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Abstract

The Nicotine Metabolite Ratio (NMR, 3-hydroxycotinine/cotinine), a highly heritable index of 

nicotine metabolic inactivation by the CYP2A6 enzyme, is associated with numerous smoking 
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behaviors and diseases, as well as unique cessation outcomes. However, the NMR cannot be 

measured in non-, former- or intermittent-smokers, for example in evaluating tobacco-related 

disease risk. Traditional pharmacogenetic groupings based on CYP2A6 * alleles capture a 

modest portion of NMR variation. We previously created a CYP2A6 weighted genetic risk score 

(wGRS) for European-ancestry populations (EUR) by incorporating independent signals from 

genome-wide association studies to capture a larger proportion of NMR variation. However, 

CYP2A6 genetic architecture is unique to ancestral populations. In this study we developed and 

replicated an African-ancestry (AFR) wGRS which captured 30–35% of the variation in NMR. 

We demonstrated model robustness against known environmental sources of NMR variation. 

Furthermore, despite the vast diversity within AFR populations, we showed that the AFR wGRS 

was consistent between different US geographical regions and unaltered by fine AFR population 

substructure. The AFR and EUR wGRSs can distinguish slow from normal metabolizers in 

their respective populations, and were able to reflect unique smoking cessation pharmacotherapy 

outcomes previously observed for the NMR. Additionally, we evaluated the utility of a cross

ancestry wGRS, and the capacity of EUR, AFR, and cross-ancestry wGRSs to predict the NMR 

within stratified or admixed AFR-EUR populations. Overall, our findings establish the clinical 

benefit of applying ancestry-specific wGRSs, demonstrating superiority of the AFR wGRS in 

AFRs.
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Introduction

Cigarette smoking is the leading cause of preventable death in the USA(1). Smoking 

behaviours and related disease risk differ between ancestral populations. Although 

Americans of African ancestry (AFR) have a comparable smoking prevalence to those 

of European ancestry (EUR), they have a higher incidence of lung cancer(2, 3) yet 

paradoxically smoke fewer cigarettes per day (CPD)(4–6). However, CPD is not an accurate 

measure of tobacco consumption, owing to differences in smoking intensity; quantification 

of nicotine intake biomarkers would better reflect differences in smoking consumption than 

self-reported measures(7). AFR smokers are also more likely to make a quit attempt, but 

less likely to succeed, than EUR smokers(8, 9). Identifying factors contributing to unique 

smoking behaviours in AFR may assist in tailoring treatment.

Nicotine, the primary psychoactive component in cigarettes,(10) is metabolized to 

cotinine and then to 3-hydroxycotinine in reactions mediated by CYP2A6(11, 12). The 

3-hydroxycotinine/cotinine ratio, or nicotine metabolite ratio (NMR), is a biomarker of 

CYP2A6 activity(13). The NMR is highly correlated with nicotine clearance(13) thus 

altering smoking behaviours, including acquisition(14), quantity(15–17), topography(18), 

dependence(16, 17, 19), and related diseases(17).

The NMR is useful for personalizing smoking cessation(20–24).For example, the 

Pharmacogenetics of Nicotine Addiction and Treatment 2 (PNAT2, [NCT01314001]) trial 
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prospectively randomized smokers by their baseline NMR: normal metabolizers (i.e. higher 

NMR) had greater quit rates on varenicline versus the nicotine patch, whereas slow 

metabolizers (i.e. lower NMR) had similar quit rates(22).

Ad-libitum NMR is measured during regular smoking from a saliva or blood sample; NMRs 

derived from saliva, plasma, and whole blood are highly correlated(25). This requirement 

makes it difficult to assess the impact of CYP2A6 activity in intermittent- and non-smokers 

in the pathogenesis of several diseases (e.g. COPD and lung cancer)(26, 27) and on the 

metabolism of other clinical drugs (e.g. Tegafur, Letrozole, and Efavirenz)(28).

The NMR is highly heritable (h2~0.60–0.80)(29), thus it should be predictable using a 

genetic risk score. An NMR genetic risk score would be important for non/irregular smokers 

and in studies where only DNA is available. In EUR smokers approximately 20% of NMR 

variation is captured by CYP2A6 * alleles(30). The * allele nomenclature system (see 

pharmvar.org) describes unique haplotypes mostly indicative of protein coding and structural 

variants in pharmacogenes(31–33). The relatively low portion of variation explained by 

CYP2A6 * alleles prompted several genome-wide association studies (GWASs) of the 

NMR, conducted predominantly in EURs(29, 34–36). Over 96% of genome-wide significant 

variants identified in a meta-analysis of >5,000 EUR smokers are around the CYP2A6 gene 

locus(37).

The genetic architecture (linkage disequilibrium (LD) structure and allele frequencies) of 

CYP2A6 differs by ancestry, necessitating the identification of population-specific genetic 

variants influencing the NMR. In our NMR GWAS performed in AFRs(35), a high (97%) 

proportion of variants were found in/around CYP2A6(35) as found in EUR(37). However, 

~60% of the CYP2A6 variants that reached genome-wide significance in AFR were not 

among those found in EUR(35), emphasizing the unique ancestral CYP2A6 architecture. 

Few studies have assessed the influence of population substructure on CYP2A6 variant 

associations beyond broad continental categorizations. Thus, there is little knowledge in 

how ancestral subpopulations may affect these associations, and whether this influences 

allele functional heterogeneity. Additionally, the genetic architecture of AFR-EUR admixed 

populations, mostly excluded in ancestry-stratified GWASs, is largely unknown.

The CYP2A6 gene shares ~95% homology with the pseudogene CYP2A7. Due to high 

homology and the presence of structural variants, inaccurate sequencing in this region leads 

to poor imputation with current reference panels. Consequently, it is difficult to accurately 

capture several low frequency (MAF<5%) (*20, *23, *25, *28, *31, *35) and structural 

(*1X2, *1B, *4, *12) * alleles in the CYP2A6 gene through GWAS microarrays. Integrating 

these difficult-to-genotype * alleles via targeted sequencing or qPCR approaches, with the 

independent signals identified by GWASs, could capture a larger portion of NMR variability.

A multiplicative gene scoring model was published(38) based on a phenotype of first pass 

metabolism of oral nicotine (cotinine/cotinine+nicotine)(38) however it did not capture 

variation in the NMR(39). We previously developed an additive weighted genetic risk score 

(wGRS) approach for the NMR in EURs, where seven CYP2A6 variants (independent 

signals from GWAS and * alleles) captured ~34% of NMR variation(39), but only 20% 
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of the NMR variation in AFRs as genetic risk scores do not transfer between ancestral 

populations(40, 41). Thus, the clinical utility of genetic risk scores generated from existing 

GWASs (conducted mostly in EUR) will continue to disproportionally benefit EUR(40, 41).

We sought to (1) develop and validate a wGRS to predict the NMR in AFR, (2) understand 

whether smoking characteristics or population substructure would confound the application 

of this wGRS, (3) examine the clinical utility of the wGRS in predicting smoking cessation 

outcomes, (4) create and evaluate an AFR-EUR cross-ancestry wGRS and compare it to 

the ancestry-specific wGRSs, and (5) evaluate the applicability of the EUR, AFR, and 

cross-ancestry wGRSs within an admixed AFR-EUR population.

Methods

Study Populations:

The studies were approved by institutional review boards at all participating sites.

Training Set: AFR smokers (N=954) screened for two smoking cessation clinical trials: 

the PNAT2 [NCT01314001] and the Kick It at Swope 3 (KIS3) [NCT00666978] trials 

(Table S1), where ancestry was both self-reported and confirmed by principal component 

(PC) clustering to the HapMap3 AFR population (predominately the African ancestry in 

Southwest USA (ASW) and the Yoruba in Ibadan, Nigeria (YRI) subpopulations). Of note, 

the ASW HapMap3 subpopulation consists of a narrow degree of EUR admixture, herein 

we define these individuals as AFR. The PNAT2 participants were recruited from 4 different 

sites: Philadelphia, Buffallo, Houston, and Toronto. The KIS3 participants were recruited 

exclusively from Kansas City. PNAT2 included only heavy smokers (≥10 CPD), whereas 

KIS3 included only light smokers (≤10). Clinical trial details are described elsewhere(22, 

42).

Replication Set: AFR smokers (N=216) screened for the Quit-2-Live (Q2L) clinical trial 

[NCT01836276], where ancestry was self-reported. The Q2L participants were recruited 

exclusively from Kansas City. Q2L included a combination of heavy and light smokers. 

Clinical trial details are described elsewhere(9).

Admixed Set: Individuals of admixed AFR and EUR ancestry (N=68) excluded from 

the AFR and EUR subsets in the training set because they were on the cline between 

the AFR and EUR HapMap3 reference populations as determined by PCA, representing 

approximately equal admixture of AFR and EUR ancestry.

Genotyping:

A variety of array imputation, targeted sequencing, and qPCR approaches were used to 

genotype all variants across the three studies. Details are described in the supplementary 

material.

Principal Components Analysis (PCA):

Ancestry clustering for the training set was performed through PC clustering with the 

HapMap3 project reference populations as described(35): 98.5% and 96.6% of African
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ancestry smokers in the PNAT2 and KIS3 trials, respectively, had genetic ancestries 

concordant with self-reported ancestry(35). Refined AFR population substructure was 

assessed by merging the training set with the AFR subpopulations included in the phase 

3 release of 1000 Genomes (1KG).

AFR wGRS:

16 variants were tested from two sets. Set 1 included 4 GWAS independent signals 

identified in conditional analyses in a meta-analysis comprised of exclusively AFR smokers: 

rs12459249, rs111645190, rs185430475, and rs11878604(35). This did not include variants 

from NMR GWASs in multi-ethnic or EUR cohorts, such as rs56112850(39, 43), as it was 

not identified as a GWAS independent signal among exclusively AFR smokers, although 

these were tested later in a cross-ancestry wGRS discussed below(35). Set 2 included 12 

CYP2A6 * alleles common in AFR populations (MAF>1%) listed on pharmvar.org; set 

2 represent functional variants that could be missed in GWAS analyses owing to their 

low frequency (most MAF<5%). These include single nucleotide, insertion/deletion, and 

structural variants that are often excluded from microarrays: *1X2 (gene duplication), 

*1B (58 base-pair gene conversion in the 3′ UTR of CYP2A6), *4 (gene deletion), *9 
(rs28399433), *12 (gene hybrid), *17 (rs28399454), *20 (rs568811809), *23 (rs56256500), 

*25/*26/*27 (all tagged by rs28399440), *28 (rs28399463), *31 (rs72549432), and *35 
(rs143731390). The analysis outline including the populations used and the variant selection 

process is highlighted in (Figure 1).

An additive wGRS was developed based on the variation in the log-transformed NMR 

(log-NMR) in the training set. Variants were selected by backward stepwise regression after 

inputting all sixteen variants (sets 1 and 2). Additional models were assessed using either 

all the variants from set 1, or set 2, as a base model and assessing the contribution to the 

variance (R2) captured after entering additional variants stepwise. Scores were created by 

summing the number of risk alleles weighted by their unstandardized effect sizes. The use of 

unstandardized betas was used to retain the unit of measurement from the GWAS analysis, 

whereas standardized variables invite bias due to sampling error. Betas were estimated 

from frequentist additive linear regression models (using SNPTEST, version 2.5.2)(44) of 

square-root transformed NMR (sqrt-NMR) in a meta-analysis of the training set, adjusted for 

PCs 1 and 2, sex, age, and body mass index (BMI), and unstandardized through multiplying 

betas by the standard deviation (SD) of the sqrt-NMR in the training set (SD=0.181). Details 

on how to evaluate an individual’s wGRS are included in the supplementary material.

EUR wGRS: A CYP2A6 wGRS defined for EUR is described elsewhere(39), where the 

EUR training set included the EUR subset of the PNAT2 trial, where ancestry was self

reported and confirmed by PC clustering to the HapMap3 EUR population (exclusively the 

Utah residents with Northern and Western European ancestry (CEU) subpopulation). Briefly 

the final wGRS included 7 variants: independent signals from EUR GWAS (rs56113850, 

rs2316204, rs113288603) and CYP2A6 * alleles common in EUR populations (*2, *4, *9, 
*12). The analysis outline including the populations used and the variant selection process is 

highlighted in (Figure 1).
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Cross-ancestry wGRS:

To create a cross-ancestry wGRS, a meta-analysis was performed including all EUR and 

AFR CYP2A6 wGRS variants, adjusting for population substructure and demographic 

covariates (using META, version 1.7). Both the inverse-variance method based on a fixed 

effects model, and a random effects model were tested. The analysis outline including the 

populations used and the variant selection process is highlighted in (Figure 1).

Statistical Analysis, Phenotype, and Covariates:

Beyond calculating variant betas (SNPTEST, version 2.5.2), all other statistical analyses 

were performed using SPSS version 20 (IBM Corporation) and MedCalc version 17.4 

(MedCalc Software). The NMR (cotinine and 3-hydroxycotinine metabolites) were 

measured from whole blood(25) collected at intake in each study while participants were 

smoking ad-libitum. The NMR was not normally distributed (by the Shapiro-Wilk test) 

and was therefore log-transformed, which best represents the nicotine clearance rate(45). 

Linear regression assessed log-transformed NMR (log-NMR) variation accounted for by the 

wGRS models, with and without the addition of demographic covariates known to alter 

NMR (i.e. sex, age, and BMI)(46). Additional factors were also evaluated (i.e. mentholated 

cigarette use and nicotine intake). Nicotine intake was assessed as self-reported CPD and 

as a biological measure consisting of the sum of nicotine’s major metabolites, free cotinine 

and 3-hydroxycotinine (COT+3HC)(15, 47). Receiver Operating Characteristic (ROC) curve 

analyses were conducted with an NMR definition of normal metabolizers (≥0.31) which was 

used to randomize PNAT2 participants to treatment(22, 39). The Youden’s J index was used 

to determine the criterion for the optimal cut-point in the wGRS to dichotomize slow (<0.31) 

and normal metabolizers (≥0.31). Logistic regression was used to evaluate end-of-treatment 

quit rates (nicotine patch vs. varenicline) within slow and normal metabolizers defined by 

NMR or by the wGRS. An interaction between treatment and metabolizer group was also 

evaluated as the ratio of odds ratios (ORRs)(22).

Results

AFR Weighted Genetic Risk Score

Sixteen variants were evaluated. Backward stepwise regression identified a final set of 11 

variants that provided optimal prediction of the log-NMR phenotype (Table 1). Versions of 

the model including rs11878604 or other common CYP2A6 * alleles (*1B, *23, *28, and 

*31) (Table 1) yielded poorer fit to the NMR and were consequently eliminated by stepwise 

regression.

The final wGRS model explained 32.4% of log-NMR variance in the training set (Figure 

2A). In the replication set (N=216), the wGRS explained 34.3% of the variance in log-NMR 

(Figure 2B). When sex, age, and BMI were included in the model, the overall log-NMR 

variance captured was 36.6% in the training set, and 39.3% in the replication set. When 

stratifying by sex, the wGRS explained 35.0% of the variation in males (N=401) and 30.5% 

in females (N=553) in the training set.
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The wGRS captured more variation in the log-NMR in the training and replication sets than 

previous methods used to classify individuals by CYP2A6 * alleles into slow, intermediate, 

or normal metabolizers(48) (Figure 3A). The semi-continuous range of values of the wGRS 

can be used directly or grouped (e.g. by splitting the wGRS scale into tertiles (Figure 3B) or 

quintiles (Figure 3C)).

Generalizability Across Different Subpopulations

The log-NMR variation captured by the wGRS was similar between the two clinical trials 

within the training set (PNAT2: 30.7% and KIS3: 35.8%) despite their baseline differences 

in smoking characteristics. PNAT2 was restricted to those smoking ≥10 CPD while KIS3 

was restricted to those smoking ≤10 CPD. Likewise, the log-NMR variation captured was in 

a similar range in the replication set clinical trial (Q2L, 34.3%; Figure 2B) which included 

equal proportions of those smoking ≤10 and ≥10 CPD.

The wGRS was also compared between the geographical recruitment sites (Figure S1). 

The baseline demographics did not differ between the PNAT2 (Buffalo, Philadelphia, and 

Houston) and KIS3 (Kansas City) recruitment sites, apart from self-reported CPD in Kansas 

City as discussed above(42) (Table S1). The log-NMR variation captured by the wGRS 

was similar across most of the geographical sites (Table S2). Likewise, similar proportions 

of variation were captured by the EUR CYP2A6 wGRS(39) among EUR, after stratifying 

by recruitment site (Table S3). After controlling for population substructure (PCs 1+2) 

there was a negligible influence on the variance captured by the AFR wGRS across the 

geographical recruitment sites in the training set (Table S2), (PCs 1+2 yielded similar results 

to controlling for PCs 1–10; data not shown). In addition, demographic covariates such as 

sex, age, BMI, smoking levels and mentholated cigarette use did not reduce the ability of the 

wGRS to capture log-NMR variation (Table S2), as seen before with the EUR wGRS(39). 

Furthermore, no significant differences among allele frequencies were observed (Table S4).

Due to the genetic diversity among North American AFR populations, fine population 

substructure may affect the utility of an AFR wGRS. Thus, PCs were revaluated in 

combination with the phase 3 release of 1KG AFR subpopulations to determine whether 

different US regional zones (Buffalo, Philadelphia, Houston, and Kansas City) clustered 

with different AFR subpopulations in 1KG (Figure 4). Most participants from the PNAT2 

and KIS3 trials, either together (Figure 4A) or split by the multiple geographical recruitment 

sites (Figures 4C&D), overlapped with the African Caribbean (ACB) and/or the Southwest 

American (ASW) subpopulations from the 1KG project (Figure 4B), suggesting that the 

AFR populations from these recruitment sites are relatively homogenous. Similar findings 

were observed when restricting the PCA to the most similar 1KG subpopulations (ACB, 

ASW, and YRI) (Figure S2).

Clinical Utility of the wGRS

The wGRS model showed fair diagnostic ability to discriminate between slow (NMR<0.31) 

and normal (NMR≥0.31) metabolizers, yielding a significant area under the curve (AUC) 

of 0.73 (95% confidence interval (CI), 0.70–0.76) in the training set (Figure S3A), and 

0.77 (95% CI, 0.71–0.84) in the replication set (Figure S3B). The Youden index J 
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statistic indicated an optimal cut-point wGRS≥2.089 to best identify normal metabolizers 

(NMR≥0.31) in both the replication and training sets.

In the primary analysis of the published PNAT2 clinical trial, 838 multiracial smokers 

were randomized to treatment based on pre-treatment NMR(22). Normal metabolizers 

(NMR≥0.31) experienced significantly higher end-of-treatment quit rates on varenicline 

compared with the nicotine patch, while slow metabolizers (NMR<0.31) had similar quit 

rates on varenicline and the nicotine patch(22). This resulted in a significant NMR-by

treatment interaction (ratio of odds ratio, ORR=1.89; 95% CI, 1.02–3.45; Figure 5A). 

Of the 838 smokers, 404 were EUR and 275 were AFR. Of note, while 504 PNAT2 

AFR smokers were assessed for baseline NMR at the recruitment screen and included 

in the training set described above, 229 were not randomized to treatment, leaving 275 

AFR randomized to active treatment. In the combined EUR and AFR subset (N=679) 

that were randomized to the varenicline or nicotine patch treatment arms, a similar NMR

by-treatment interaction on quitting was observed (ORR=2.25; 95% CI, 1.15–4.45; Figure 

5B). Using the wGRS previously published for EUR(39) and the wGRS described here 

for AFR, the pooled EUR+AFR stratified analyses reproduced a similar wGRS metabolism 

group-by-treatment interaction on quitting (ORR=2.12; 95% CI, 1.08–4.15; Figure 5C). The 

relative treatment effects within the normal metabolizer group were comparable between the 

three approaches: normal metabolizers showed significantly higher quit rates on varenicline 

versus nicotine patch defined by the NMR in the N=838 multi-racial dataset (OR=2.17, 

P<0.01; Figure 5A), defined by the NMR in the N=679 EUR+AFR subset (OR=2.72, 

P<0.01; Figure 5B), and defined by the respective wGRSs in the N=679 EUR+AFR subset 

(OR=2.40, P<0.01; Figure 5C). Likewise, the lack of differences between the treatment 

groups within slow metabolizers were observed using the three respective approaches: 

(OR=1.13, P=0.56; Figure 5A; OR=1.21, P=0.42; Figure 5B and OR=1.13, P=0.63; Figure 

5C). When examining just the subset of AFR smokers in the trial (N=275), similar treatment 

effects were observed to the overall group (Figure 5) by the NMR (Figure S4A) and by the 

AFR wGRS (Figure S4B). A summary of the populations used and the wGRS applied for 

each clinical (smoking cessation) analysis is summarized in (Figure S5)

Ancestry-specific vs Combined Cross-ancestry wGRSs

Genetic risk scores incorporating ancestry-specific variants rarely function across 

populations(40, 41). We examined whether the CYP2A6 wGRS designated for one 

population worked for the other. Our AFR wGRS explained 32.4% and 20.0% of the 

log-NMR variance in the AFR and EUR training sets, respectively (Table 2). The EUR 

wGRS(39) explained 33.8% and 18.2% of the log-NMR variance in the EUR and AFR 

training sets, respectively (Table 2). Next, a cross-ancestry wGRS that may function across 

ancestral populations was evaluated. The variants from both the AFR and EUR wGRSs 

were meta-analyzed through a fixed-effects model and combined to create a 15-variant 

cross-ancestry wGRS (Table S5). The random effects model yielded similar effect sizes to 

the fixed-effects model. The cross-ancestry wGRS explained 33.2% of the variance in log

NMR when merging the EUR (N=933) and AFR (N=954) populations (total N=1887) (Table 

2). Moreover, the cross-ancestry wGRS explained 25.0% of the variance in EUR (N=933), 

and 34.7% of the variance in AFR (N=954) (Table 2). However, the cross-ancestry wGRS 
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did not yield a significant metabolizer by treatment interaction (Figure S6A), unlike when 

using the ancestry-specific wGRSs together (Figure 5C). Furthermore, the cross-ancestry 

wGRS was unable to distinguish treatment differences within the AFR normal metabolizers 

(Figure S6B).

To improve integration, we tested the utility of transforming the respective ancestry-specific 

wGRSs onto the same scale. We calculated the predicted log-NMR from the respective 

equations of the lines of best fit in the training set. For AFR, the predicted log-NMR = 

1.0502 (AFR wGRS score) - 2.7042 (Figure 2A), and for EUR, the predicted log-NMR 

= 0.684 (EUR wGRS) - 1.9417(39). Using this predicted log-NMR approach, 35.9% and 

35.5% of NMR variance was captured in the merged AFR+EUR training (Table 2) and 

replication sets (Figure S7), respectively.

AFR-EUR Admixed populations

Sixty-eight participants were deemed AFR-EUR admixed (Figure S8). The CYP2A6 wGRS 

developed in EUR captured 42.4% of the variation in log-NMR in the admixed group, 

while the AFR and cross-ancestry wGRSs captured 33.1% and 22.5% of the variance, 

respectively. However, these values are likely imprecise due to the small sample size of 

admixed participants in our study (N=68).

Discussion

We created a CYP2A6 genetic risk score specifically for AFR, based on a set of independent 

signals identified from an NMR GWAS conducted in AFR smokers with CYP2A6 * alleles 

found in AFR (Table 1). The increase in variation captured by the wGRS (30–35%) reflects 

the benefit of merging these two unique variant sets. The variation explained by the AFR 

wGRS was not reduced when accounting for several known and established demographic 

sources of variation in the NMR (Table S2). Furthermore, the wGRS captured a similar 

proportion of variation in a replication set (a group independent of the training set) (Figure 

1B), when splitting by sex, by variation in smoking levels, and by most US geographical 

regions (Table S2), indicating that the effect size estimates are precise and robust. This 

suggests that this AFR wGRS should be applicable to the majority of AFR populations in 

the US.

The samples in our training set represented a narrow range of population substructure 

relative to the 1KG AFR reference subpopulations, mostly overlapping with the ACB and 

ASW 1KG subpopulations (Figure 4; Figure S2). This suggests that AFR substructure 

within the US does not vary substantially by the geographical locations included in our 

training dataset, or alternatively that the PCA along the AFR subpopulations included 

in 1KG are not sufficient to distinguish population substructure if it exists. It would be 

useful, going forward, to test the wGRS in other AFR world subpopulations. Less log-NMR 

variation captured by the wGRS in one recruitment site (Houston) of the training set 

in comparison to all other sites; this did not appear to be due to known demographic 

factors, population substructure, or CYP2A6 allele frequency differences (Table S2, Figure 

4, Table S4). In contrast, among the EUR training set the variation captured by the 

EUR wGRS was consistent among all recruitment sites, including Houston, (Table S3). 

El-Boraie et al. Page 9

Clin Pharmacol Ther. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This unexplained difference may be due to a gene-environment interaction, or unknown 

demographic or environmental influences, that affects the AFR sample in Houston. Specific 

gene-environment interactions among AFR, that do not occur among EUR, have been 

previously published(49).

A semi-continuous metric, like our wGRS, is advantageous because it replicates previous 

metabolizer groupings (Figure 3B) and creates more refined groupings for different purposes 

(e.g. studying slow and fast CYP2A6 metabolizer extremes) (Figure 3C). Through ROC 

analyses, we demonstrated that the AFR wGRS shows fair diagnostic ability to distinguish 

normal from slow CYP2A6 metabolizers, based on an NMR cut-point (i.e. 0.31) that has 

been implicated in unique smoking cessation clinical trial outcomes (Figure S3).

When the EUR and AFR populations in PNAT2 were combined using their respective 

wGRSs, similar interaction effect sizes (ORRs) were observed (Figure 5); further, the 

same treatment effects were observed when splitting into EUR(39) and AFR subgroups, 

demonstrating that normal metabolizers benefit from varenicline over nicotine patch 

treatment (Figure S4). The ability to replicate smoking cessation outcomes indicate that the 

wGRSs could be extended to identify other clinical relationships relating to the CYP2A6 
gene, including metabolism of several clinical substrates and risk for tobacco-related 

diseases.

Like polygenic/genetic risk scores described for other phenotypes(40, 41), there is limited 

ability to utilize the ancestry-specific EUR and AFR CYP2A6 wGRSs in other ancestries 

(Table 2). The lack of transferability of the wGRSs is likely explained by the differences 

in the genetic architecture between ancestral populations: there are differences in the 

frequencies and effect sizes of CYP2A6 variants, both * alleles and GWAS hits (Table 

S5).

We created a cross-ancestry wGRS by meta-analyzing the two training sets with equal 

numbers of AFR and EUR. This approach captured sufficient NMR variation yet showed 

weak predictive power when stratifying by ancestry (Table 2), and did not recapitulate 

the clinical outcomes as well as the ancestry-specific wGRSs did (Figure S6). While the 

cross-ancestry wGRS captured a similar fraction of variation in the AFR group, it was not as 

effective for EUR and thus was weak as a cross-ancestry wGRS. For both populations fewer 

variants are required, and more or equal variation is captured, using the ancestry-specific 

wGRS. The similarity in the variation captured by the AFR and cross-ancestry wGRS 

suggests that the included independent signals from the AFR GWAS already capture the 

variation that would have been explained by variants from multi-ethnic or EUR GWASs (e.g. 

rs56113850). A better approach to integrate analyses including both ancestral populations 

would be to convert the ancestry-specific wGRSs on to the same scale (i.e. the predicted 

log-NMR). This captured more of the variation in log-NMR compared to the cross-ancestry 

wGRS in both the merged AFR-EUR training and replication sets (Table 2; Figure S7).

In the admixed AFR-EUR population, more of the variation was captured by the EUR 

wGRS, than by the AFR or cross-ancestry wGRS, suggesting that the independent signals 

in the EUR wGRS are the most universal at tagging causal variants. Indeed, the top SNP 
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(rs56113850) found in NMR GWASs in EUR was also the top SNP in a multi-ethnic 

NMR GWAS(36). However, the small sample of admixed individuals in our study (n=68) 

calls for increased inclusion and comprehensive analyses to extend these findings. Further, 

identifying causal variants unhindered by LD structure differences will likely lead to 

universal genetic risk scoring models with wider applicability.

Several limitations should be noted. The fraction of log-NMR variation explained by the 

wGRS is less than the heritability estimates for the NMR (60–80%), suggesting unaccounted 

for genetic variation. Nighty-eight hits were identified in the NMR GWAS in AFRs(35), 

mostly in, or around, the CYP2A6 gene - thus genetic risk score approaches more sensitive 

to high LD between variants may improve variant weight calculation(50). Nevertheless, our 

current approach was more successful than standard polygenic risk score (PRS) approaches, 

capturing 34% of the variation in NMR(39) compared to a standard PRS model which 

captured 9.2–16%(51). The lack of PC-determined ancestry in the replication cohort is 

another limitation, however a similar proportion of variation was captured suggesting 

minimal hindrance to the application of the wGRS. The smaller portion of PNAT2 which 

was AFR also reduced statistical power for the interaction effect (ORR) within the 

population, although the ORR was of similar magnitude. Finally, the very small number 

of admixed individuals limited interpretation of this data.

In conclusion, we have derived an AFR CYP2A6 genetic risk score to complement one 

developed for EUR(39). The models replicate into external samples and were unaffected by 

known demographic factors. These metrics can adequately distinguish metabolizer groups 

and reflected clinical outcomes captured by the NMR. Currently, ancestry-specific CYP2A6 
wGRSs are more reflective of the NMR than a cross-ancestry wGRS, so we recommend 

using ancestry-specific wGRSs and aligning the scores by calculating a predicted NMR 

where necessary. The AFR wGRS for NMR can advance our understanding of the role 

of CYP2A6 variation in differences in smoking behaviours and related diseases in AFR 

populations, as well as metabolic influences on other CYP2A6 substrates. More broadly, 

developing population-specific genetic risk scores are an important future direction to 

help investigate population differences in the susceptibility for disease, and for differential 

responses to pharmacotherapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

What is the current knowledge on the topic?

CYP2A6 * alleles capture a modest portion of the variation in CYP2A6 activity. 

Incorporation of GWAS analyses to develop genetic risk scores (GRSs) have enhanced 

the fraction explained in European populations, however, limited data exists on how these 

GRSs extend to other populations including African and admixed African-European.

What question did this study address?

How transferable is a European-specific GRS to African or admixed populations in 

predicting metabolizer status and reflecting unique metabolizer clinical outcomes? If not, 

would an African-specific GRS be more effective?

What does this study add to our knowledge?

Highlights the importance of ancestry-specific genetic risk scores and adds a new genetic 

scoring algorithm specifically for African populations.

How might this change clinical pharmacology or translational science?

Careful consideration of the ancestral makeup of the population is important before 

applying GRSs which will be a valuable tool in improving the prediction of metabolizer 

status. An African-specific GRS will help investigate population differences in disease 

susceptibility and pharmacotherapy responses.
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Figure 1. 
Flowchart for the A) Ancestry-specific and B) Cross-ancestry wGRS analyses. The training 

sets consisted of individuals screened from two trials (PNAT2 and KIS3) and where ancestry 

was determined through PC clustering analysis to the HapMap3 populations. Variants tested 

included GWAS independent signals and * alleles from the specified population. For the 

cross-ancestry wGRS, all ancestry-specific wGRS variants were merged.
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Figure 2. 
Linear regression analyses of the relationship between the wGRS and log-transformed NMR 

in the A) training set (N=954; combined PNAT2 and KIS3 trials), and B) replication set 

(N=216; Q2L trial). The wGRS explained A) 32.4% of the variance in log-NMR in the 

training set and B) 34.3% in the replication set
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Figure 3. 
Tukey box-and-whisker plots of nicotine metabolite ratio (NMR) distributions by genotype 

grouping. Data from the training set (N=954) is grouped as a function of A) * 

allele groupings; SM, slow metabolizers; IM, intermediate metabolizers; NM, normal 

metabolizers(48), V/V, two variant * alleles, B) wGRS scale (1.378–2.332) split into tertiles 

(T, tertile) and C), weighted genetic risk score (wGRS) scale (1.378–2.332) split into 

quintiles (Q, quintile)
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Figure 4. 
Principal component analyses showing fine AFR population substructure. Principal 

components were computed from merging the 1KG AFR subpopulations and the training set 

(PNAT2+KIS3 AFR) samples. A) 1KG AFR subpopulations and training set (PNAT2+KIS3 

AFR) participants plotted. B) 1KG AFR subpopulations plotted only. C) PNAT2 participants 

split by geographic recruitment sites plotted only. D) KIS3 participants plotted only.

(ACB: 1KG African Caribbeans; ASW: 1KG Southwest Americans; LWK: 1KG Luhya; 

ESN: 1KG Esan; GWD: 1KG Gambian; MSL: 1KG Mende; YRI: 1KG Yoruba).
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Note: The PNAT2 Toronto site was excluded from the analyses in this Figure to the small 

sample size (N=14)
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Figure 5. 
End-of-treatment quit rates in the PNAT2 trial by treatment and metabolizer group. Odds 

ratios (OR) with 95% confidence intervals (CI) comparing the efficacy of varenicline 

versus the nicotine patch. Metabolizer-by-treatment interaction effects --were evaluated by 

the ratio of odds ratios (ORR) with 95% CI. (A) NMR stratification (slow: NMR<0.31, 

normal: NMR≥0.31) in the complete varenicline and nicotine patch treatment arms from 

intent-to-treat dataset (N=838)(22). (B) NMR stratification (slow: NMR<0.31, normal: 

NMR≥0.31) in the genetically determined AFR and EUR subset of the varenicline and 

nicotine patch treatment arms (N=679), and (C) AFR wGRS + EUR wGRS stratification 

(slow: wGRS<2.089 in AFR or 2.140 in EUR, normal: wGRS ≥2.089 in AFR or 2.140 in 

EUR) in the genetically determined AFR and EUR subset of the varenicline and nicotine 

patch treatment arms (N=679)
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Table 1.

The sixteen variants tested, with the final eleven variants included and the five variants excluded in the 

African-ancestry (AFR) CYP2A6 weighted genetic risk score (wGRS).

Reference 

Allele
B Risk Allele Location with respect to CYP2A6 

gene
Beta per Risk 

Allele
Weight per 

Risk Allele
C

Included Variants

rs12459249 
A T C 10KB 3’ +0.591 +0.107

rs111645190 
A G A 5KB 5’ −0.624 −0.113

rs185430475 
A C G 10MB 3’ +0.287 +0.052

*1×2 (CYP2A6 Duplication) - Duplication Full Gene Duplication +0.361 +0.065

*4 (CYP2A6 Deletion) - Deletion Full Gene Deletion −0.819 −0.148

*9 (rs28399433) A C Promoter (TATA Box) −0.457 −0.083

*12 (CYP2A6/2A7 Hybrid) - Hybrid Translocation of Exons 1–2 −0.538 −0.097

*17 (rs28399454) C T Exon 7 (V365M) −0.683 −0.124

*20 (rs568811809) TT - Exon 4 (196 Frameshift) −0.862 −0.156

*25/*26/*27 (rs28399440) A G Exon 3 (F118L) −0.714 −0.129

*35 (rs143731390) T A Exon 9 (N438Y) −0.312 −0.057

*1 (No wGRS Variants) - - - - 0.000

Excluded Variants

rs11878604 
A T C 16KB 3’ −0.654 −0.118

*1B (58 BP Conversion) - Conversion UTR 3’ +0.186 +0.034

*23 (rs56256500) G A Exon 4 (R203C) +0.051 +0.009

*28 (rs28399463) T C Exon 8 (N418D) +0.037 +0.007

*31 (rs72549432) T G Exon 1 (M6L) +0.414 +0.075

KB: kilobases. BP: base pair. UTR: untranslated region.

A
Independent signals identified from conditional analyses in the NMR meta-GWAS of PNAT2 and KIS3 AFR smokers (training set)

B
Reference alleles are in relation to the positive strand of the GRCh37 genome orientation

C
The change in NMR, and thus the ‘weight per risk allele’ was estimated by accounting the standard deviation (SD) of NMR in the training set 

sample (SD=0.181)
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Table 2.

Linear regression analysis of the relationship between respective wGRSs (European-ancestry specific, 

African-ancestry specific, predicted log-NMR calculated from the respective ancestry specific wGRSs, and 

a cross-ancestry specific) and log-transformed NMR in different ancestral populations in the PNAT2 and KIS3 

clinical trials (i.e. training sets for AFR and EUR wGRSs). Values represent unique variance explained by the 

wGRS. P<0.001 unless otherwise indicated.

Variance uniquely explained by wGRS

Predictor AFR Training Set PNAT2+KIS3 
(N=954)

EUR Training Set PNAT2 
(N=933)

Merged AFR+EUR Training Set 
PNAT2+KIS3 (N=1887)

AFR wGRS 0.324 0.200 0.300

EUR wGRS 0.182 0.338 0.261

Predicted log-NMR (AFR or 
EUR wGRS) - - 0.359

Cross-ancestry wGRS 0.347 0.250 0.332
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