Table 3.
ROC curve analysis of three models in the training set.
Parameter | Logistic (Train) | SVM (Train) | Decision Tree (Train) |
---|---|---|---|
AUC | 0.632 (CI: 0.533–0.730) | 0.840 (CI: 0.653–0.758) | 0.688 (CI: 0.601–0.775) |
Accuracy | 0.624 (CI: 0.530–0.707) | 0.797 (CI: 0.719–0.862) | 0.692 (CI: 0.606–0.769) |
Sensitivity | 0.654 (CI: 0.462–0.788) | 0.846 (CI: 0.558–0.942) | 0.558 (CI: 0.385–0.681) |
Specificity | 0.605 (CI: 0.272–0.741) | 0.742 (CI: 0.284–0.852) | 0.778 (CI: 0.575–0.904) |
ROC, Receiver operating characteristic; AUC, area under the operating curve; CI, confidence interval.