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Abstract

Patients treated in an intensive care unit (ICU) are critically ill and require life-sustaining organ 

failure support. Existing critical care data resources are limited to a select number of institutions, 

contain only ICU data, and do not enable the study of local changes in care patterns. To address 

these limitations, we developed the Critical carE Database for Advanced Research (CEDAR), a 

method for automating extraction and transformation of data from an electronic health record 

(EHR) system. Compared to an existing gold standard of manually collected data at our institution, 

CEDAR was statistically similar in most measures, including patient demographics and sepsis-

related organ failure assessment (SOFA) scores. Additionally, CEDAR automated data extraction 

obviated the need for manual collection of 550 variables. Critically, during the spring 2020 

COVID-19 surge in New York City, a modified version of CEDAR supported pandemic response 

efforts, including clinical operations and research. Other academic medical centers may find value 

in using the CEDAR method to automate data extraction from EHR systems to support ICU 

activities.
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Introduction

Patients treated in an intensive care unit (ICU) are critically ill and require life-sustaining 

organ failure support. They are at risk for progressive organ failure and death, and the 

optimal care of these patients may translate into significant health gains. ICUs are also 

among the most data-rich environments in the world of health care[1]. Integrating data in a 

critical care setting is very difficult, as patients generate over 10,000 discrete data points in 

any single day[2,3]. Rational collection and analysis of data at immense scale is both 

feasible and valuable[4]. The depth of phenotyping, number of participants, and 

standardization of data collection is critical to these efforts[4]. Efforts to understand and 

utilize data generated in the ICU are still evolving. Challenges include the integration of 

information from different systems and building a comprehensive platform to organize and 

structure many data phenotypes. Several analyses of large scale datasets have already 

unlocked novel patterns in data that have yielded insight into ICU diseases such as 

sepsis[5,6] and the acute respiratory distress syndrome (ARDS)[7].

The gold standard for ICU level data is Medical Information Mart in Critical Care 

MIMIC[11], which includes a rich database and reproducibility through the use of a code 

repository[12]. MIMIC is the basis for over 1200 studies across the world, with over 600 

citations in 2019 alone. However, MIMIC data is limited to patients admitted to an ICU 

during the years 2001-2019 at Beth Israel Deaconess Medical Center (BIDMC), a 

quaternary care facility in Massachusetts affiliated with Harvard Medical School. MIMIC is 

also limited exclusively to the ICU, lacking data from care delivered before and after this 

care location, such as the emergency department (ED) and general medicine unit. Although 

efforts have been made to standardize and optimize data utilization through the code 

repository[12], MIMIC is not extensively curated and requires extensive cleaning and 

processing to analyze. In addition, because researchers who analyze MIMIC may likely not 

be familiar with practices, policies, and procedures at BIDMC, clinical heuristics concerning 

natural variation in care may be limited. Newer multicenter static databases such as the eICU 

Collaborative Research Database (eICU-CRD)[14] have been launched but are subject to 

similar limitations.

Secular trends in critical care, including the use of novel therapeutics, such as high-flow 

nasal canula, and treatment of novel diseases, such as COVID-19, continuously evolve, and 

practice patterns vary across institutions [13]. The COVID-19 pandemic caused a necessary 

unprecedented expansion of ICU care in New York City during the spring of 2020, which 

required emergent, near real time evaluation of practice patterns and clinical outcomes in 

order to inform decision making about resource utilization and staffing. A static 

retrospective database such as MIMIC would not have been able to adapt to these changing 

ICU definitions or have been useful during the crisis itself.

To support research and care, ICUs need a data collection method that is adaptable, accurate, 

and clinically useful in near real time[26,27]. Although standardized manual chart 

abstraction can enable an institution to understand local care practices within and beyond the 

ICU (e.g., ED, floor), limitations of the approach include arduous manual effort, risk of 

human error, potential subjectivity of chart abstraction, and the inability to scale across 
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thousands of patients. An alternative is automated extraction and transformation of data from 

the EHR to dynamically address ICU needs. To test the hypothesis that automated EHR data 

extraction could address limitations of existing ICU data collection approaches, we 

developed the Critical carE Database for Advanced Research (CEDAR). The purpose of this 

paper is to describe the design and evaluation of CEDAR as well as how CEDAR supported 

COVID-19 response efforts at our institution.

Methods

Setting

NewYork-Presbyterian/Weill Cornell Medical Center (NYP/WCMC) is an academic medical 

center in New York City located on the Upper East Side of Manhattan. NYP/WCMC has 

862 beds and more than 1,600 attending physicians with faculty appointments at Weill 

Cornell Medical College of Cornell University. Each year NYP/WCMC treats more than two 

million patients, including over 310,000 emergency department cases and 5,000 ICU cases. 

ICU capacity includes 118 beds across dedicated cardiac, cardiothoracic surgery, medical, 

surgical, pediatric, and neurosurgical units. To document clinical care, NYP/WCMC 

clinicians began using the Allscripts® Sunrise Clinical Manager (SCM) EHR system in 

2008.

Since 2014 investigators have prospectively consented patients admitted to any ICU at the 

institution to participate in a registry study involving collection of biospecimens and clinical 

data. For each participant, trained research coordinators manually abstracted 600 variables 

from the EHR system into REDCap case report forms. Designed by board certified 

pulmonary and critical care physicians, the REDCap project collected demographics, 

hospital timeline, laboratory and microbiology results, ventilatory parameters, APACHE-II 

evaluations, sequential organ failure assessment (SOFA) calculations, diagnoses and 

treatments throughout hospital stay, and final outcomes such as 28-day mortality and total 

ventilator-free days. Supplemental Appendix 1 contains the REDCap data dictionary 

codebook, which has expanded over time to include additional variables.

To complete chart abstraction of 600 variables for one patient, research coordinators 

typically required 3-4 hours. Attending physicians adjudicated each REDCap record created 

by research coordinators. Although coordinators received training and oversight from 

clinical leadership, attending physicians frequently observed errors and inconsistencies in 

REDCap records that required adjustment. Notably, computation of ventilator parameters, 

APACHE-II, and SOFA scores were particularly challenging because of their use of 

multiple, time-relative data points and formulas with stepwise computations. Further 

complicating data collection was frequent staff turnover, which required additional training 

of new research coordinators. Although faculty and staff improved data collection quality 

over time to establish an institutional registry for ICU analysis, the process remained time-

consuming, and the challenge of scaling from hundreds to thousands of ICU patient cases 

persisted.
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System design

As described below, we created CEDAR to support general ICU purposes and then modified 

it to address COVID-19 purposes. To extract, transform, and load EHR data for CEDAR, we 

used existing institutional informatics infrastructure based on Microsoft SQL Server 2016 

[21]. Development occurred iteratively through collaboration of informatics staff, clinicians, 

and biostatisticians. Supplemental Appendix 2 contains detailed requirements collected from 

investigators and implemented by informatics personnel. The Institutional Review Board of 

Weill Cornell Medical College approved this study.

General ICU purposes—We included all data for patients with at least one ICU visit at 

the institution as defined by the patient having had a bed location in one of the ICUs as 

recorded in the EHR. As shown in Figure 1, CEDAR consisted of two sets of relational 

database tables called basic and enhanced that contained clinical details about ICU patients.

Based on the data models of MIMIC-III and eICU-CDR, CEDAR basic tables consisted of 

individual clinical data elements extracted from the EHR that enabled users to examine 

distributions of values (e.g., laboratory results) and potentially determine new measures. 

Stated differently, basic tables contained “raw” EHR data. In contrast to MIMIC-III and 

eICU-CDR, basic tables contained data from ICU and non-ICU encounters during a 

hospitalization rather than only ICU activity.

To address the lack of validated measures (e.g., SOFA scores) in MIMIC-III and eICU-CDR, 

enhanced tables consisted of pre-calculated values determined using data from basic tables. 

As described in Table 1, we performed five types of numerical calculations to transform 

basic values to create entries in enhanced tables. Examples of variables in enhanced tables 

included daily SOFA scores, daily intubation status and associated ventilatory parameters, 

worst laboratory results in time windows of interest defined as furthest from a threshold 

value [24], concern for infection criteria, and ventilator and organ failure free days across the 

hospital stay.

Enhanced tables contained variables repeated at different time points, such as APACHE-II 

scores [24] at the first, third, and seventh days of ICU stay determined using blood pressure, 

respiratory rates, temperature, and oxygenation among other basic measures to determine 

severity of a patient’s condition and risk of mortality. Enhanced tables also contained SOFA 

scores [25] determined using similar types of calculations as well as rule-based approaches 

as illustrated in Figure 2.

COVID-19 purposes—At the onset of the pandemic, clinicians and biostatisticians 

observed that data in neither the EHR nor CEDAR adequately supported decision making. 

While the EHR provided up-to-the-minute patient-level data, it did not enable population-

level aggregation of clinical observations. Similarly, although CEDAR contained raw and 

computed data for all critically ill patients, the data were not current. Notably, CEDAR 

contained data only for patients treated in ICUs as documented in the EHR, but surge 

conditions in New York City changed institutional treatment patterns for the critically ill.
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On April 3, 2020 in response to clinician feedback, we modified CEDAR to define the start 

of an ICU encounter as the start of ventilation for a patient rather than the start of a patient 

having a bed location in an ICU. Additionally, if start of ventilation did not exist in the EHR, 

we used start of hospitalization to represent start of an ICU encounter. The rationale for the 

change was that the institution extended critical care treatment from dedicated ICUs to non-

ICUs (e.g., operating rooms) to address an acute influx of patients presenting with 

COVID-19. During the COVID-19 outbreak, there was an unprecedented need for 

understanding the trajectories of COVID-19 patients, especially those who required, or 

would eventually require, a ventilator.

Evaluation

We evaluated CEDAR with respect to general ICU purposes and COVID-19 purposes. First, 

to evaluate general ICU purposes, we used manually collected data in REDCap case report 

forms (as described above) as a gold standard. We compared manually collected data from 

REDCap versus automated data from CEDAR using Wilcoxon rank-sum and chi-squared 

tests as appropriate. Specifically, we compared demographics and SOFA scores. For SOFA 

scores, we compared the raw scores for each individual SOFA sub-score—respiratory 

system, nervous system, cardiovascular system, liver, coagulation, kidneys—as well as the 

composite total SOFA score. For each score type, we calculated the Pearson’s correlation 

coefficient between the two methods of calculation. Second, to evaluate COVID 19-

purposes, we observed how modifications to CEDAR supported pandemic response efforts.

Results

Of the 600 variables collected per ICU case, CEDAR automated extraction of 550 variables 

(92%). Of the remaining 50 variables, manual [22] and semi-automated REDCap methods 

[23] enabled completion of data collection.

General ICU purposes

CEDAR required approximately 18 hours to generate, and we refreshed it once per month. 

For the 550 variables manually abstracted for 177 patients and 39,152 patients automated by 

CEDAR, characteristics were largely similar (Table 2). Outcomes differed between the two 

populations because manual chart abstraction focused on sicker patients in the medical ICU 

whereas automated EHR extraction with CEDAR included patients from all ICUs at the 

institution.

Using automated EHR data extraction, we determined that each ICU had different primary 

diagnoses (Table 3). Of note, septicemia was the most common primary diagnosis in the 

medical ICU.

As shown in Figure 2, SOFA score distributions for manual chart abstraction and automated 

EHR extraction did not differ statistically (p=.99). The median SOFA score for chart review-

derived values was 7 [IQR 5-10], and the median SOFA score for automatically-derived 

SOFA values was 8 [IQR 5-10].
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As shown in Table 4, the Pearson’s correlation coefficient between the two methods of 

SOFA score calculation was 0.88 for the composite SOFA measure. Subscore correlation 

ranged from 0.61 to 0.96, with the lowest being the respiratory system (r=0.61) subscore and 

the highest being the coagulatory subscore (r=0.96).

Automated data in CEDAR differed from corresponding elements derived through manual 

chart review principally in that manual data collection occasionally involved divergence 

from a strict implementation of the 24-hour window for calculation of SOFA scores. In 

many instances, manual reviewers appear to have seen a clinically relevant value occur just 

outside of the window – for example, an elevated body temperature 24 hours and 15 minutes 

after admission to the ICU – and choose to include this value in the calculation of the 

pertinent SOFA subscore. Confronted with the same case, the automated technique adhered 

to a strict definition of which observations to include, and rejected the value as falling 

outside the defined temporal window.

COVID-19 purposes

After minor expansions to its inclusion criteria to address critical care treatment occurring in 

ICU and non-ICU settings at the institution, CEDAR rapidly met needs for both hospital 

operations and clinical research. CEDAR already contained calculations necessary to answer 

many clinical questions pertinent to COVID-19, and adjustment of timing of ICU encounters 

enabled CEDAR to reflect immediate changes in clinical care patterns. The COVID-19-

specific version of CEDAR was identical in structure to CEDAR but adapted for the specific 

needs of caring for critically ill COVID-9 patients, such as daily aggregate summaries 

beginning at the time of hospital admission rather than ICU admission. Similarity of 

COVID-19-specific CEDAR enabled clinicians and biostatisticians familiar with CEDAR to 

immediately use the new resource to address pandemic needs. The modified CEDAR 

specific to COVID required 8 hours of run-time, and we refreshed it once per week.

Laboratory results and SOFA scores were invaluable for understanding the risk of intubation 

for hospital operations purposes. A decision tree was created for clinicians in the emergency 

department to evaluate the probability a patient would require intubation. This risk 

prediction model was immediately used to aid in decisions of which patients to transfer to 

the Javits Center, a New York City convention center designated by authorities as a 

temporary COVID-19 hospital, and presented at a WCMC Medical Grand Rounds during 

the height of the outbreak in April 2020. The laboratory results in CEDAR also highlighted 

that important COVID-19 laboratory tests, such as C-Reactive Protein and d-dimer, were not 

being ordered regularly by clinicians, allowing chiefs of practice to enact new guidelines, 

including creation of a COVID-19 laboratory bundle.

In addition to supporting patient care operations, COVID-19 CEDAR data enabled clinical 

research. During April-June 2020, faculty published several papers, including an important 

initial summary published in the New England Journal of Medicine [18]. Shortly thereafter, 

many of the laboratory results in COVID-19 CEDAR were used in a paper describing 

obesity as a potential risk factor for poorer outcomes in COVID-19 hospitalized patients in 

Annals of Internal Medicine[19], and a detailed description of ventilator parameters and 
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treatments of intubated COVID-19 patients was also published in the Annals of the 

American Thoracic Society[20].

Discussion

We developed and evaluated CEDAR, a method for ICUs to automate data collection from 

electronic health record systems that addresses local changes in care patterns and includes 

observations from ICU and other non-ICU hospital encounters. CEDAR includes a number 

of pre-calculated aggregate measures as well as the raw data required to compute them. 

Development of CEDAR required extensive collaboration between clinical subject matter 

experts and informatics specialists, including an iterative process of requirements-gathering, 

data engineering, and quality assurance. Data aggregated from the electronic health record 

into CEDAR showed concordance with data from manual chart review, indicating that the 

transformation constitutes a reasonably faithful representation of the true underlying patient 

state and can reduce manual data collection effort for staff. In contrast to static ICU data sets 

such as MIMIC, CEDAR enables assessment of rapidly changing secular trends, such as the 

COVID-19 pandemic. We have used CEDAR to support clinical and translational research at 

our institution, and our experience suggests that the method represents a novel approach 

toward reuse of electronic health record data to support critical care research and operations 

that other institutions may wish to replicate.

While existing resources for conducting critical care research have led to significant 

breakthroughs in the field, their temporally bound, de-identified, and ICU-specific nature 

has limited their utility in several, clinically meaningful ways. Users of MIMIC-III are 

limited in their ability to understand new therapeutic pathways and evaluate the impact of 

quality-based interventions. For example, changing O2 or blood pressure targets may have a 

meaningful impact on overall survival and 30-day readmission, as could the use of high-flow 

nasal cannula in the adult population, new vasopressors (e.g. angiotensin II), or new 

protocols for oxygen targets in the ICU, weaning from mechanical ventilation, sedation, 

insulin therapy, or others. The methodology described here allows clinicians to regularly 

evaluate the impact of interventions such as these on quality of care, moving closer towards 

realizing the goals of the learning health care system. Specifically, CEDAR was integral to 

our institutional research and clinical response to the COVID-19 pandemic. By providing 

near-real-time research quality data, we were able to analyze our clinical experience quickly, 

resulting in impactful and practice changing publications. Our clinical staff utilized CEDAR 

derived clinical data summaries to discuss practice patterns and trends as the first surge of 

the pandemic evolved. We helped define risk factors for worsening respiratory failure within 

our specific population and disseminated those results to our faculty to inform practice.

In comparing the results of the automated calculations of commonly used metrics (e.g. 

APACHE, SOFA, and concern for infection), CEDAR replicated the results of manual chart 

review with satisfactory performance (Pearson’s correlation coefficient = 0.88), indicating 

that data transformed from the EHR are of sufficient quality to rely on the conclusions of 

research projects making use of CEDAR data in implementing new interventions at the point 

of care. Because of the concordance between manual and automated data collection, we 

have subsequently generated a de-identified version of CEDAR to support activities 
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preparatory to research and non-human subjects research. CEDAR also includes data 

gathered from beyond the ICU, including the emergency department and floor, enabling 

additional analyses that would not be feasible using a data set gathered only from critical 

care settings.

Multiple groups have acknowledged the limitations of the MIMIC-III data set and sought to 

develop competitors. Notably, the eICU-CRD data set seeks to address a primary limitation 

of MIMIC-III – its single-center status – by integrating data from multiple intensive care 

units in community hospitals. Similarly, researchers with the United Kingdom’s National 

Health Services have described a methodology for linking local, proprietary EHR data with 

a national resource for research, the Intensive Care National Audit and Research Centre 

(ICNARC)’s Case Mix Programme (CMP) data set. While these efforts have contributed 

significantly to the research enterprise, the methodology described herein, whereby local, 

site-specific data is transformed to a specific, research-ready data set with collaboration 

between clinical experts, biostatisticians, and informatics personnel, represents a contrasting 

approach that enables analysis of secular trends, site-specific interventions, and other novel 

use cases otherwise unachievable through the use of de-identified, temporally-bound critical 

care data sets.

Several limitations exist with regard to CEDAR and its implementation, including required 

effort and replicability. The human effort required to instantiate this resource was significant, 

with subject matter experts from across differing disciplines meeting regularly to collaborate 

and address observed issues with data quality and completeness. A corollary limitation of 

this methodology is that the WC-CEDAR code base is specific to our institution’s EHR 

system. Other institutions seeking to adapt this methodology will, of necessity, need to 

engage a similar group of diverse practitioners to replicate our results. However, the data 

model described herein and the overall methodology of working iteratively to define 

requirements, transform data, and conduct quality assurance testing are generalizable across 

institutions with the resources and staff to carry them out. To encourage generalizability 

across settings, future work will address instantiation of CEDAR using the Observational 

Medical Outcomes Partnership (OMOP) common data model, which academic medical 

centers have widely adopted. Finally, we refreshed CEDAR on a monthly and weekly 

schedule for general and COVID-19 purposes, respectively, due to internal resource 

constraints (i.e., needing to refresh other databases using institutional infrastructure). 

Although the refresh schedule met needs of clinicians and biostatisticians, future work will 

address more frequent updates, such as using streaming data and other technologies, to 

improve support for real-time clinical decision making.

The implementation of CEDAR at our institution has already enabled novel research 

projects that would otherwise be unfeasible. We contend that the methodology we describe 

here constitutes a novel and potentially impactful alternative to the reuse of temporally-

bounded, de-identified, ICU-only data sets from differing institutions. By transforming local 

EHR data in this fashion, institutions can conduct research that would not be feasible with 

MIMIC-III or eICU-CRD data and better address their own site-specific research and quality 

improvement goals, especially during a pandemic such as COVID-19.
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Conclusion

Seeking to develop an ICU-focused data resource sensitive to local practice changes and 

capable of regular refreshes, we built CEDAR through a collaboration between clinicians, 

biostatisticians, and informatics professionals including iterative requirement definition, data 

extraction, quality assurance and review. CEDAR features both ICU and non-ICU data, and 

includes a number of computed metrics of common concern for critical care research. 

Comparing these automatically calculated metrics to the results of manual chart review 

indicated that the data in CEDAR are sound and fit for reuse, and WC-CEDAR is currently 

contributing to research at our institution as well as COVID-19 clinical care. Other 

institutions may find value in replicating this methodology using data from their electronic 

health record systems.
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• To test the hypothesis that automated electronic health record (HER) data 

extraction could address limitations of existing intensive care unit (ICU) data 

collection approaches, we developed the Critical carE Database for Advanced 

Research (CEDAR).

• Compared to an existing gold standard of manually collected data at our 

institution, CEDAR was statistically similar in most measures, and it reduced 

data collection time for more than 550 variables.

• During the spring 2020 COVID-19 surge in New York City, a modified 

version of CEDAR supported pandemic response efforts, including clinical 

operations and research.
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Figure 1. 
CEDAR basic and enhanced relational database tables.
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Figure 2. 
Rule-based approach for SOFA score generation in enhanced table.
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Figure 3. 
SOFA distributions (Chart review, automated extraction)
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Table 1.

Types of calculations performed for CEDAR enhanced tables.

Calculation type Calculated variable example

Highest/lowest Temperature, Heart Rate, Respiratory Rate, eGFR

Sum IV fluids, Urine Output, Blood Transfusions

Closest to a particular time of day (e.g., 08:00) Height, Weight, BMI, Urine Protein, Creatinine, Urine Osmolality

Furthest from threshold value Hemoglobin (e.g., highest or lowest relative to 14 g/dL [24]), Sodium, Potassium, systolic 
blood pressure

Worst ABG and related components PaO2, PaCO2, Ventilation status, Tidal Volume
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Table 2.

Demographic characteristics of manual chart review and automated EHR extraction.

Characteristic Manual Chart Abstraction
(N=177)

Automated EHR Extraction
(N=39,152)

p-value

Age 64 [51-75] 68 [52-80] 0.019

Female 83 (47%) 17,077 (44%) 0.4

Race 0.3

 Asian/Indian 6 (3.4%) 2,365 (6.0%)

 Black 17 (9.6%) 3,659 (9.3%)

 Declined/Unknown/Other 78 (44%) 18,386 (47%)

 White 76 (43%) 14,742 (38%)

BMI 27 [23-31] 26 [23-31] 0.3

ICU Length of Stay (Days) 5 [3-9] 4 [2-7] <0.001

28-day Mortality 39 (23%) 3,240 (8.3%) <0.001

Statistics presented: median [interquartile range] and N (%).
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Table 3.

Primary diagnosis by ICU.

ICU Primary Diagnosis N (%) Total

Cardiac ICU
Subendocardial infarction 1,184 (15.7%)

7,546
Coronary atherosclerosis of native coronary artery 382 (5.1%)

Cardiothoracic Surgery ICU
Aortic valve disorders 3,130 (38.4%)

8,145
Coronary atherosclerosis of native coronary artery 1,145 (14.1%)

Medical ICU Septicemia 857 (10.9%) 7,829

Acute respiratory failure 338 (4.3%)

Mixed Surgical ICU
Cerebral aneurysm, non-ruptured 522 (3.24%)

16,115
Benign neoplasm of cerebral meninges 181 (1.12%)

Pediatric ICU
Compression of brain 75 (4.6%)

1,638
Septicemia 289 (1.79%)
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Table 4.

Correlation by SOFA score type.

SOFA Score Type Pearson’s correlation coefficient

Coagulation 0.96

Liver 0.95

Composite 0.88

Cardiovascular system 0.87

Kidneys 0.81

Nervous system 0.78

Respiratory system 0.61
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