphere surface as well as its next-nearest
neighbors. This construction anchors the cilium tightly
to the body without a noticeable body deformation—
even for the largest applied ciliary forces.
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Fig. 1 Three swimmers
with an antiplectic
metachronal wave of phase
lag χ = −77◦ with different
numbers of cilia placed at
the equator, with θ = 0.0,
and two rings at θ = ±45◦

The cilia beat pattern consists of a power and a recov-
ery stroke (see Fig. 2). The ciliary beat is generated by
varying the equilibrium spring lengths �c of one selected
polymer, both spatially along the cilium and periodi-
cally in time, which creates a spatially and temporarily
varying cilium curvature. The selection of the active
polymer defines the beat plane. The beat pattern of
power and recovery stoke is obtained by prescribing an
analytic function for the desired local curvature of the
cilium. For details, see Appendix A.. This is inspired
by the molecular mechanism which drives ciliary beat-
ing, where molecular motors apply torques along the
flagellum, but each motor has a maximum force it can
generate. To mimic the stall force, and to avoid artificial
cilia shapes due to unnaturally large local torques, we
limit the change of equilibrium bond length such that
a maximum energy of 1.0 kBT per MPC time step (see
below) can be inserted into the system, where kBT is
the thermal energy.

The dynamics of the beat is not only determined by
the time-dependence of the internal torques, but is also
affected by the flow field around the swimmer and the
elastic properties of the cilium. To model the hydrody-
namics of the embedding fluid, we employ multi-particle
collision dynamics (MPC) [43,44], a mesoscale simula-
tion technique, which is ideally suited for simulations
with a particle-based model of an active microswim-
mer. In this approach, the fluid consists of point parti-
cles, each characterized by its location ri(t) and veloc-
ity vi(t). These particles move ballistically during the
streaming step for a time interval h. In the subsequent
collision step, all particles are sorted into the cells of
a simple cubic lattice with lattice constant a. Particles
in each cell interact by exchanging momentum, but in
such a way to conserve the mass and linear momentum
within each cell. A cell-level canonical thermostat (with
Maxwell-Boltzmann scaling) is applied after every col-
lision step to maintain a constant temperature T [45].

The mechano-elastic model of the ciliated microswim-
mer is coupled to the fluid in the collision step. This is
done by sorting all point particles, which constitute the
swimmer, into the same collision cell as the fluid parti-
cles, and including them into the momentum exchange.
Here, it has been shown that a good hydrodynamic cou-
pling is obtained then the mass M of the swimmer par-
ticles is significantly larger than the mass m of the fluid
particles, such that M = ρa3m, where ρ is the average

Fig. 2 Sketch of the ciliary beat pattern—The color indi-
cates time. The elongated conformation during the power
stroke (orange to green) is followed by the buckled confor-
mation during the recovery stroke (green to blue)

number of fluid particles [46]. This type of hydrody-
namic modeling has been tested and verified carefully,
for example by studying the hydrodynamic diffusion
of spheres with the meshed surface described above,
which showed very good agreement with the Stokes–
Einstein results for spheres with no-slip boundary con-
ditions [47], or the swimming velocity of a sinusoidally
beating flagellum in 2D, which showed excellent agree-
ment with analytical results for the Taylor sheet [48]. A
detailed description of the MPC technique and a review
of its application to many systems in soft, active and
living matter is provided in Refs. [43,44,49,50].

For the investigation of the self-organization of beat-
ing cilia arrays into metachronal waves in Ref. [17], the
switch from power to recovery stroke, and back, needs
triggers, which are reached faster or slower depending
on the environmental conditions (“geometrical clutch”
hypothesis [51]). In Ref. [17], a critical value curva-
ture of the cilium, and a maximum angle between the
extended cilium and the normal vector to the cell sur-
face, were employed to trigger these switching events.
For the major part of our study, we employ a variant
of this model, in which the force generation is modified
such that the switch between power and recovery stroke
becomes deterministic in time, with a power-stroke time
τp and a recovery-stroke time τr, with τr > τb, which
results in a constant beat period τb = τp + τr. In this
case, a phase lag between the beats of neighboring cilia
is imposed to induce a metachronal wave (see below).

We consider a ciliated microswimmer, where a total
of N cilia are placed equidistantly on three latitudinal
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rings. In spherical coordinates (ϕ, θ), one ring is located
at the equator, θ = 0, and two rings at θ = ±45◦, see
Fig. 1. In order to have a roughly constant cilia density,
the number of cilia at the “polar circles” is reduced by a
factor close to 1/ cos θ =

√
2 compared to their number

Neq at the equator. The “first” cilium on each ring is
initially placed at ϕ = 0; subsequently, the cilia posi-
tions on both polar rings are shifted azimuthally in the
same direction by a small Δϕ = 180◦/Neq to avoid per-
fect registry for one particular longitude. Several exam-
ples of microswimmer with various numbers of cilia are
shown in Fig. 1).

The power-stroke direction of the cilia can be along
eθ, i.e., be parallel to the circles of longitude, or devi-
ate from this highly symmetric case. This is modeled by
rotating the beat plane of each cilium around the radial
axis er by an angle θr (with θr = 0 corresponding to
the longitudinal beat direction). A beat-plane orienta-
tion with θr �= 0 introduces chirality in the swimmer
propulsion pattern.

In the case of an imposed metachronal wave, we
define a local phase Ψ(ϕ, θ) for each cilium on the sur-
face of the sphere,

Ψ(ϕ, θ) = kϕϕ + kθθ, (1)

with −90◦ < θ < +90◦ and 0 ≤ ϕ < 360◦, where
the direction of the wave is determined by the wave
vector k = (kϕ, kθ), which has longitudinal and lati-
tudinal components, kθ and kϕ, respectively. Since we
want to have continuous wave solution traveling around
the circles of constant latitude, kϕ has to be an integer
number. For Neq equally-spaced cilia on the equator,
kϕ = Neq/2 results in a phase lag between neighbor-
ing cilia of ΔΨ = 180◦. Since kϕ ∈ N, we limit it
to kϕ = 0, 1, ..., (Neq//2 + 1), where // denotes inte-
ger division. The longitudinal wave vector kθ ∈ R is
not restricted by any physical boundary conditions. We
employ the phase lag

χ = kθ Δθ = kθ · 45◦, (2)

between neighboring rings to quantify kθ, where Δθ =
45◦ is the fixed longitudinal angular distance between
successive rings.

For zero latitudinal wave component, kϕ = 0,
a positive phase lag χ corresponds to a symplectic
metachronal wave, which travels in the direction of the
power stroke, a negative phase lag χ to an antiplec-
tic metachronal wave, which travels in the direction
of the recovery stroke. For non-zero latitudinal com-
ponent kϕ, the metachronal wave becomes either dex-
ioplectic (kθ > 0) or laeoplectic (kθ < 0). Because the
microswimmer is constructed essentially symmetric to
the main axis, dexioplectic waves show the same effect
on the propulsion as laeoplectic, except for an opposite
direction of axial rotation Ωn. Therefore, we restrict our
analysis to symplectic, antiplectic (kϕ = 0) and dexio-
plectic (kϕ > 0) metachronal waves with varying phase
lags χ.

For simulations, we employ the following parame-
ters. The spherical body consists of Nb = 643 mesh
points, the cilia are constructed with Nc = 26 beads
for each polymer strand, they have length (outside the
body) of L = 1.375R, and the body radius in terms
of MPC collision box size a is R = 8a, which guaran-
tees a good resolution of the hydrodynamic flow fields.
The MPC simulations employ collisions described by
stochastic rotation dynamics, with a time step h = 0.05,
cell size a = 1, rotation angle α0 = 130◦, number
of fluid particles per cell ρa3 = 10, and an over-
all simulation box size of (100a)3. With the typical
parameters employed for the ciliary beat, we obtain
the Reynolds number for the microswimmer motion,
Res = ρ〈v〉R/ηf � ρR2/(τηf ) = 0.2, and the Reynolds
number for the cilia beat, Rec = ρL2

c/(τηf ) = 0.4,
where ηf is the fluid viscosity. As both Reynolds num-
bers are significantly less than unity, we conclude that
inertia effects play at most a minor role.

3 Results

3.1 The 5-7-5 swimmer with longitudinal beat
direction

We focus on the swimming properties of a spherical
swimmer with 7 cilia on the equator and 5 cilia on the
two polar rings see Fig. 1, with power stroke direction
along the main body axis, θr = 0. Examples for the
beating dynamics with phase lag χ = −77◦ with lati-
tudinal wave numbers kϕ = 0 and kϕ = 1 are shown in
Figs. 3 and 4, respectively.

We consider the propulsion velocity 〈vn〉, the velocity
fluctuations

√〈(vn − 〈vn〉)2〉 around the average, and
the rotational velocity Ωn around the main body axis,
see Fig. 5. All these quantities depend on both the phase
lag χ in the longitudinal direction and the wave number
kϕ in the latitudinal direction. The propulsion velocity
〈vn〉 in the direction of the main body axis shows a pro-
nounced “sinusoidal” dependence on the phase lag χ for
all wave numbers kϕ, see Fig. 5a. Here, the strongest
variation is found for a metachronal wave with kϕ = 0.
The swimming velocity vn is maximal for a negative
phase lag of χ � −50◦ (see Fig. 5a) and reaches almost a
body length per beat cycle, vn = 0.9R/τb. Such a nega-
tive phase lag corresponds to an antiplectic metachronal
wave, with cilia of one ring lagging behind those of the
subsequent ring by a little bit more than 1/4 of a beat
cycle, where the wave travels against the direction of
the power stroke. The smallest velocity of vn = 0.2R/τb

corresponds to symplectic wave with a positive phase
lag of χ � 50◦, where the wave travels with the direc-
tion of the power stroke. These results are consistent
with former theoretical studies of efficiency optimiza-
tion [15,16].

The variation
√〈(vn − 〈vn〉)2〉 of the swimming

velocity is shown in Fig. 5b. The swimming velocity vn

fluctuates mostly for swimmers with kϕ = 0, whereas it
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Fig. 3 Temporal beat pattern of a 4-6-4 swimmer with
cilia beat in the longitudinal direction (θr = 0), with kϕ = 0
and phase lag χ = −77◦. The varying cilium color indicates
the instantaneous stage in the beat cycle (compare Fig. 2).
The progression of the beat is indicated by the time t, given

in units of the beat period τb. The motion of the swim-
mer is from left to right. The translational motion is not to
scale. See also movie SM1 for an illustration of the swim-
ming behavior

is nearly independent of the phase lag χ for latitudinal
wave numbers with kϕ > 0. In particular for the syn-
chronous case, with χ = 0, the swimmer moves quickly
forward during the power stroke, but reverses its direc-
tion of motion during the recovery stroke, which in sum
leads to a relative slow average velocity with high fluc-
tuations.

For kϕ ≥ 1, the latitudinal component of the wave
leads to an additional rotation velocity Ωn around its
main body axis (see Fig. 5c). The rotation is most pro-
nounced for kϕ = 1 and −50◦ < χ < 50◦ and is very
small for kϕ ≥ 2 and all phase lags χ. This behav-
ior can be understood by considering two contribu-
tions. (i) For kϕ ≥ 1, rotation is enhanced when the
metachronal wave travels in the latitudinal direction,
i.e., χ � 0. (ii) Latitudinal wave numbers kϕ ≥ 2 imply
short metachronal wave lengths, which cannot propel
fluid effectively, because the opposing beat of neighbor-
ing cilia just generates local swirls. For example, kϕ = 3
corresponds to a phase lag between neighboring cilia on
the equator of ΔΨ = kϕ360◦/Neq, which implies a large
phase lag of ΔΨ � 150◦ (for Neq = 7). The rotational
component of the propulsion also slightly reduces the

component that contributes to the swimming velocity,
compare Fig. 5a.

For kϕ ≥ 1, the chirality of the wave pattern not
only induces a body rotation, but also implies a helical
swimming trajectory [42,52]. Consider a swimmer, for
which the main body axis n rotates around a fixed axis
e‖ in the laboratory reference frame with an opening
angle α. In the absence of translational and rotational
noise, this corresponds to the trajectory of a perfect
helix with axis e‖ and azimuthal direction e⊥(t)

n(t) = n‖e‖ + n⊥e⊥(t)
n‖ = cos α

n⊥ = sinα (3)

where e⊥(t) = (cos(Ωct), sin(Ωct)) in Cartesian coordi-
nates in the plane with normal vector e‖.

The opening angle α, the rotation frequency Ωc, and
swim velocity vn, are related to the helix parameters—
helix radius Rh, pitch length Ph, an helix angle αh—as

cos(α)2 = P 2
h/[P 2

h + 4π2R2
h],

αh = arctan(2πRh/Ph) ≡ α, (4)

Fig. 4 Temporal beat pattern of a 4-6-4 swimmer with
cilia beat in the longitudinal direction (θr = 0), with kϕ = 1
and phase lag χ = −77◦. The varying cilium color indicates
the instantaneous stage in the beat cycle (compare Fig. 2).
The progression of the beat is indicated by the time t, given

in units of the beat period τb. The motion of the swim-
mer is from left to right. The translational motion is not to
scale. See also movie SM2 for an illustration of the swim-
ming behavior
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(a) (b)

(c) (d)

Fig. 5 Swimming properties of a 5-7-5 swimmer with cilia
beat in the longitudinal direction (θr = 0), for various phase
lags χ and latitudinal modes kϕ. a Average swimming veloc-

ity < vn >. b Velocity fluctuations
√

< (vn− < vn >)2 >
around the average. c Rotational velocity Ωn around the
main body axis. d Temporal auto-correlation function <

n(t) · n(t + τ) >t for swimmers with phase lag χ = −50◦

indicated by red stripe in (a-c). The dashed lines are fits to
the auto-correlation function, Eq. (6) (see text). Note that
in (b), the curves for kϕ = 1 and kϕ = 2 are numerically
identical to the curve for kϕ = 3 and are therefore not visible

and

Ph = vn cos(α)/Ωc, Rh = vn sin(α)/(2πΩc). (5)

For α = 0, the microswimmer moves on a straight lines,
whereas for α = 90◦ it moves on a circle. In general,
the directional auto-correlation function of a swimmer
consists of two factors, the correlation due to the helical
motion, which depends on the inclination angle α, and
an exponential decay due to thermal or active noise,

< n(t) · n(t + τ) >=
(
cos2 α + sin2 α cos(Ωcτ)

)
e−κτ

(6)

Correlation functions for fixed χ = −50◦ and var-
ious kϕ are shown in Fig. 5d. Results for the fitted
parameters of the helical motion and the decay time
1/κ in Eq. (6) are displayed in Fig. 6. The calculation
of these parameters requires very long simulation times
of several hundred beat periods τb or more. Even in this
case, trajectories are sometimes too short for a reliable
parameter estimation, in particular for large decorrela-
tion times 1/κ.

For most cases, the helix angle α < 45◦, which means
that the constant term in Eq. (3) dominates over the
oscillatory term, and thus the helix is thin and elon-
gated. Only in a few cases, like kϕ = 3, we find a nearly
circular motion and a tightly wound helix. The circling
frequency Ωc is pronounced for kϕ = 1, and small phase
lags |χ|, which leads to a pronounced helical swimming
trajectory, see Fig. 7. This is closely related to the
large internal spinning frequency Ωn (see Fig. 5c). For

kϕ ≥ 2, the circling frequency is typically very small,
which is again related to the inefficiency of propulsion
for short metachronal wave lengths. The data in Fig. 6
sometimes appear to have a larger “scatter” for different
wave numbers kϕ and different phase lags χ. However,
two points should be noticed. (i) We expect smooth
curves for fixed kϕ as a function of χ when χ is varied
in small steps; however, we vary χ in rather large dis-
crete steps of about 50◦, which results in significantly
different metachronal waves. (ii) Similarly, different kϕ

generate very different wave patterns, compare Figs. 3
and 4 for kϕ = 0 and kϕ = 1, respectively.

The ratio Ωc/|Ωn| is displayed in Fig. 8; it demon-
strates that the circling and spinning frequencies are
closely related. In many cases, Ωc/|Ωn| � 1, which
corresponds to a “twisted-ribbon-like” motion (or to
a “tidal-locking-like” motion, as for the moon, which
always presents the same side to the earth). However,
there are also cases where Ωc/|Ωn| is close to 0 or
to around 2, which indicates that the two frequen-
cies do not have to be locked always. An example for
Ωc/|Ωn| = 0 is a microswimmer which spins around its
body axis, but swims on a straight trajectory.

It is interesting to note that the microswimmers with
kϕ = 0 do not have a vanishing circling frequency. The
reason is that they are not perfectly axisymmetric and
therefore have some inherent chirality, due to the non-
symmetric location of the cilia on the body. For exam-
ple, there is a particular longitude, where the cilia in
the various rings are closest together, which generates
a non-axisymmetric flow field. This leads to the helical
trajectory displayed in Fig. 7, with a non-vanishing but
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(a) (b)

(c) (d)

Fig. 6 Swimming properties of a 5-7-5 swimmer with cilia
beat in the longitudinal direction (θr = 0), for various phase
lags χ and latitudinal modes kϕ. a Alignment angle α; b
Rotation frequency Ωc, normalized by the beat period τ ;

c Inverse correlation time κ, normalized by the rotational
diffusion time τrot = 1/(2Drot). d Helix radius Rh in units
of the body radius R, as obtained from Eq. (5)

very small Ωc. The spinning frequency Ωn around the
main body axis nearly vanishes in this case (see Fig. 5c),
because for θr = 0 there is essentially no component of
the cilia beat in the latitudinal direction.

Finally, the decay (or decorrelation) time 1/κ is
determined by thermal fluctuations and Stokes friction,
and possibly by active fluctuations generated by the
beat. In the thermal case, we expect a rotational dif-
fusion time τrot = 1/(2Drot) with rotational diffusion
coefficient Drot = kBT/(8πηfR3), where ηf is the fluid
viscosity. The scaled decorrelation times 1/(κτrot) are
mostly larger than 4, significantly larger than unity.
This implies that (i) activity has a small effect on

Fig. 7 Helical trajectories for selected parameters of the
metachronal beat, with phase lag χ = +105◦. Trajectory
colors indicate the latitudinal wave number, with kϕ = 0
blue, kϕ = 1 orange, kϕ = 2 green, and kϕ = 3 red. The
small (body-fixed) arrows have their tip in the body center
and their base on the equator to indicate rotation around
the main body axis

Fig. 8 Ratio of circling frequency Ωc and spinning fre-
quency Ωn for various latitudinal wave numbers kϕ. The
color code is the same as in Fig. 6

the rotational diffusion, and (ii) that the cilia con-
tribute significantly to reduce the rotational diffusion
by increasing the effective hydrodynamic radius. A fac-
tor 4 reduction is equivalent to a hydrodynamic radius
Rhydro = 1.6R, which is not implausible as the geo-
metric radius from body center to cilia tips is 2.375R.
The least persistent motion is observed for kϕ = 1 and
χ = 100◦, which indicates a rather strong active contri-
bution to the noise, as might be expected for the strong
wiggling motion for kϕ = 1 (compare movie SM2).

We can now use the expressions (5) to extract the
helix radius Rh from the data presented in Figs. 5 and
6. The results are shown in Fig. 6d. They indicate that
the helix radius Rh is typically rather small, from essen-
tially zero to just a few times the body radius R, with
a few exceptions, like kϕ = 0 and χ = 150◦. The helix
pitch is usually a factor 10 larger than the radius, as
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typically Ph/(2πRh) = cot(α) � 1 (compare Eq. (4)
and Fig. 6a). This is in good agreement with the tra-
jectories displayed in Fig. 7.

Finally, we want to mention another important char-
acteristics of a microswimmer, which is the swimming
efficiency

η = ζst〈vn〉2/〈P 〉 (7)

where ζst = 6πηfR is the Stokes friction coefficient of
the spherical body, and P is the dissipated power. Our
simulations show that the dissipated power—obtained
from the energy removed from the system through the
thermostat—is nearly independent of the wave num-
ber kϕ and the phase lag χ. Thus, Eq. (7) implies that
the functional dependence kϕ and χ is dominated by
the variation of the 〈v〉, compare Fig. 5a. The opti-
mal efficiency of about 0.06% is therefore obtained for
antiplectic waves in the range −90◦ < χ < −40◦
(slightly depending on the wave number kϕ). This value
of the efficiency is somewhat smaller than for ciliated
microswimmers with much shorter cilia [36], but of the
same order of magnitude.

3.2 The 5-7-5 swimmer with oblique power-stroke
direction

Except for the oblique propagation direction of the
metachronal wave, there are other possibilities to
achieve a chirality of the dynamic beat pattern of a
ciliated microswimmer. One of these possibilities is to
vary the power stroke direction away from the main
body axis and rotate it in the local tangent plane to the
left by a tilt angle θr. For simplicity, we consider in this
case only a metachronal wave in the main body direc-
tion, i.e., kϕ = 0. An example for the beating dynamics
with phase lag χ = −77◦ and tilt angle θr = 22.5◦ is
shown in Fig. 9.

Results for the swimming properties with oblique
power-stroke direction are displayed in Fig. 10. The
results for the swimming velocity, velocity fluctuations,
and rotational motion are qualitatively similar as for
the oblique metachronal wave. There is again a “sinu-
soidal” dependence of the velocity 〈vn〉 on the phase
lag χ, with a maximum for at χ = −50◦, i.e., for
an antiplectic metachronal coordination, see Fig. 10a.
However, there are also several pronounced qualita-
tive and quantitative differences. The velocity decreases
with increasing θr, because an increasing fraction of
the beat is employed for body rotation rather than for-
ward propulsion. Velocity fluctuations

√〈(vn − 〈vn〉)2〉
peak for synchronously beating cilia for all θr, as all
cilia beat in synchrony in this case (with kϕ = 0), see
Fig. 10b. The body rotation is much more pronounced
for all θr > 0, see Fig. 10c, compared to the case of
oblique metachronal wave with θr = 0. Interestingly,
the body rotation becomes very slow for χ � 50◦ for
all θr > 0. This minimum of spinning frequency Ωn

correlates with the minimum of propulsion velocity vn,
i.e., weak propulsion is accompanied by slow spinning.

Correlation functions for fixed χ = −50◦ and various
θr are shown in Fig. 10d.

Results for the fitted parameters of the helical motion
and the decay time 1/κ in Eq. (6) are displayed in
Fig. 11. For most cases, the helix angles α are small,
around 10◦ to 25◦, which implies that the constant
term in Eq. (3) dominates over the oscillatory term,
and the helices are very thin and elongated. The cir-
cling frequencies Ωc, displayed in Fig. 11b, are gener-
ally very small, which implies that cilia beat orientation
with θr > 0 results more in spinning than in circling.
Scaled decorrelation times 1/κτrot are typically larger
than 4, which indicates a large hydrodynamic radius,
in agreement with the conclusions of Sect. 3.1.

We can use again the expression (5) to extract the
helix radius Rh from the data presented in Figs. 10
and 11. The results are shown in Fig. 11d. They indi-
cate that similarly as for the case θr = 0 displayed in
Fig. 6d, the helix radius Rh is typically rather small,
from nearly zero to just a few times the body radius
R. The helix pitch is typically about a factor 10 larger
than the radius.

3.3 Variation of cilia number

We have considered so far a spherical microswimmer
with a fixed number N = 5 + 7 + 5 = 17 cilia. It
is now of course interesting to see how the swimming
behavior, in particular the swimming velocity, depends
on the number of cilia. For the swimmer with imposed
metachronal wave and θr = 0, as described in Sect. 3.1,
the results are shown in Fig. 12a, both for the maxi-
mum and minimum velocity obtained for various phase
lags χ. In general, the maximum velocity is found to
increase with cilia number, consistent with the results
of Ref. [35] for high cilia numbers. For all cilia numbers
considered, the highest velocity is obtained for kϕ = 0,
i.e., for a wave direction along the main body axis, in
agreement with our arguments in Sect. 3.1 above. In
contrast, the variation of the minimum velocity on cilia
number is much less pronounced.

We want to compare this result with the case of
a self-organized metachronal wave—similar to what is
studied in Ref. [17] for planar cilia arrays. The cilia
are distributed randomly, with a minimum-separation
requirement to neighboring cilia, and as homogeneously
as possible on the body surface. We consider several
different realizations, so that the variance of the results
for the same cilia number can be taken as a measure
for the sensitivity of the swimming velocity on the spa-
tial distribution. It is important to emphasize that a
perfect equidistant distribution of anchoring point on a
spherical cannot be achieved, so that some spatial inho-
mogeneity is unavoidable [53]. Furthermore, the “hairy-
ball” theorem implies that the field of cilia-beat direc-
tions must have at least two singularities—which we
usually place at the poles. For a random distribution,
however, one of the cilia may end up by chance very
close to the pole, which then has a very strong effect of
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Fig. 9 Temporal beat pattern of a 4-6-4 swimmer with
cilia beat in an oblique direction (θr = 22.5◦), with lati-
tudinal wave vector kϕ = 0 and phase lag χ = −77◦. The
varying cilium color indicates the instantaneous stage in the
beat cycle (compare Fig. 2). The progression of the beat is

indicated by the time t, given in units of the beat period τ .
The motion of the swimmer is from left to right. The trans-
lational motion is not to scale. See also movie SM3 for an
illustration of the swimming behavior

(a) (b)

(c) (d)

Fig. 10 Swimming properties of a 5-7-5 swimmer with
metachronal waves oriented along the main axis (kϕ = 0) for
various phase lags χ between successive rings and varying
power stroke orientation θr. a Average swimming velocity <
vn >. b Velocity fluctuations

√
< (vn− < vn >)2 > around

the average. c Rotational velocity Ωn around the main body
axis. d Auto-correlation function < n(t) · n(t + τ) >t for
swimmers with phase lag χ = −50◦ [indicated by red stripe
in (a–c)]and varying kϕ. The dashed lines are fits to the
auto-correlation function Eq. (6) (see text)

the swimming direction. We avoid this case by manual
selection.

Results are shown in Fig. 12b. Again, the velocity
increases with cilia number, but seems to level off at
about 40 cilia. This saturation is not too surprising, as
with increasing cilia density, the effect of each individ-
ual cilium on the propulsion diminishes due to the inter-
action with the neighbors [17,36]. For N cilia on the
surface, the average distance d between them is approx-
imately determined by d � (4πR2/N)1/2, which yields
d/L � 1/3 for N = 40 and cilia length L = 1.375R.
This estimate is also comparable to the optimal cilia
distance of d/L=0.23 found in Ref. [36].

The results for the self-organized metachronal wave
on a spherical body can now be compared with those

on a planar substrate as a function of d/L. For the pla-
nar case, the fluid transport velocity was found to scale
as vfluid ∼ (d/L)−γ with γ � 1.4 [17]. This implies
a dependence of the swimming velocity vswim on cilia
number as vswim ∼ Nγ/2, i.e., a behavior somewhere
between linear and square root, which seems not incon-
sistent with the numerical results of Fig. 12b. The simu-
lation results of Ref. [35] for microswimmers with large
cilia numbers (in the range N = 20 to N = 320) also
show a sublinear dependence of vswim on N , which a
nearly linear dependence for intermediate values of the
phase lag χ, and a strongly sublinear dependence for
χ = 0.

It is also interesting to note that the results for cilia
arrays on a planar substrate indicate that d/L = 1/6 is
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(a) (b)

(c) (d)

Fig. 11 Swimming properties of a 5-7-5 swimmer with
cilia beat in the longitudinal direction (θr = 0), for various
phase lags χ and latitudinal modes kϕ. a Alignment angle
α; b Rotation frequency Ωc, normalized by the beat period

τ ; c Inverse correlation time κ, normalized by the rotational
diffusion time τrot = 1/(2Drot), with Dr = kBT/(8πηfR3),
where ηf is the fluid viscosity. d Helix radius Rh in units of
the body radius R, as obtained from Eq. (5)

(a) (b)

Fig. 12 Swimming velocity for microswimmers with vari-
ous numbers of cilia. a With a predefined metachronal wave
with various latitudinal wave numbers kϕ, as indicated.
Full (dashed) lines show that maximum (minimum) veloc-
ity obtained by variation of the phase lag χ. b With self-

organized metachronal waves and random spatial arrange-
ment. The red line is a spline fit to different cilia arrange-
ments. See also movie SM4 for an illustration of the beat
and swimming behavior

in the regime where transport with metachronal coor-
dination is much more efficient than synchronous beat-
ing [17]—in qualitative agreement with the results dis-
played in Fig. 12a.

4 Summary and conclusion

The dynamics and motion of multi-ciliated microswim-
mers with a spherical body and a small number N ,
in the range 5 < N < 50, of long cilia, with length L

about a factor 1.4 larger than the body radius, has been
investigated by mesoscale hydrodynamics simulations.
A metachronal wave is imposed for the cilia beat, for
which the wave vector has both a longitudinal, kθ, and
a latitudinal, kϕ component. The dynamics and motion
is characterized by the swimming velocity vn along the
main body axis, the variance of the velocity averaged
over a full beat cycle, the spinning velocity Ωn around
the main body axis, as well as the parameters of the
helical trajectory, which are the circling velocity Ωc,
the helix angle α, the helix radius Rh and pitch Ph.
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Our simulation results show that the microswimmer
motion strongly depends on the latitudinal wave num-
ber kϕ and the longitudinal phase lag χ = kθ · 45◦. We
find, not unexpectedly, that the microswimmers usu-
ally spin around their own axis, and swim on helical
trajectories. It is important to notice that spinning and
helical motion are not necessarily correlated, as a spin-
ning particle can move on a perfectly straight trajec-
tory. However, chirality in the metachronal beat pat-
tern generically generates helical trajectories. In most
cases, the helices are found to be thin and stretched,
i.e., the helix radius Rh is about an order of magnitude
smaller than the pitch. An interesting result is also that
the rotational diffusion of the microswimmer is signif-
icantly smaller than the passive rotational diffusion of
the body alone. This indicates that active contributions
to rotational diffusion are small, and that the extended
cilia make a pronounced contribution to the hydrody-
namic radius.

The swimming velocity vswim increases with the
number N of cilia on the body. Our simulation results
indicate a slightly sublinear dependence on N . The
comparison with the transport velocity of planar cilia
arrays on the cilia separation predicts a dependence
vswim ∼ N0.7. Our simulation results for self-organized
metachronal waves are not inconsistent with such a rela-
tion.

Finally, it is interesting to note that already a rel-
atively small number of about ten cilia, beating with
a phase lag in the form of a metachronal wave, are
sufficient to generate a steady propulsion and smooth
swimming motion—in contrast to the strongly oscilla-
tory motion of Chlamydomonas [54,55] with its two
cilia beating in synchrony. Such a smooth swimming
motion can be of significant benefit for marine microor-
ganisms, because large disturbances can be exploited by
predators to locate their prey [56].
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Appendix A. Ciliary beat

The cilium is considered as a semi-flexible filament, which is
modeled by point particles (beads) that are interconnect by
springs. Beads are arranged in three linear chains that form
a bundle with cross section of an equilateral triangle (see
Fig. 13). Each chain consists of Nc = 26 individual beads
equally spaced at a distance of 0.5 a, where a is the linear
MPC collision-cell size. Springs with equilibrium length lb
connect each bead to its neighboring beads along the line.
Two diagonal connection on each face provide lateral sta-
bility (see Fig. 13). The forces along the active chain are
generated by changing the equilibrium length of the springs
along the chain [17].

The beat pattern is generated by a heuristic model for
the time evolution of bond forces along the chain. In this
description, the beat can be controlled by a few key param-
eters and allows adaptation to external flows. The beat is
regulated by making the equilibrium curvature along the
cilium depend on a pivot point i0. Thus, the bond length
along the active filament varies as

li(t) = lb + δli(t)

δli(t) = 0.5A

(
1 − i − n0 − 1

NF − n0 − 1

)2.5

×
(

1 − 1

i0 − i − 1

)
for i < i0 − 2

δli(t) = − 2A

(i − i0)2 + 1
for i ≥ i0 − 2, (A.1)

where i is the segment number which varies from n0 to L/lb.
The first three beads of each linear chain are passive and
stay at the bond-length value li<n0 = lb. Therefore, we set
n0 = 3.

The difference between power and recovery stroke depends
on the pivot-point position i0. During the power stroke, the
pivot point is set to the first point of active beating n0. It
stays at this position, until the power stroke time τp has
passed. Then, during the recovery stroke, the pivot-point i0
moves along the cilium with a constant velocity vrec until
the recovery-stroke time τr has passed. Together, this results
in a beat as displayed in Fig. 2, with a constant beat period
τb = τp + τr.
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Fig. 13 Sketch of the cilium model in the local reference
frame ê, b̂, p̂- The cilium consists of one active rod green
and two passive ones red, forming an equilateral triangle.
It’s main axis is oriented along ê and it beats in the b̂ direc-
tion. Each bead blue is connected by several springs black

to its neighboring beads. Two diagonal springs connect the
edges of each face. Not that they are only shown for the two
yellow-marked faces to improve readability. Segments along
ê are labeled in ascending order, starting at i = 0 and have
a distance of lb = 0.5 a

In addition to the global beat dynamic, the dynamics of
the beat pattern is limited by the maximum energy Emax

each motor can inject into the system. If the bond-length
change δli compared to the current distance between the
beads exceeds the maximal energy Emax a motor can exert,
the motor stall and δli is reduced such that a maximum
energy of Emax is not exceeded. Due to the thermal noise in
the system, the actual distance between two beads fluctuates
as well. Although we do allow for “helpful” fluctuations, we
prohibit the “obstructive” fluctuations by clipping the bond
length at the previous value δli(t + 1) = δl(t). This update
scheme ensures step-wise directional movement similar to
an active Brownian ratchet.

The parameters of the cilia beat pattern are specified in
Table 1.

Appendix B Parameter extraction from cor-
relation functions

Due to the long time scales and the inherent noise of the
auto-correlation function, it is difficult to extract parame-
ters reliably. The signal-to-noise ratio is particularly high in
the limit where the time scales 1/Ωc and 1/κ approach the
total simulation time Ts.

Due to the approximate rotational symmetry of the
microswimmer, we assume that the tangent vector to its
center-of-mass trajectory is along the main body axis n.
This allows us to access the correlation functions, which
determine the trajectory in two different ways. Two exam-
ples for the quality of the fit results are shown in Fig. 14.
In order to estimate the quality of the fits, we employ the
difference between two different—although related—auto-
correlation functions which characterize the helical swim-
ming motion.

Table 1 Model parameters (given in MPC units of thermal
energy kBT , collision cell size a, and collision time h) used
to generate the beat pattern of the cilium in the simulations

lb A τp τr

0.5 a 0.17 a 75 h 150 h

Emax L γ vrec

1 kbT 13 a 20‘000 kbT/a2 0.19 lb/h

On the one hand, we use the correlation function 〈n(t) ·
n(t + τ)〉t of the main body axis, as discussed in the main
text; on the other hand, the correlate the tangent vectors of
the smoothed center-of-mass trajectory with a window of τ .

For a fixed total simulation time Ts, the error of the auto-
correlation function increases proportional to

√
τ/Ts, which

is used as a weight factor for the fit. As a second error
estimate, we employ the difference between a fit of the full
trajectory with τ ≤ Ts, and a fit for τ < 0.75 Ts. Parame-
ters, where the fit does not converge, or where the difference
between the parameter obtained from the full fit and a par-
tial fit exceeds the error threshold displayed in Table 2, are
omitted and are not shown in the plots.
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Fig. 14 Fit results of the temporal auto-correlation func-
tion which characterizes the helical trajectory. Either the
auto-correlation function of the unit normal vector n of the
main body axis is employed, or of the tangent vector along
the smoothed center-of-mass trajectory, both with a tempo-
ral delay τ . Simulation data are shown as solid lines, fits to
Eq. (6) as dashed lines

Table 2 Error thresholds for the fits of the auto-correlation
functions

Parameter Threshold

κ 0.2/τrot
Ωc ±5◦/τb

α ±25◦

Furthermore, the microswimmer can perform motions
which more complex than a simple helix, e.g., a nutation-
like motion. This is not captured by our analytic formula,
Eq. (6). We thus omit all results from fits with a too large
mean squared deviation.
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2. K.Y. Wan, G. Jékely, Phil. Trans. R. Soc. B 376,
20190758 (2021)

3. L. Alvarez, B.M. Friedrich, G. Gompper, U.B. Kaupp,
Trends Cell Biol. 24, 198 (2014)

4. M. Polin, I. Tuval, K. Drescher, J .P. Gollub, Science
325, 487 (2009)

5. M.A. Sleigh, J.R. Blake, N. Liron, Am. Rev. Respir. Dis.
137, 726 (1988)

6. E. Loiseau, S. Gsell, A. Nommick, C. Jomard, D. Gras,
P. Chanez, U. D’Ortona, L. Kodjabachian, J. Favier, A.
Viallat, Nat. Phys. 16, 1158 (2020)

7. B. Guirao, A. Meunier, S. Mortaud, A. Aguilar, J.-M.
Corsi, L. Strehl, Y. Hirota, A. Desoeuvre, C. Boutin,
Y.-G. Han et al., Nat. Cell Biol. 12, 341 (2010)

8. R. Faubel, C. Westendorf, E. Bodenschatz, G. Eichele,
Science 353, 176 (2016)

9. N. Pellicciotta, E. Hamilton, J. Kotar, M. Faucourt, N.
Delgehyr, N. Spassky, P. Cicuta, Proc. Natl. Acad. Sci.
U.S.A. 117, 8315 (2020)

10. K. Drescher, K.C. Leptos, I. Tuval, T. Ishikawa, T.J.
Pedley, R.E. Goldstein, Phys. Rev. Lett. 102, 168101
(2009)

11. H. Machemer, J. Exp. Biol. 57, 239 (1972)
12. S.L. Tamm, G.A. Horridge, Proc. R. Soc. Lond. B 175,

219 (1970)
13. E.W. Knight-Jones, J. Microsc. Sci. 95, 503 (1954)
14. B. Guirao, J.-F. Joanny, Biophys. J. 92, 1900 (2007)
15. S. Michelin, E. Lauga, Phys. Fluids 22, 111901 (2010)
16. N. Osterman, A. Vilfan, Proc. Natl. Acad. Sci. USA

108, 15727 (2011)
17. J. Elgeti, G. Gompper, Proc. Natl. Acad. Sci. USA 110,

4470 (2013)
18. C. Eloy, E. Lauga, Phys. Rev. Lett. 109, 038101 (2012)
19. D.R. Brumley, K.Y. Wan, M. Polin, R.E. Goldstein,

eLife 3, e02750 (2014)
20. K.Y. Wan, K.C. Leptos, R.E. Goldstein, J.R. Soc. Inter-

face 11, 20131160 (2014)
21. A. Maestro, N. Bruot, J. Kotar, N. Uchida, R. Golesta-

nian, P. Cicuta, Commun. Phys. 1, 28 (2018)
22. E. Hamilton, N. Pellicciotta, L. Feriani, P. Cicuta, Phil.

Trans. R. Soc. B 375, 20190152 (2019)
23. Y. Man, E. Kanso, Phys. Rev. Lett. 125, 148101 (2020)
24. K.Y. Wan, R.E. Goldstein, Proc. Natl. Acad. Sci. USA

113, E2784 (2016)
25. H. Guo, Y. Man, K.Y. Wan, E. Kanso, J. Roy. Soc.

Interface 18, 20200660 (2021)
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