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A model and predictions 
for COVID‑19 considering 
population behavior 
and vaccination
Thomas Usherwood1,2,3, Zachary LaJoie1,2,3 & Vikas Srivastava1,2*

The effect of vaccination coupled with the behavioral response of the population is not well 
understood. Our model incorporates two important dynamically varying population behaviors: level 
of caution and sense of safety. Level of caution increases with infectious cases, while an increasing 
sense of safety with increased vaccination lowers precautions. Our model accurately reproduces the 
complete time history of COVID-19 infections for various regions of the United States. We propose 
a parameter d

I
 as a direct measure of a population’s caution against an infectious disease that can 

be obtained from the infectious cases. The model provides quantitative measures of highest disease 
transmission rate, effective transmission rate, and cautionary behavior. We predict future COVID-
19 trends in the United States accounting for vaccine rollout and behavior. Although a high rate of 
vaccination is critical to quickly ending the pandemic, a return towards pre-pandemic social behavior 
due to increased sense of safety during vaccine deployment can cause an alarming surge in infections. 
Our results predict that at the current rate of vaccination, the new infection cases for COVID-19 in the 
United States will approach zero by August 2021. This model can be used for other regions and for 
future epidemics and pandemics.

Coronavirus Disease 2019 (COVID-19) began as a localized outbreak in Wuhan, China in December 2019 and 
quickly spread internationally to become a global pandemic. More than a year later, over 113 million people have 
become infected with COVID-19 with more than 2.5 million deaths worldwide1. To combat the spread of this 
virus, the Pfizer–BioNTech COVID-19 vaccine was approved in the United Kingdom on December 2, 20202, and 
the Pfizer–BioNTech and Moderna vaccines were subsequently approved for emergency use authorization in 
the United States3. In light of these recent developments, the potential impact of the distribution for COVID-19 
vaccines is tremendous. Giving the public, health officials, and government, model-based trend predictions and 
additional guidance on effective vaccine distribution and potential problems is critical. In the last year, many 
papers have been published on modeling the COVID-19 pandemic4–13. Several modeling studies are based on 
differential equation compartment models involving compartments for susceptible, infectious, and recovered 
individuals, commonly referred to as SIR models14–19. Introducing additional compartments allows researchers 
to study the effect of vaccination and examine how to optimally distribute a vaccine. Matrajt et al.20 used an age-
stratified population to determine the consequence of vaccine effectiveness and population coverage of the vac-
cine to indicate the optimal vaccine allocation. Bubar et al.21 accounted for the possibility of ruling out individuals 
with antibodies from receiving the vaccine using a serological test, and added an age-dependent effectiveness 
of the vaccine. Effects of vaccination have been examined in past outbreaks such as the 2009 H1N1 Swine Flu 
outbreak and the 2014–2016 Ebola epidemic22–27. These studies have introduced population compartments that 
separate the population by their location and give insights into what locations should receive vaccines first28.

A critical aspect of COVID-19 vaccination that remains unexplored is a population’s behavioral changes 
during the prolonged period of vaccination. While behavioral responses have not been addressed with respect 
to vaccines, efforts have been made to study the effects of non vaccine related behavioral changes for previous 
pandemics. These studies vary from the models on the effectiveness of social measures like quarantining and 
social distancing29–31 to characterizing the nature of spread of the disease32,33. One particular example that was 
reasonably effective in modeling behavioral changes during a pandemic was the closed-loop feedback in the 
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compartmental SIR model presented by Perra et al.29. The authors examined behavioral changes by modeling the 
rate at which individuals enter self-imposed quarantine dependent on the number of infectious individuals. Over 
the last year, the time history of new infected regional cases has fluctuated drastically and has posed significant 
challenges for the infectious disease modeling community. A model that can represent the region/population 
specific COVID-19 cases accurately for the entire period of this pandemic has not yet been reported. We propose 
a mathematical model and a framework that incorporates the naturally occurring behavioral responses of a 
population to infectious cases coupled with possible additional behavioral changes exhibited during vaccination 
that has the ability to represent infection dynamics for the entirety of available COVID-19 case data in the United 
States (US) regions. We define “level of caution” to represent a population’s precautionary/safe behavior during 
an ongoing pandemic that results from a combination of increased social distancing, use of personal protection 
equipment, improved hygiene, and lockdown regulations. We also introduce “sense of safety” to represent a 
population’s return to normal, pre-pandemic behavior as more and more people are vaccinated. We introduce 
suitable mathematical forms to represent these two important behavioral aspects and incorporate these dynamic 
functions into our differential SIRDV model framework.

Fitting our model to available daily new infection case data for four major US states (Massachusetts, Cali-
fornia, Florida and South Dakota) and two major US cities (Atlanta and New York City) for the first year of 
the pandemic, we show that our modeling framework is versatile at capturing a large range of developments of 
the COVID-19 pandemic over time, and it provides valuable insights into each population’s underlying social 
behavior. Introducing a vaccine to the population in our model, we analyzed the interaction between vaccine 
distribution rate and vaccine related additional behavioral responses of the population. We used our model to 
predict future trends for the pandemic with the advent of vaccine distribution.

Results
We find that the time dependent infectious disease transmission rate β(t) is best given by β = β0 fI fV , where 
β0 is the population maximum infection transmission rate observed in the absence of any preventative societal 
measures. fI and fV are level of caution and sense of safety functions, respectively, proposed as:

The function fI models caution in a population, where its individuals take measures to reduce disease transmis-
sion through social distancing, personal protective equipment, hygiene, and local government mandates. The 
population’s level of caution to the number of infectious cases is determined by a factor dI , which was observed 
to change several times over a long duration in a given population due to changing population awareness and 
response, pandemic fatigue, seasons, and changing government mandates. These changes in sensitivity of the 
population to the number of infectious cases gives rise to the multiple peaks in the number of new infected cases 
observed nearly universally during the COVID-19 pandemic. fI approaches 0 in the limiting case of very high 
values of level of caution factor dI , reflecting extreme cautionary measures by the population against the pan-
demic and leads to negligible disease transmission. A dI value approaching 0 gives fI as 1, reflecting a population 
whose behavior is approaching pre-pandemic levels of minimal disease related precautionary actions.

In addition, we included a competing sense of safety in our model, in which measures to reduce disease 
transmission are gradually decreased due to an increasing proportion of the population becoming vaccinated, 
offsetting the effects of a reduced transmission rate arising from an underlying level of caution. However, as 
modeled in Eq. (1), the net transmission rate will never exceed the base maximum transmission rate β0 . As the 
sense of safety factor dV approaches a very small value (population not dropping its guards down due to vaccina-
tions), the sense of safety function fV approaches 1 and fV has no effect on β . On the contrary, a high dV reflects 
an increased sense of safety, causing cautionary measures against the disease transmission to be significantly 
reduced, leading to fV =

1
fI

 . In this case, infection-related level of caution is completely negated and the disease 
transmission rate β approaches the population’s highest transmission rate β0.

Infection data fit and interpretation for COVID‑19 in the United States.  We show that our mod-
eling framework mathematically incorporates the dynamic level of caution within a SIRDV differential frame-
work (shown in Fig. 7, represented by Eq. (2) and discussed in detail in the modeling approach section) is able to 
fit and predict the entire COVID-19 case history for the selected representative populations within the US. The 
model works for both pre-vaccine and during vaccination periods. Before vaccines become available, the vac-
cinated population fraction V in Eq. (1) stays zero giving fV = 1 and naturally leading to no effects from vaccine 
related sense of safety. For conciseness, we show results for selected key populations. The model can be applied 
to other regions/populations within or outside of the United States as well. The model was fit to four US states 
(Massachusetts, California, Florida, and South Dakota) and two major US cities (New York City and Atlanta). 
These regions were chosen to represent a variety of population densities and varying geographical locations. We 
accounted for the fact that the reported cases were lower than the actual infection cases in the population due 
to lack of testing and asymptomatic cases using a factor M. M has a high value at the beginning of the pandemic 
due to lack of testing and reduces to a lower value as testing becomes more available. The simplified M shown in 
Fig. 1a is assumed following the Centers for Disease Control and Prevention’s assessment that only 1 out of 4.6 
COVID-19 cases were reported in the US for 2020. As shown in Fig. 1, our behavioral model was able to accu-
rately model and fit representative states and cities across the United States with few parameters for each region. 
Estimated parameters for each region are shown in Table 1.

(1)
fI = e−dI I

fV =
1

fI
+

(

1−
1

fI

)

e−dVV .
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The level of caution factor dI in Eq. (1) is shown in Fig. 2a for different regions over the first year of the 
COVID-19 pandemic. A high level of caution factor indicates that the population was quick to adapt their behav-
ior in response to an increase in infections by taking increasingly stringent measures to reduce their transmission 
rate. Level of caution in a specific population changes due to addition or removal of local government regula-
tions, new information regarding the disease, seasonal changes in behavior, pandemic fatigue, news leading to 

Figure 1.   Results of our behavioral model’s fit to COVID-19 data across six populations in the United States. 
(a) Shows M representing the ratio of actual infectious cases to reported cases. Reported new infection case 
data versus model fit for (b) Massachusetts, (c) Florida, (d) South Dakota, (e) California, (f) New York City, 
and (g) Atlanta. Gray bars represent the daily reports of new COVID-19 cases. The dashed brown lines are the 
corresponding 7-day average. Our model’s predictions for reported daily cases are shown as the solid red lines.
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additional fear or any other factor that causes widespread changes in behavior and disease transmission rate. As 
expected, the results show that sudden drops in level of caution factor dI tend to precede surges in new cases due 
to relaxed social measures. Conversely, a reduction in the influx of new cases will occur due to significant increase 
in dI . This level of caution is independent of the baseline maximum transmission rate, β0 , and therefore provides 
a measure to compare social outlook towards the disease between different populations/regions. Time varying 
COVID-19 transmission rate β for each of the selected regions is shown in Fig. 2b. β0 describes transmission in 
the earliest stages of the pandemic for a population, when knowledge of the disease and social measures against 
it were limited. Therefore, this value also describes the transmission that a specific population can be expected 
to return to when the precautions against the infection becomes minimal, either as infectious cases approaches 
zero or as social response to the disease becomes very low. In addition to the infectious disease’s inherent con-
tagious characteristics, the base transmission rate depends on factors such as population density, contact rate, 
and everyday pre-pandemic behavior of its individuals. Likely due to such factors, we found that bustling New 
York City, was on the higher end of the baseline transmission rate with basic reproductive ratio for New York 

Table 1.   Parameters for the four states and two cities for the 2020 COVID-19 pandemic. The initial basic 
reproduction number, R0 = β0

γ
 , represents the expected number of secondary infections if an infectious 

individual was placed in the population, without any social preventative measures. dI values represent its 
constant value in each of the corresponding behavioral periods. Smooth transitions between constant values of 
dI were applied.

Region µ [%] 1/γ [days] β0 [1/days] dI (behavior period)

Massachusetts

0.5 10

0.28
(R0 = 2.8)

40     (March 15–Apr 24)
500    (Aug 2–Aug 3)
38     (Dec 21–)

California 0.35
(R0 = 3.5)

450    (March 15–Apr 9)
110    (Jul 18–Jul 19)
470    (Oct 6–Oct 7)
40     (Dec 18–)

South Dakota 0.25
(R0 = 2.5)

160    (March 15–Jul 30)
17    (Nov 7–Nov 8)
63      (Jan 26–)

Florida 0.38
(R0 = 3.8)

410    (March 15–May 17)
54     (Jul 3–Jul 16)
350    (Sep 20–Sep 22)
62     (Jan 6–)

New York City 0.45
(R0 = 4.5)

30     (March 15–Apr 11)
600    (Aug 9–Sep 1)
60     (Jan 19–)

Atlanta 0.35
(R0 = 3.5)

290    (March 15–Jun 11)
92      (Jul 4–Jul 27)
420    (Sep 14–Sep 15)
58      (Jan 8–)

Figure 2.   (a) Level of caution factor dI and (b) disease transmission rate β over the course of COVID-19 in six 
populations across the United States.
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City obtained to be R0 = β
γ
= 4.5 ), whereas a less densely populated state like South Dakota has a much lower 

baseline transmission rate and a lower R0 value of 2.5. R0 values for other regions can be found from Table 1.
To illustrate direct correlations between our model fit predictions and real life events, we take New York City 

as an example. Starting March 22, New York implemented the “New York State on PAUSE’ executive order, closing 
all non-essential businesses, canceling all non-essential gatherings, and mandated social distancing. This local 
government regulation is directly represented in the model results for level of caution which shows a significant 
increase in dI following this mandate (Fig. 2a). Corresponding model results also show a sharp transition from 
one of the highest levels of disease transmission rates (Fig. 2b) to one of the lowest levels of transmission rates 
following this government mandate. Between September 1, 2020 and January 15, 2021, the model based dI values 
show that the level of caution in New York City transitioned from one of the highest values to one of the low-
est. When we examine real events, we find that starting September 2020, a series of citywide re-openings were 
introduced, including the opening of gyms, malls (at 50% capacity), public K-12 schools, and indoor dining (25% 
occupancy). This reopening coincided with the holiday season in the US at the end of the year 2020 and resulted 
in a significant spike in the new infection cases directly correlating with our model predictions. Therefore, the 
level of caution parameter dI is a metric that quantifies a population’s behavior in response to an infectious disease 
outbreak; estimates of future dI values will allow predictions of new infectious cases. There are clear trends in 
COVID-19 cases captured by our model that directly relate to local government mandated health regulations. 
These results suggest that we may be able to incorporate possible behavioral changes into our model representing 
future government regulations, along with changes in vaccination rates, to predict infection outcomes.

Future COVID‑19 dynamics with vaccination.  The model incorporates the effect of vaccination and 
the behavioral response of the population to growing number of people getting vaccinated due to the popula-
tion’s sense of safety. This sense of safety counteracts the underlying level of caution that a population always has 
in response to the number of infectious cases. Predictions from our model with the presence of vaccination show 
that the future trajectory of the pandemic will strongly depend on population’s behavior in response to the dis-
ease and vaccination. In Fig. 3, we show a range of potential infection outcomes for different levels of caution to 
the infection and different senses of safety due to vaccination. The selected range of dI and dV represent reason-
able extremes of the level of caution and sense of safety factors. For the future trend predictions, we use starting 
values based on California’s data, as a representative population (to avoid multiple curves and repetition) which 
has reasonable correlation with overall United States COVID-19 trends. The results, normalized as population 
fractions, provide critical COVID-19 future trends and insights that will be applicable to other regions as well. 
We have assumed a vaccine effectiveness η of 95% based on the initial estimates of the two leading vaccines34. η 
can be suitably selected for any other vaccination types or in the case of a different pandemic or epidemic with 
different vaccine effectiveness. The results are shown for estimated actual cases.

Figure 3a models a population that does not alter their underlying behavior in response to introduction of a 
vaccine, and instead only responds to the increasing infectious cases by increasing personal safety measures. All 
simulated curves show a swift reduction in cases following the vaccine, though decisive action and stronger level 
of caution in response to the infection does show a considerable reduction in total infections. Figure 3b shows 
a scenario in which the population responds to the introduction of a vaccine by relaxing the social measures 
meant to slow the transmission. Although this sense of safety and increased normalcy may be a natural response 
to vaccines becoming more available, our predictions show that unfailing and continuing commitment to social 
preventative measures can significantly reduce the total number of future infections and even prevent a new 
surge and new peak that can happen if the population relaxes too soon. Note, regardless of the value of the sense 

Figure 3.   Effect of (a) sense of caution factor, dI , and (b) sense of safety factor, dV on pandemic trajectory. 
The dashed blue bar represents the introduction of a vaccine with 95% effectiveness, at a fixed rate of 0.3% of 
the population per day. Extreme values of dI represent the extremes of social behavior: the most responsive 
(black dotted) and the least (red). Sensitivity analysis in (a) considered a fixed sense of safety dV = 0 , and in (b) 
considered a fixed level of caution dI = 500.
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of safety factor dV , the number of new cases per day drops to zero around the same time; however, the peak 
number of cases while progressing toward this point is very different for different dV values.

We treat vaccination as a one-time event where an individual would receive an entire dose of the vaccine, 
despite the fact that some current vaccines require two doses that must be delivered at different times35. Given 
the much longer time scale of COVID-19 predictive curves, compared to the time gap between the two doses of 
m-RNA vaccines, it is reasonable to model vaccination rate by ignoring the time gap between the two doses and 
take the two doses combined as a single completed vaccine without significant loss of predictive accuracy. Unless 
otherwise noted, all vaccine distribution in this paper was modeled at a fixed rate of 0.3% of the population per 
day (0.6% receiving single dose of the two dose vaccines per day). This number represents approximately 2 mil-
lion vaccine doses that are currently administered daily in the US. Because of the asymptomatic and unreported 
cases, the constant rate vaccination was applied proportionally to both the susceptible ( αs ) and recovered ( αR ) 
populations. For the remainder of the simulations (after Jan 2021), we assume that sense of caution, dI , remains 
fixed at a high level ( dI = 500).

The effects of the vaccination rate α were examined (Fig. 4). We chose three values of α : the current rate of 
vaccination of 0.3% of the population per day36, a low ( 0.1% per day), and a high rate ( 0.5% per day). Note, the 
vaccination rate of 0.1% is not expected in the US but is shown to illustrate the consequences of low vaccination 
rate. As the vaccine distribution rate increases, the number of cases per day tends to zero quickly. However, as is 
shown in Fig. 4a,b, the population’s social response to the vaccine, dV , has a significant effect on the pandemic 
trajectory. In cases where preventative measures were abandoned more quickly and the population had an 
increased sense of safety in response to the vaccines (high values of dV ), increased vaccination rates still result 
in cases quickly tending toward zero, but before this happens, the number of cases per day increases rapidly. 
This behavior worsens as dV increases, and this sharp increase occurs earlier as vaccination rate α increases. Our 
results show that in the US, COVID-19 can be reasonably controlled by late summer of 2021 proceeding with the 
currently planned vaccination rate. The results elucidate the importance of local health and government authori-
ties becoming aware of the fact that the sense of safety and vaccine distribution rate are related parameters. 
As has been shown, a faster vaccination rate significantly decreases the duration of the pandemic. However, if 
authorities intend to distribute a vaccine very quickly, they must be extra cognizant of the population’s behavioral 
response to it, as population relaxing its cautious practices could result in a noticeable increase in cases post vac-
cine rollout. If neglected, this peak under extreme circumstances could be disastrous. Therefore, based on our 
results, we recommend that proper disease transmission mitigating behavior be maintained, while welcoming 
a fast vaccine distribution rate.

To further quantify the relative effects of the sense of safety and the vaccine distribution rate on the total 
number of infectious cases, the total number of individuals infected (as population fraction) after the start of 
vaccination were plotted with respect to α and dV in Fig. 5. This was done for a special case of a very high level 
of caution during vaccine rollout. As expected, for a given value of vaccination rate, the number of total infected 
cases increases as the sense of safety factor increases along the x-axis. This behavior is especially pronounced 
for low vaccination rates, when large increases in the sense of safety can result in significant numbers of total 
infections, up to 26% as is shown in the yellow region of Fig. 5). Also, note that for very high value of dV , as the 
vaccination rate increases from 0, the number of infected cases quickly increases and then start to decrease again 
(pink box). For a very slow vaccination rate, vaccinated population dependent behavioral effects are limited due 
to our proposed relation for the sense of safety function fV , but quickly increase as the vaccinated individu-
als increase. This explains the increase in the total infections as one travels vertically in the pink box in Fig. 5. 
However, total infections then begin to decrease due to a critical vaccination rate being achieved, shown in the 
teal box. This reinforces the argument for the necessity of maximizing vaccine distribution; low vaccination 
rates can lead to behavior-related spikes in total cases, but these effects are mitigated as widespread vaccination 
outweighs these behavioral factors.

Figure 4.   Impact of vaccination rate, α , with two social responses to the vaccine. The population in (a) shows 
no changes in behavior in response to the vaccine, while the population in (b) relaxes its preventative measures 
as the vaccine is distributed.
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We can expect some portion of the population to be unwilling or unable to receive a COVID-19 vaccine. 
The effect of the size of this group on the duration and severity of the pandemic was examined in Fig. 6. If large 
populations refuse vaccination, the duration of the pandemic can be prolonged.

Methods
Mathematical model.  As shown in Fig. 7a, our model extends the general SIRD framework by adding the 
effect of vaccination and incorporating behavior based dynamics as an important capability specific to our study. 
The model consists of five compartments: Susceptible (S), Vaccinated (V), Infectious (I), Recovered (R), and 
Deceased (D). Here S, V, I, R, and D represent time dependent fractional variables with respect to the total popu-
lation of the region of interest. Beginning in the susceptible compartment, individuals can follow the standard 
infection pathway through the infectious compartment then to either recovered or deceased. Alternatively, they 
can enter the vaccinated compartment following a fixed rate of vaccination α , where depending on the vaccine 
effectiveness η , a subset of the vaccinated population VS can become infected. The remainder of the vaccinated 
group VR is successfully vaccinated and have no risk of becoming infected. Currently, the reinfection rate is very 
low and its effect can be neglected for the timescale of our study. Note that given the uncertainty in how rapidly 
the vaccines will be deployed in the future, for our predictions, we have used constant vaccination rates and have 
shown sensitivities to different vaccination rates. Time dependent vaccination rates can be easily implemented 
by selecting a suitable function for α(t) in our model. Our SIRDV model for a region/population is described by 
the following equations:

0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure 5.   Contour plot of the sense of normalcy, dV , and vaccination rate, α , versus the total infections since 
the start of vaccination (red values shown as proportion of the total population). Shown for a high level of 
caution case ( dI = 500). The pink box shows a possibility of increasing number of total infected cases with 
increasing vaccination rate at very high sense of safety, and the teal box shows that once the vaccination rate 
crosses a threshold, the total number of infection cases drop with vaccination rate even at a very high sense of 
safety.
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Figure 6.   Results for certain fractions of the population remaining unvaccinated. The entire COVID-19 case 
history and future predictions are shown in terms of estimated actual new infection cases for California as a 
representative example. Gray bars represent the daily reports of new COVID-19 cases. The dashed brown lines 
are the corresponding 7-day average. Our model predictions for the entire duration are also shown as green, 
gray and yellow curves.
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where β represents the dynamic transmission rate, µ represents the mortality rate, and γ represents the recovery 
rate. The family of curves represented by this set of equations with constant parameters is considerably limited 
as it assumes that the population does not change its behavior at all over the course of the outbreak.

The significant differences and variations in disease transmission across different populations and over the 
course of the COVID-19 pandemic have shown that an understanding and modeling of dynamic population 
behavior changes is critical in predicting a real-world pandemic. To model these population behavioral attributes, 
we have incorporated a simple framework for a behavior-based, time-dependent net disease transmission rate β 
that is dependent on both the current infectious and vaccinated populations. With β0 as population maximum 
transmission rate, fI (0 < fI ≤ 1) level of caution function and fV (1 ≤ fV ≤

1
fI
) as sense of safety function, we 

propose the following mathematical forms for behavior dependent transmission rate:

(2)

dS

dt
= −βSI − α

dV

dt
= −β(1− η)VI + α

dR

dt
= γ I

dI

dt
=

(

βS + β(1− η)V − µγ − γ

)

I

dD

dt
= µγ I

Figure 7.   (a) SIRDV compartment model with susceptible (S), vaccinated (V), infectious (I), recovered (R), 
and deceased (D) populations. Flow between between compartments is shown with arrows. (b) Description 
of model parameters. (c) and (d) Show variations in disease transmission rate β , due to social response to 
infectious and vaccinated populations. (c) β for a range of level of caution factor dI (100, 200, 400), and (d) β for 
a range of sense of safety factor dV (1, 2, 4).
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All the model parameters are described in Fig. 7b. The resultant effects of infectious and vaccinated populations 
on disease transmission rate β are shown in Fig. 7c,d for a range of dI and dV values. As shown, transmission 
rate decays to a smaller value at high infectious populations due to more cautionary and preventive actions with 
a higher level of caution. This decay slows significantly as a higher percentage of the population gets vaccinated 
due to the sense of safety from vaccination. The sensitivity of β to infectious population size is determined by 
the population’s dI , while the extent to which preventative measures are abandoned due to vaccine distribution is 
determined by dV . Note, from the mathematical form in Eq. (3), in the absence of vaccines, V = 0 =⇒ fV = 1 , 
which is physically and intuitively correct.

Model fit to specific regions.  Combining Eq. (2) with our dynamic behavior model in Eq. (3), we are able 
to fit the complex, multimodal infection curves observed during the course of the COVID-19 pandemic.

We take the disease mortality rate and infectious period, µ and γ (inverse of γ represents infectious period) as 
constants. The baseline transmission rate β0 was determined to be the parameter which was able to best fit the first 
rise in cases, where there was limited social response to the rise in infections. To represent the behavioral changes 
that were evident in the multiple peaks of the pandemic, we introduced multiple behavioral regions for each 
population. The model fit shows that each region had different level of caution factors (infection responsiveness) 
dI , which provides an estimate of how public perception of the disease varied in each region over the course of the 
pandemic. Each behavioral response is represented by a fixed dI and smooth transitions were implemented via 
cosine interpolation, as displayed in Fig. 2a. To reduce the risk of overfitting our model, we limited the number 
of behavioral response changes for each location and found that, for the locations that were selected, a minimum 
of either three or four behavioral regions was sufficient to accurately represent the complete reported infection 
data. The differential equation model was implemented in MATLAB.

Model parameters were fit to daily new cases time series of four states and two cities: Massachusetts, Cali-
fornia, Florida, South Dakota, New York City, and Atlanta. These regions were chosen to represent a variety of 
population densities, locations across the US, and responses to the pandemic. To determine the parameters, we 
used MATLAB’s bound-constrained optimization function37, minimizing the root mean square error between our 
model predictions and the reported number of cases per day. Simulations for each population began on March 
15 and had an initial infected population equal to the number of new cases in the previous 1

γ
 days, to estimate 

those who were still in the infectious period.
The reported infection case data is limited by the fact that tests were not universally available during the 

beginning stages of the pandemic. Additionally, certain infected populations did not show any symptoms38, but 
still may have transmitted the disease, further complicating estimates of new cases. To compare the actual case 
predictions from the model against the reported case, we introduced a factor M, which represents the number 
of actual cases per reported case. At the early stages of the pandemic, the awareness and testing was lacking but 
later on it improved significantly. We account for this by using a value of M = M0 for the initial stages of the 
pandemic which transition to a lower value of M = Mf  well into the pandemic when testing becomes widely 
available. The transition between the two values of M is taken to be smooth using a sigmoidal function and is 
shown in Fig. 1a. The variation of M with time can be represented with

where δM and tM describe the smooth transition from M0 to Mf .

Disease dynamics with vaccination.  After fitting the model to reported real-world data, the effects of 
vaccination and its potential effects on behavioral response (sense of safety) were examined. Specifically, we 
chose the state of California as a representative case, which displayed an average infectivity rate of COVID-19 
among the states and cities that we surveyed and an infection curve that was somewhat representative of the 
overall United States. Varying the vaccine distribution rate α , the sense of safety parameter dV , and the fraction 
of unvaccinated individuals Sunvaccinated in our model, we evaluated the progression of the disease by examining 
the predicted number of cases reported per day in the future. The predicted results are presented in Figs. 3, 4, 
5, and 6.

Discussion
We have developed an infectious disease dynamics model which accounts for behavioral changes in a popula-
tion considering level of caution due to growing infectious individuals as well as a counteracting trend towards 
increasing normalcy, relaxing precautionary measures due to a sense of safety from increasing vaccine deploy-
ment. Our mathematical model accurately captures the infection trends for the first year of the COVID-19 pan-
demic for all of the US regions examined with a small number of parameters. A comparison of model parameters 
between different regions allows comparative insights between them. It demonstrates direct relationships between 
population behavior model parameters and major government actions that impact population behavior. It allows 
measurement of several important population and infectious disease specific quantities including highest disease 
transmission rate β0 , disease transmission rate at any given time β , and a measure of population’s behavior to 

(3)

fI = e−dI I

fV =
1

fI
+

(

1−
1

fI

)

e−dVV

β = β0 fI fV

(4)M = Mf +
M0 −Mf

1+ eδM (t−tM )
,
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reduce the disease transmission through parameter dI , where, in the absence of significant vaccination, dI
100

>> 1 
indicates safe response, and dI

100
< 1 represents lack of caution. We found that although faster vaccine rollout 

will bring the COVID-19 end more quickly, there exist scenarios where fast vaccine rollout can give false sense 
of safety to the population, which will lead to a large short-term increase in infectious cases. This sense of safety 
could also cause weakening of restrictions by the local authorities, further exacerbating the pandemic, especially 
for areas hit with strains exhibiting lower vaccine efficacy in spite of decent vaccine coverage. We also found that 
if a large proportion of the population chooses to stay unvaccinated, this can have an adverse effect on the length 
of the pandemic. Prudence is required on the part of authorities to understand, predict, and limit any potential 
surge by increasing encouragement of all cautionary measures to prevent the spread of the virus. Our results 
indicate that in the United States, COVID-19 can be reasonably controlled by August 2021.

While our model is built on significant physical insights, population’s future behavioral aspects, presence 
of asymptomatic cases, a lack of exact knowledge about future vaccination rates, and other factors create some 
uncertainties. Therefore, although the quantitative predictions from our study are important, all possible uncer-
tainties should be considered. Due to a reasonable homogeneity of vaccine distribution in the U.S., we have 
assumed that the vaccination rate is constant over the period of interest and for each population. It is important 
to note that vaccine roll out rate varies from region to region, especially when considering different parts of the 
world. In addition, for a specific region, the vaccination rate can vary significantly over a period of time. In this 
case, the vaccination rate α can be assumed to be time dependent function in our model. In our predictions, we 
have not considered varying efficacies of vaccines against different SARS-COV-2 variants. In the future, as more 
data on the efficacy is available, this information can be incorporated in the model based predictions.

The results allow new insights into future COVID-19 trends and sensitivity of pandemic dynamics to various 
behavioral and other model parameters. As more exact information becomes available, new data can be directly 
incorporated in our model to produce more accurate results. Our study involved a reasonably diverse range of 
populations and their responses to the pandemic. The numerical values and ranges for the model parameters 
found in this study could be used as estimates to predict potential infection outcomes for scenarios where limited 
data is available (e.g., future pandemics).  The proposed model provides a new framework for predicting infection 
dynamics of future pandemics and epidemics. As model based predictions get increasingly accurate, we expect 
that they will help guide informed policy decisions for the general public.

Data availability
COVID data was obtained from the Center for Systems Science and Engineering (CSSE) COVID-19 Data 
Repository at Johns Hopkins University39. Estimates for the total population of each region were obtained from 
the United States Census Bureau40.
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