Skip to main content
. 2020 Oct 29;13:13. doi: 10.1007/s40820-020-00522-1

Table 3.

CNBCs for metal-ion batteries LIBs, SIBs and PIBs

Battery type Materials Synthesis Morphology Initial capacity (mAh g−1) ICEa Reversible capacity (mAh g−1) References
LIBs huCP/g-C3N4 Hydrothermal treatment Carbon fibers with large pores and hollow structure 1199 @ 1 A/g ~ 93% 1030 @ 1000 cycles [147]
g-C3N4–rGO In-situ chemical synthetic approach 2D sheets 3002 @ 100 mA/g 57% 1525 @ 50 cycles [108]
CN-rGO Hydrothermal synthesis 3D Sandwich architecture  1632 @ 50 mA/g 41.3% 970 @ 300 cycles [130]
g-C3N4@rGO Hydrothermal reaction Spongy, porous, and tangled ultrathin sheets 2731 @ 0.1 C ~89% 901 @ 50 cycles [131]
SN/CN Hydrothermal Cauliflower-like morphology  733 @ 0.1 C 55.4% ~420 @ 60 cycles [132]
SnO2@C3N4 Scalable solid-state reaction Porous and wrinkled material 1200 @ 0.1 C ~50% 550 @ 100 cycles [149]
TiO2@CNS (TCNS) Self-assembly approach/hydrothermal Spherical Core–shell particles 359 @ 0.1 C ~90% 303 @ 125 cycles [100]
Zn2GeO4/g-C3N4 Facile solution approach ultrathin nanosheet. 1068 @ 200 mA/g 58.6% 1370 @ 140 cycles [109]
LIBs NiCo2O4/g-C3N4 Facile ultrasonic treatment Nanosheet structure 1367 @ 100 mA/g 84.5% 1252 @ 100 cycles  [150]
Li4Ti5O12/g-C3N4 Solvothermal method Nanoparticles 173.7 @ 0.5 C 150.8 @ 502 cycles [133]
Nitrogen-doped LTO/C (NCLTO)  Thermal decomposition  Irregular sized nanoparticles 189 @ 1 C ~92% 122 @ 500 cycles [109]
CuO/O-doped g-C3N4 Hydrothermal Nanospheres 980 @ 100 mA/g 94.7% 738 @ 100 cycles  [101]
3D N-rich C3N4@MoS2 Hydrothermal Nanosphere 2390 @ 0.1 C ~74% 857 @ 50 cycles [154]
MoS3/g-C3N4–H+/GO Sonication/thermal treatment 2D sheet-like structure 1728 @ 0.1 mA/g 1450 @ 200 cycles [103]
MoS2/g-C3N4 Thermal treatment (calcination) Spherical particles 2467 @ 0.05 C ~41% 1204 @ 200 cycles [175]
WS2/g-C3N4 Solid-state reaction Nano-sized petal-like sheets 1933.6 @ 100 mA/g 63.6% 622.7 @ 400 cycles [156]
SnS2/CN Microwave hydrothermal method Nanoflower 1465.9 @ 100 mA/g 47% 383.8  [153]
Co1−xS@g-C3N4 Solvothermal method Spherical-like ~1250 @ 0.1 A/g ~55% 789.59 @ 210 cycles [155]
C3N5/MoS2 Soft- and hard templating methods  Highly ordered mesoporous nanosheet  271 @ 100 mA/g 60% 193 @ 100 cycles [112]
SIBs huCP/g-C3N4 Hydrothermal treatment Carbon fibers with large pores and hollow structure 222 @ 0.1 A/g 345 @ 380 cycles [147]
N-doped MoC Pyrolysis Hollow microspheres 1040 @0.16 A/g 410@ 200 cycles [172]
Amorphous carbon nitride (ACN) Copolymerization/direct carbonization Uniform rhombic dodecahedral shape 640 @ 83 mA/g 67.2% 175 @ 2000 cycles [173]
N-FLG-800  Pyrolysis  2D lamellar structure of with plenty of wrinkles 256.7 @ 0.5 A/g 83.5% 211.3 @ 2000 cycles [175]
C/g-C3N4 One-pot calcination 2D-sheet-like structure ~200 @ 0.4 A/g 99  % ~ 160 @ 400 cycles [128]
g-C3N4 film Chemical vapor deposition (CVD)  2D thin film 98  % ~6 Ah/g @ 500 cycles [174]
CN/MoS2-600 Nanotemplating approach  Corrugated cardboard-like morphology  70% 605  [98]
C3N5/MoS2 Combined soft- and hard templating methods  Ordered mesoporous nanosheet  126 @ 100 mA/g 46% 54 @ 100 cycles [112]
PIBs 1D/2D C3N4/rGO Hydrothermal/freeze drying method 1D-C3N4 rod infused in-between the 2D-sheet 682.7 @ 0.5 A/g 56.8% 557.4 @ 50 cycles [54]
PIBs Co3O4@N–C Ionic liquid-assisted solvothermal method Spherical 1229.2 @ 50 mA/g 48.2% 448.7 @ 40 cycles [176]
LIBs Si@rGO/g-C3N4 Template-free self-assembly and pyrolysis process Multilayered 3D framework 1354.8 @ 0.5 C 70.9% 799.6 @ 1000 cycles [159]
P/rGO-C3N4 Ball milling  Nubby structure (40–200 nm) 2423.4 @ 200 mA/g 99% 1032.6 @ 600 cycles [160]
rGO/g-C3N4/SnS2 (GSC6) Hydrothermal route 3D porous structure 1073.1 @ 100 mA/g 61.1% 1118.6 @ 100 cycles  [122]
rGO/g-C3N4@SnS2 Solvothermal synthesis Nano-spheres anchored on hybrid sheet ~600 @ 800 mA/g —— 864.9 @ 1000 cycles [164]
MnO/C3N4/C Sonication/calcination 3D Porous sphere 918.9 @ 0.5 C 66% 781.9 @ 86 cycles [165]
SnO2-TiO2-C3N4 Self-assembly deposition Microspherical shaped NPs 853 @ 0.1 C —— 114.1 @ 20 cycles [188]
Co@Co9S8/S–N-C Hydrothermal reaction and pyrolysis method Porous structure with smooth-faced surfaces 1033.25 @ 0.2 A/g 60% 652.1 @ 610 cycles [166]

aICE Initial coulombic efficiency