Table 3.
Comparisons | Cohorts | RF | KNN | SVM | LR | Ada |
---|---|---|---|---|---|---|
AUC | Train | 1.0 | 0.95 | 1.0 | 0.89 | 1.0 |
Test | 0.56 | 0.67 | 0.73 | 0.83 | 0.82 | |
Sensitivity | Train | 1.0 | 0.91 | 1.0 | 0.87 | 1.0 |
Test | 1.0 | 0.84 | 0.95 | 0.91 | 0.89 | |
Specificity | Train | 1.0 | 0.99 | 1.0 | 0.92 | 1.0 |
Test | 0.13 | 0.50 | 0.50 | 0.75 | 0.75 | |
Accuracy | Train | 1.0 | 0.95 | 1.0 | 0.89 | 1.0 |
Test | 0.87 | 0.79 | 0.88 | 0.88 | 0.87 | |
F1-score | Train | 1.0 | 0.95 | 1.0 | 0.89 | 1.0 |
Test | 0.93 | 0.87 | 0.93 | 0.93 | 0.92 |
RF, Random Forest; KNN, K-nearest Neighbor; SVM, Support Vector Machine; LR, Logistic Regression; Ada, Adaboost Classifier; AUC, Area Under the Curve.