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The primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to 
assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-
19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to 
assist in the determination of patients with a higher risk of death and thus are more likely to require 
mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model 
that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs 
random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as 
well as scale (i.e., pixel size). The parameters of the MGRF model are learned automatically, given 
a training set of X-ray images with affected lung regions labeled. An X-ray input to the system 
undergoes pre-processing to correct for non-uniformity of illumination and to delimit the boundary 
of the lung, using either a fully-automated segmentation routine or manual delineation provided by 
the radiologist, prior to the diagnosis. The steps of the proposed methodology are: (i) estimate the 
Gibbs energy at several different radii to describe the inhomogeneity in lung infection; (ii) compute the 
cumulative distribution function (CDF) as a new representation to describe the local inhomogeneity 
in the infected region of lung; and (iii) input the CDFs to a new neural network-based fusion system to 
determine whether the severity of lung infection is low or high. This approach is tested on 200 clinical 
X-rays from 200 COVID-19 positive patients, 100 of whom died and 100 who recovered using multiple 
training/testing processes including leave-one-subject-out (LOSO), tenfold, fourfold, and twofold 
cross-validation tests. The Gibbs energy for lung pathology was estimated at three concentric rings of 
increasing radii. The accuracy and Dice similarity coefficient (DSC) of the system steadily improved as 
the radius increased. The overall CAD system combined the estimated Gibbs energy information from 
all radii and achieved a sensitivity, specificity, accuracy, and DSC of 100%, 97% ± 3%, 98% ± 2%, and 
98% ± 2%, respectively, by twofold cross validation. Alternative classification algorithms, including 
support vector machine, random forest, naive Bayes classifier, K-nearest neighbors, and decision trees 
all produced inferior results compared to the proposed neural network used in this CAD system. The 
experiments demonstrate the feasibility of the proposed system as a novel tool to objectively assess 
disease severity and predict mortality in COVID-19 patients. The proposed tool can assist physicians 
to determine which patients might require more intensive clinical care, such a mechanical respiratory 
support.
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Coronavirus disease 2019 (COVID-19) was initially detected in Wuhan, China and is caused by a novel RNA 
virus belonging to the Coronaviridae family. It is believed to have been transmitted to humans from bats via an 
intermediate mammalian host before achieving human to human transmission. Such zoonotic origin is consistent 
with similar coronavirus outbreaks1–4. Coronaviridae is a family of nonsegmented, enveloped, positive-sense, 
single-stranded ribonucleic acid viruses. Six species of coronavirus had previously been identified as pathogenic 
in humans: four of these cause mild respiratory illnesses, whereas the other two species, severe acute respiratory 
syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), have led 
to epidemics with significant rates of mortality5.

The clinical diagnosis of COVID-19 depends on different symptoms including fever in 98% of cases, dry 
cough (75%), fatigue (45%), muscle aches (45%), difficulty breathing (55%), and acute respiratory distress syn-
drome (ARDS) (20%). Severe cases may progress to multiorgan dysfunction and even death (2.5%)4,6–8. The 
disease may be classified as (i) mild type: moderate clinical symptoms with normal chest X-ray; (ii) typical type: 
fever, respiratory, and other clinical findings indicating signs of pneumonia; (iii) severe type: respiratory distress 
signs (respiratory rate ≥ 30 breaths per minute and/or blood oxygen saturation of less than 93%; (iv) critical type: 
dysfunction of respiration necessitating mechanical ventilation, shock, and organ damage requiring monitoring 
and treatment from the intensive care unit (ICU)9.

Due to the wide variations in clinical presentation and progression rate for COVID-19, laboratory confirma-
tion of SARS-CoV-2 infection is essential to initiate appropriate early treatment and to prevent further spread 
of the disease10–15. The current reference standard for this purpose is real-time reverse transcription polymer-
ase chain reaction (PCR) of viral RNA. The PCR test, according to current guidelines, is run on samples from 
nasopharyngeal and/or throat swabs. While PCR is the gold standard in diagnosing patients with COVID-19 
infection, the sensitivity of a single PCR is suboptimal and depends on the timing of the test, sampling sites and 
sampling techniques7,8,10–12.

Chest radiography is helpful for first-line evaluation of patients with a high pre-test probability of overt 
COVID-19 pneumonia, clinical follow up, and for the evaluation of potential complications. Chest radiography 
can detect areas of ground glass density, also observed on chest computed tomography (CT), which may often 
have a correlation with the severity of the disease, and may be intermixed with reticular pattern12–17.

Based on the recent clinical research, COVID-19 radiological forms are variable in severity using plain 
radiography or CT, ranging from a normal chest (albeit rarely), to patchy involvement of one or both lungs in 
mild or moderate cases, to diffuse infiltration (white lung) in severe cases. This is an important issue as mild 
or moderate cases can be managed by medical treatment or non-invasive ventilation, while severe cases with 
bilateral lung infection urgently need mechanical ventilation to support respiration as patients develop ARDS. 
Given the paucity of mechanical ventilation units, patient selection for ventilation plays a crucial role in saving 
lives. We propose a methodology that utilizes the current state of machine learning and artificial intelligence 
(AI) to assist physicians by providing an objective metric that can differentiate severe cases from mild/moderate 
cases and potentially even predict mortality.

There are few preliminary studies and case reports discussing the role of AI on plain radiography and CT for 
early diagnosis of patients with COVID-19. AI can be used in conjunction with radiologists to improve the results 
of detection of COVID-19. AI can be a powerful aid in delineating and quantifying lesions in X-ray images and in 
tracking longitudinal changes between exams, which is crucial for precision medicine. In essence, AI is another 
means of analyzing data that clinicians can draw on to inform their judgment in issues of triage, diagnosis (in 
combination with PCR tests and epidemiological risk), prognosis, and selection between therapeutic alternatives 
in patients exhibiting COVID-19 symptoms. Plain radiography involves a low radiation dose compared to CT 
and is better suited for routine monitoring and follow up compared to a CT scan. AI may be capable of detect-
ing subtle changes visible on either chest X-ray or CT in the lung, and can improve efficiency by decreasing the 
amount of time to return test results. This is necessary for screening the general population during the current 
COVID-19 pandemic and in the epicenters of any future outbreaks. Computer assisted detection alleviates the 
burden on radiologists and clinicians and facilitates rapid triage. Also, AI can be used for the differentiation of 
previous lung injury unrelated to COVID-19 from advanced lung dysfunction due to COVID-19, and assist in 
patient selection for ventilation18–25.

CAD systems for assessing lung function in COVID-19 are limited in the literature. Sun et al.26 developed an 
approach using deep transfer learning to detect signs of COVID-19-related pneumonia in chest X-ray images. 
Hassanien et al.27 developed an automatic segmentation method for lung areas affected by COVID-19 that 
employed an Otsu-derived algorithm for multi-level thresholding of X-ray images and a support vector machine 
for the prediction task. Apostolopoulos et al.28 studied the efficacy of deep learning convolutional neural networks 
(CNN) for deriving characteristic COVID-19 biomarkers from chest X-rays. Wang et al.29 presented a novel 
CNN, named COVID-Net, tailored to the detection of COVID-19-related changes in chest X-rays. The deep 
learning network of Hammoudi et al.30, on the other hand, was designed to automatically detect if a chest X-ray 
image indicates healthy lungs or evidence of pneumonia (bacterial or viral). Combined with prior information 
regarding the likelihood the patient has been exposed to the virus, an automatic diagnosis of viral pneumonia 
has a high true positive rate for detection of COVID-19.

Currently, the primary challenge is to apply different AI-based approaches to determine the severity of chest 
infection in COVID-19 patients given that X-ray images vary enormously in image quality due to the wide range 
of X-ray machines in use across the world. To overcome this challenge, we develop a new CAD system that oper-
ates on extracted X-ray image markers that are invariant under rotation, scaling, and translation.
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Materials and methods
Patient data.  The proposed approach is tested and validated on data from a publicly available archive of 
COVID-19 positive cases31, data from COVID-19 open research dataset challenge (CORD-19)32, and data from 
the University of Louisville, USA and Mansoura University, Egypt. The research protocol was approved by the 
institutional review board (IRB) at the University of Louisville and Mansoura university as well as all methods 
were performed in accordance with the relevant guidelines and regulations and the patients informed consent 
was obtained. For the patients who passed away, an informed consent was obtained from legal guardian/Next of 
kin for the dead patients. These databases include 200 subjects tested as COVID-19 positive, 100 from patients 
who eventually died from the infection and 100 patients who ultimately recovered. These databases comprise a 
heterogeneous collection of digital X-ray images, which was the primary motivation to develop rotation, scale, 
and translation invariant MGRF model from which we extract the proposed imaging markers to grade the 
severity of lung infection in COVID-19 patients. We did our experiments using the merged datasets from all 
three databases to overcome the issue of data balance as the number of subjects for the two classes, (high and 
low severity cases), in each database was different. The dead cases had been confirmed based on the following 
radiology protocol33: (i) Bilateral and predominantly peripheral opacifications and/or consolidations were rated 
as typical for a COVID-19 infection. (ii) A distribution pattern with opacifications and/or consolidations limited 
to one pulmonary lobe consistent with lobar pneumonia was rated as non-typical for a COVID-19 infection. 
All changes that could not be classified as non-typical or typical were rated as indeterminate. In a subgroup of 
these patients with indeterminate findings, soft criteria for a possible COVID-19 infection were defined as the 
unilateral presence of predominantly peripheral.

Proposed computer aided diagnostic (CAD) system.  The proposed CAD system to detect the sever-
ity of lung infection is shown in Fig. 1. The CAD system consists of three major steps: (i) preprocessing steps to 
improve contrast of the X-ray images and identify the region of interest in order to enhance diagnostic accuracy 
of subsequent steps; (ii) modeling the appearance of infected chest tissue using a new Markov–Gibbs random 
field (MGRF) constructed to be invariant under rotation, translation, and change of scale; and (iii) a neural net-
work (NN)-based fusion and diagnostic system to determine whether the grade of lung infection is low or high.

Data preprocessing.  To improve the accuracy of the proposed approach, we manually segmented the lung 
region from the original X-ray image, Fig. 2a, as demonstrated in Fig. 2b. The second step is to enhance lung 
tissue contrast, for which we use regional dynamic histogram equalization (RDHE)34. Proper analysis of the 
type of noise present in the chest X-ray image may help to select proper denoising methods, which preserve the 
important texture information while reducing the noise35,36. The RDHE approach divides the image into blocks 
x rows high by y columns wide. Then, dynamic histogram equalization is applied within each block to adaptively 
enhance the contrast. Therefore, the image histogram is remapped by block, and pixel values are adjusted relative 
to the other pixels in their x × y neighborhood. The contrast-enhanced X-ray image resulting from the RDHE 
approach is illustrated in Fig. 2c.

Figure 1.   The pipeline of the proposed CAD system for COVID-19 diagnosis and grading.
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The third preprocessing step is to identify and mask off the healthy lung tissues from the infected tissues. 
This step narrows the search space to focus only on the abnormal tissues and serves to increase the diagnostic 
accuracy of the CAD system. To achieve this step, we use our previously published methodology37 that considers 
both the spatial interaction between nearby image pixels and the intensity distribution of those pixels within 
the lung region of interest. We follow the conventional description of the MGRF model in terms of independ-
ent signals (images) and interdependent region labels (segmentations); yet we focus on more accurate model 
identification37. Each image segment corresponds to a single dominant mode of the empirical distribution (i.e. 
histogram) of gray levels. To identify the dominant modes, each image histogram is considered to be sampled 
from a linear combination of discrete Gaussians (LCDG) distribution37. We fit an initial LCDG model to the 
empirical distribution using a modified expectation-maximization (EM) algorithm37. Free parameters of the 
LCDG to be optimized are the number of discrete Gaussian components and their respective weights (positive 
and negative), shape, and scale parameters. Then, the initial LCDG-based segmentation is iteratively refined 
using the MGRF model with its analytically estimated potentials37. Figure 2d shows the extracted pathological 
tissues using our proposed algorithm. Additional details can be found in El-Baz et al.37.

Rotation, scale, and translation invariant MGRF model.  We constructed the proposed MGRF model in order 
that the image need not be aligned with any particular frame of reference in order to use it to grade the severity 
of lung infection (low vs. high). To construct the appearance of the infected lung regions, we consider the X-ray 
images as samples from a piecewise stationary MGRF with a central-symmetric system of pixel-pixel interac-
tions. Let nν denote a set of central-symmetric pixel neighborhoods indexed by ν ∈ {1, . . . ,N} . Each nν is a set of 
coordinate offsets (ξ , η) specified by a semi-open interval of interpixel distances (dν,min, dν,max] such that the nν
-neighborhood of pixel (x, y) comprises all pixels (x′, y′) such that dν,min <

√

(x − x′)2 + (y − y′)2 ≤ dν,max . A 
neighborhood system corresponding to dν,min = ν − 1

2 and dν,max = ν + 1
2 , ν ∈ {1, 2, 3} , is illustrated in Fig. 3. 

Associated with the neighborhood system is a set of N + 1 Gibbs potential functions of gray value and gray value 
co-occurrences V0 : Q → R and Vν : Q × Q → R , ν ∈ {1, . . . ,N} , where Q is the range of pixel gray levels, e.g. 
Q = {0, . . . , 255} in the case of 8-bit images.

For a given image/label map pair (gt ,mt) from our training set S, t ∈ {1, . . . ,T} , let Rt = {(x, y) | mt(x, y) = ob} 
denote the subset of the pixel lattice supporting the infected lung region. Denote the set of nν-neighboring pixels 
restricted to Rt by

Figure 2.   Illustration steps for the first two preprocessing steps in the proposed CAD system: (a) original X-ray 
image, (b) roughly segmented lung region, (c) enhanced contrast of lung region, and (d) extracted candidate of 
abnormal tissues.

Figure 3.   Illustration of rotation and translation invariant central-symmetric neighborhood sets for the three 
different radii (ν − 0.5, ν + 0.5] ; ν = 1, . . . , 3.
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Finally let f0,t and fν,t , ν ∈ {1, . . . ,N} denote empirical probability distributions (i.e., relative frequency his-
tograms) of gray values and gray value co-occurrences in the training infected region from the X-ray image gt,

The joint probability of object pixels in image gt according to the MGRF model is given by the Gibbs 
distribution

where ρν,t = |Cν,t |/|Rt | is an average cardinality of nν over the sublattice Rt.
Assuming lungs having the same pathology exhibit similar morphology in X-ray images, then we may approx-

imate the previous expressions by their averages over the training set S: |Rt | ≈ Rob and |Cν,t | ≈ Cν,ob . Here 
Rob = 1

T

∑T
t=1 |Rt | and Cν,ob = 1

T

∑T
t=1 |Cν,t | . If we assume further that the observations in S are statistically 

independent (e.g., each X-ray is taken from a different patient), the expression for joint probability of object 
pixels may be likewise simplified38:

Here, ρν = Cν,ob/Rob , and the probability vectors Fpix,ob and Fν,ob are the averages of the relative frequency 
histograms and normalized gray level co-occurrence matrices, respectively, over all objects in the training set. 
The problem of zero empirical probabilities, which can arise when a relatively small volume of the training data is 
available to identify the MGRF model, is dealt with using pseudocounts. Then Eqs. 1 and 2 are modified as follows

The Bayesian quadratic loss estimate suggests using the offset ε = 1 , while a more conservative approach38 
suggests using ε = 1/Q in Eq. 4 and ε = 1/Q2 in Eq. 5.

Using the same analytical approach as in Ref.38, the Gibbs potential functions are approximated using the 
centered, training-set average, normalized histograms and co-occurrence matrices:

Using the above estimated potentials, we can calculate the Gibbs energy of the infected lung region b in an 
X-ray image g as follows:

Here, N′ is a selected top-rank index subset of the neighborhoods, and the empirical probability distributions 
F0 and Fν are calculated over the object pixels b of g.

To summarize, the whole training approach is as follows: 

1.	 Read all infected regions from the training data having class “severe” lung infection.
2.	 Calculate the co-occurrence of the image signal at various radii ( ν 1, ν 2, and ν3).
3.	 Normalize the co-occurrence frequency ( fpix,ob(q)).
4.	 Estimate the Gibbs potential ( Vpix,ob(q) ) by using Eq. 6.
5.	 Use Eq. 7 to calculate the Gibbs Energy ( E(g, b) ) for the training subjects.

NN‑based fusion and diagnostic system
A new NN system that can fuse the diagnostic results from the three estimated Gibbs energy at three different 
radii is developed. The proposed NN-based model consists of four blocks as illustrated in Fig. 4. Three of them 
are fed with the three different cumulative distribution functions (CDFs) of the estimated Gibbs energy, then 

Cν,t =
{

(x, y, x′, y′)
∣

∣ (x, y) ∈ Rt ∧ (x′, y′) ∈ Rt ∧ (x − x′, y − y′) ∈ nν
}

.

(1)f0,t(q) = |Rt |
−1

∣

∣{(x, y) ∈ Rt | gt(x, y) = q}
∣

∣;

(2)fν,t(q, q
′) = |Cν,t |

−1
∣

∣{(x, y, x′, y′) ∈ Cν,t | gt(x, y) = q ∧ gt(x
′, y′) = q′}

∣

∣.

(3)
Pt = Z−1

t exp

(

∑

(x,y)∈Rt

(

V0

(

gt(x, y)
)

+
N
∑

ν=1

∑

(ξ ,η)∈nν

Vν

(

gt(x, y), gt(x + ξ , y + η)
)

))

= Z−1
t exp

(

|Rt |

(

VT
0,tF0,t +

N
∑

ν=1

ρν,tV
T
ν,tFν,t

))

,

PS =
1

Z
exp

(

TRob

(

VT
0 F0 +

N
∑

ν=1

ρνV
T
ν Fν

))

.

(4)f0,t(q) =

∣

∣{(x, y) ∈ Rt | gt(x, y) = q}
∣

∣+ ε

|Rt | + Qε

(5)fν,t(q, q
′) =

∣

∣{(x, y, x′, y′) ∈ Cν,t | gt(x, y) = q ∧ gt(x
′, y′) = q′}

∣

∣+ ε

|Cν,t | + Q2ε
.

(6)
V0(q) =

(

f0(q)−
1
Q

)

;

Vν(q, q
′) =

(

fν(q, q
′)− 1

Q2

)

.

(7)E(g, b) = VT
0 F0(g, b)+

∑

ν∈N′

VT
ν Fν(g, b).
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the results of the three blocks are fused into the last block to decide the final decision of the input X-ray image. 
We use a backpropagation approach to train the proposed NN-based diagnostic system as follows: 

1.	 Randomly initialize the weights of the proposed NN-network.
2.	 Compute the output of each neuron in the hidden and output layers.
3.	 Update the weights of the proposed NN-network using the batch-mode backpropagation approach.
4.	 Repeat steps 2 and 3 until there are no significant changes in the NN-network weights.

In order to tune the hyper-parameters used in our proposed NN system, a hyper-parameters estimation 
approach is used. The parameters to be estimated are the number of bins used to calculate CDF, number of 
hidden layers in the NN model, number of neurons in the hidden layer, and finally the activation function used 
to calculate the output of each neuron. We ran several experiments using random values for these parameters 
to estimate their optimal values using training data. All the results that are demonstrated in the “Experimental 
results” section have been obtained using the following setting: to handle all energy values, the chosen value for 
the number of CDF bins is 175; the number of hidden layers in NN 1, NN 2, and fusion NN is one, while for NN 
3, there are no hidden layers (searching from 0 to 10); the number of neurons per hidden layer is 50, 20, and 2 for 
NN 1, NN 2, and Fusion NN, respectively (searching from 1 to 200); and finally, the sigmoid activation function 
has been selected after also considering the tangent and softmax activation functions.

Experimental results
To highlight the innovation in our approach, we demonstrate the Gibbs energy calculated at three radii as a color 
map fused over the X-ray images. One example for which it holds, it is clear from Fig. 5 that the Gibbs energy in 
cases of high severity of COVID-19 pneumonia is high compared with the Gibbs energy for low-severity COVID-
19 pneumonia. Since the collected X-ray images have different resolutions, we use CDF as a new scale-invariant 
representation to the estimated Gibbs energy which makes it suitable for all data collection protocols as shown 
in Fig. 6. To highlight the advantage of the proposed Gibbs energy as a new discriminatory image marker, we 
calculate the average CDFs with a demonstration of the standard deviation at each point for both classes (high 
severity vs. low severity). As is clear from Fig. 7, the CDFs are rather distinctive which allows for straightforward 
classification by the proposed NN-based classifier. The output of the CAD system was an assessment of the sever-
ity of pneumonia in COVID-19 patients with two levels: a low severity of infection (“low”) or high severity of 
infection (“high”) as shown in Fig. 4. This was compared to the ground truth of the 200 clinical cases collected, 
100 of which were from patients who died of COVID-19 and 100 of which recovered. Accurate system outputs 
include an assessment of “low” in a case that recovered and an output of “high” in a case that died. To confirm the 
accuracy of the proposed NN classification and fusion system, leave-one-subject-out (LOSO), tenfold, fourfold, 

Figure 4.   The proposed NN-based fusion diagnostic system.
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and a twofold cross-validation approaches are performed on our datasets as demonstrated in Table 1. We use the 
following objective metrics to measure the accuracy of the proposed NN-based fusion system: (i) sensitivity, (ii) 
specificity, (iii) accuracy, and (iv) Dice similarity coefficient (DSC). As demonstrated in Table 1, the proposed 
system has achieved 100% accuracy with the LOSO validation test and 98.00%± 2.00% for a twofold validation 
test (real-life scenario), all of which confirm the high accuracy of the proposed CAD system.

To highlight the contribution of each Gibbs energy at each radius, we construct an NN-based classifier using 
the estimated Gibbs energy at each radius. As is clear from Table 1, the NN-classifier based on the estimated 

Figure 5.   Illustration of the estimated Gibbs energy for two cases: high severity case (upper raw) and low 
severity case (lower raw). (a) equalized X-ray image, (b) estimated energy at ν 1, (c) estimated energy at ν 2, and 
(d) estimated energy at ν3.

Figure 6.   Estimated CDFs at three different radii for two different subjects at two different severity levels.

Figure 7.   Estimated average CDFs for low and high lung infection severity at three different radii.
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Gibbs energy at ν 3 demonstrates the highest accuracy compared with the classification accuracies based on the 
estimated Gibbs energy at ν 2 and ν 1. Also, it is worth mentioning that fusing the three estimated Gibbs energies 
by using the NN-Based classification system achieves higher accuracy compared with classification accuracies 
based on each single estimated Gibbs energy. Finally, to highlight the accuracy of the proposed NN-based fusion 
system, we compare its accuracy with support vector machine (SVM), random forest, naive Bayes, K-nearest 
neighbors (KNN), and decision trees classifiers. Table 2 clearly shows that the NN-based classification and fusion 
system has achieved the highest accuracy compared with other approaches.

Statistical significance of the choice of feature set or classifier architecture on diagnostic performance was 
assessed using Friedman rank sum tests39–42. Post hoc comparison of our proposed NN-based classifier with the 
alternatives was done using Wilcoxon signed rank tests with Bonferroni correction to the estimated p−values. 
Feature selection had a significant impact on classifier performance (Table 1), with Friedman test χ2 = 32.7 , 3 
d.f., p = 3× 10−7 . The fused feature set was shown to be preferable to v1 (Wilcoxon V = 118 , Bonferroni cor-
rected p = 0.0033 ), v2 ( V = 136 , p = 0.0014 ), and v3 ( V = 136 , p = 0.0014 ). Different classifier architectures 
also produced significantly different results (Table 2), with χ2 = 35.3 , 5 d.f., p = 1.3× 10−6 . The proposed NN-
based classifier outperformed SVM ( V = 136 , p = 0.0024 ), random forest ( V = 118 , p = 0.0054 ), naive Bayes 
classsifier ( V = 136 , p = 0.0024 ), KNN ( V = 127.5 , p = 0.0114 ), and the decision tree ( V = 127.5, p = 0.0114).

Discussion and conclusion
ARDS is the most common and severe pulmonary complication in COVID-19 patients. It is an acute hypoxemic 
respiratory failure that requires oxygen and ventilation therapy including intubation and invasive ventilation. 
Clinically patients may have dyspnea, tachypnea (respiratory rate ≥ 30 breaths per minute), decreased peripheral 
oxygen saturation SpO2 ≤ 93% , poor oxygenation with the ratio of the partial pressure of arterial oxygen to 
fraction of inspired oxygen PaO2/FiO2 < 300 mmHg, or lung infiltrates greater than 50% within 48 h9. ARDS 
occurred in 20% of hospitalized patients and 61% of ICU patients in Zhongnan Hospital in Wuhan3,4. ARDS 
occurs when capillaries in the lung leak fluid into the alveoli, thereby impairing gas exchange in the lung and 
reducing oxygen uptake into the systemic arterial circulation. The consequent decrease in blood oxygen levels 
can be directly life-threatening, leading to multi-organ failure. Respiratory support of COVID-19 may use 
invasive or non-invasive methods to force oxygen into the airways under pressure. Invasive ventilation uses an 
endotracheal tube to feed oxygen directly into the lungs. Non-invasive methods employ such devices as continu-
ous positive airway pressure (CPAP) and oxygen hoods; there is no use of an internal tube, and they are used in 
the management of less severe cases.

Despite being vital for supporting respiration in patients with ARDS, ventilators are in short supply in hos-
pitals. According to Imperial College London, 30% of patients diagnosed with COVID-19 are strongly recom-
mended to be admitted to the hospitals, with a significant fraction of those patients also requiring respiratory sup-
port. As the pandemic spreads across the world, many countries stopped exporting ventilators43,44. The paucity of 
ventilators is even more acute in under developed and developing countries in South America, Asia, and Africa.

Table 1.   Diagnostic accuracy of the proposed CAD system. Feature selection had a significant impact on 
classifier performance with Friedman test χ2 = 32.7 , 3 d.f., p = 3× 10−7 . V: Wilcoxon signed rank statistic of 
performance compared to complete system; p: Associated Bonferroni-corrected p-value.

Sensitivity Specificity DSC Accuracy V p

Performance of the proposed whole CAD system

LOSO 100% ± 0.00 100% ± 0.00 100% ± 0.00 100% ± 0.00

– –
Tenfold 100% ± 0.00 99% ± 1.00 99.50% ± 0.50 99.50% ± 0.50

Fourfold 100% ± 0.00 98% ± 2.00 99% ± 1.00 99% ± 1.00

Twofold 100% ± 0.00 97% ± 3.00 98% ± 2.00 98% ± 2.00

Performance of the proposed CAD system when using only the estimated energy at ν1

LOSO 76% ±4.29 96% ± 1.97 75% ± 4.27 86% ± 2.37

118 0.0033
Tenfold 74% ± 1.26 98% ± 4.21 83.61% ± 9.15 86% ± 7.37

Fourfold 71% ± 8.28 98% ± 2.31 81.87% ± 5.05 84.50% ± 3.41

Twofold 71% ±4.24 99% ± 1.41 80.87% ± 2.14 80.30% ± 1.41

Performance of the proposed CAD system when using only the estimated energy at ν2

LOSO 81% ± 3.94 94% ± 2.39 79.33% ± 3.93 87.5% ± 2.28

136 0.0014
Tenfold 79% ± 1.29 94% ± 5.07 85.45% ± 6.23 87% ± 4.83

Fourfold 80% ± 8.86 93% ± 6.31 83.83% ± 6.15 86.50% ± 3.41

Twofold 77% ± 1.41 91% ± 2.82 82.16% ± 2.20 85.50% ± 2.12

Performance of the proposed CAD system when using only the estimated energy at ν3

LOSO 97% ±1.71 94% ± 2.39 95% ± 1.85 95.5% ± 1.43

136 0.0014
Tenfold 93% ± 8.23 97% ± 4.83 94.78% ± 5.56 95% ± 5.27

Fourfold 92% ± 1.13 95% ± 3.83 93.16% ± 7.82 93.50% ± 7.19

Twofold 91% ±7.07 95% ± 1.41 92.79% ± 3.20 93% ± 2.82
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High-pressure ventilation may cause lung injury, also called barotrauma or ventilator-induced lung injury 
(VILI). Even non-invasive ventilation carries some risk, as stress and strain associated with high tidal volumes 
may cause patient self-induced lung injury (P-SILI). The additional inflammation due to VILI or P-SILI may 
lead to aggravation of pulmonary edema and worsening of the very respiratory distress that ventilation was 
intended to treat. There is also the risk of heart failure, hypervolemia, and multi organ dysfunction, alone or in 
combination45. Unfortunately, COVID-19 patients who are admitted to the ICU and require mechanical ventila-
tion show strikingly high rates of mortality, ranging from 50 to 97% early in the pandemic46–51. A more recent 
study from Emory University showed lower but still dramatic mortality rates of 36% in ICU patients requiring 
mechanical ventilation and 30% in all COVID-19 patients admitted to the ICU52.

Accurate and rapid diagnosis of COVID-19 pneumonia severity is very challenging for radiologists as the 
disease has rapidly spread across the globe. Based on the results demonstrated in this study, AI systems, especially 
those based on deep learning, are promising tools to assist initial screening by radiologists. It could decrease 
workload, improve diagnostic accuracy, and enable appropriate treatments and ventilation management of 
COVID-19 patients. In the case of a pandemic as we now face, medical resources are seriously strained and must 
be used as efficiently as possible. Rapid diagnosis and accurate prognosis are essential. The AI-based method 
shows great potential to quantify disease severity and could be used to inform treatment decision-making in 
patients with COVID-19. AI in concert with thoracic imaging and other clinical information (epidemiology, 
PCR, clinical symptoms, and laboratory indicators) can effectively improve clinical outcomes53. AI can increase 
the utility of chest X-ray imaging beyond first-line diagnostic imaging and into the areas of risk stratification, 
monitoring of clinical course, and selection between management approaches, such as invasive vs. non-invasive 
ventilation, for COVID-19 patients. Multimodal data, be they clinical, epidemiological, or potentially molecular 
data, can by fused with imaging data in an AI framework to build systems to detect and treat COVID-19 patients 
and potentially to contain its spread54. Moreover, we plan to work on X-ray scans/data that are collected at dif-
ferent time points to evaluate the progressing of the infection/pneumonia with the treatment course.

In conclusion, the results herein demonstrate the feasibility of using AI with chest X-ray imaging data to 
determine the severity of lung involvement in cases of COVID-19. Severity of pneumonia on chest X-ray cor-
related highly with mortality in this study, and thus this CAD system can potentially also be used to predict 
mortality in COVD-19 patients.

Data availability
Materials, data, and associated protocols will be available to readers after the manuscript being accepted.

Table 2.   Diagnostic accuracy using different classification systems. Feature selection had a significant impact 
on classifier performance with Friedman test χ2 = 35.3 , 5 d.f., p = 1.3× 10−6 . V: Wilcoxon signed rank 
statistic of performance compared to complete system; p: Associated Bonferroni-corrected p-value.

Sensitivity Specificity DSC Accuracy V p

SVM-based CAD system

LOSO 86% ±3.48 94% ± 2.39 84% ± 3.49 90% ± 2.01

136 0.0024
Tenfold 78% ± 9.19 97% ± 4.83 85.96% ± 6.06 87.50% ± 4.86

Fourfold 85% ± 1.41 92% ± 5.65 88.11% ± 1.76 88.50% ± 2.20

Twofold 83% ±3.82 91% ± 3.83 86.44% ± 1.29 87% ± 1.15

Random forest-based CAD system

LOSO 76% ±4.29 96% ± 1.97 75% ± 4.27 86% ± 2.37

118 0.0054
Tenfold 74% ± 1.26 98% ± 4.21 83.61% ± 9.15 86% ± 7.37

Fourfold 71% ± 8.28 98% ± 2.31 81.87% ± 5.05 84.50% ± 3.41

Twofold 71% ±4.24 99% ± 1.41 80.87% ± 2.14 80.30% ± 1.41

Naive Bayes-based CAD system

LOSO 84% ±3.68 94% ± 2.38 82.33% ± 3.68 89% ± 2.19

136 0.0024
Tenfold 80% ± 1.05 97% ± 4.83 87.13% ± 7.10 88.50% ± 5.79

Fourfold 77% ± 6.00 97% ± 2.00 85.46% ± 4.36 87% ± 3.46

Twofold 77% ±4.24 95% ± 1.41 84.58% ± 2.03 86% ± 1.41

KNN-based CAD system

LOSO 80% ±4.02 99% ± 1.00 79.66% ± 4.01 89.50% ± 2.04

127.5 0.0114
Tenfold 75% ± 8.87 100% ± 0.00 85.49% ± 5.88 87.50% ± 4.43

Fourfold 71% ± 1.10 100% ± 0.00 82.61% ± 7.43 85.50% ± 5.50

Twofold 70% ±0.00 100% ± 0.00 82.35% ± 0.00 85% ± 0.00

Decision Trees-based CAD system

LOSO 80% ±4.02 99% ± 1.00 79.66% ± 4.01 89.50% ± 2.04

127.5 0.0114
Tenfold 75% ± 8.87 100% ± 0.00 85.49% ± 5.88 87.50% ± 4.43

Fourfold 71% ± 1.10 100% ± 0.00 82.61% ± 7.43 85.50% ± 5.50

Twofold 70% ±0.00 100% ± 0.00 82.35% ± 0.00 85% ± 0.00
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