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Single-Cell Transcriptome Analysis Uncovers Intratumoral
Heterogeneity and Underlying Mechanisms for Drug
Resistance in Hepatobiliary Tumor Organoids

Yan Zhao, Zhi-Xuan Li, Yan-Jing Zhu, Jing Fu, Xiao-Fang Zhao, Ya-Ni Zhang, Shan Wang,
Jian-Min Wu, Kai-Ting Wang, Rui Wu, Cheng-Jun Sui, Si-Yun Shen, Xuan Wu,
Hong-Yang Wang,* Dong Gao,* and Lei Chen*

Molecular heterogeneity of hepatobiliary tumor including intertumoral and
intratumoral disparity always leads to drug resistance. Here, seven
hepatobiliary tumor organoids are generated to explore heterogeneity and
evolution via single-cell RNA sequencing. HCC272 with high status of
epithelia-mesenchymal transition proves broad-spectrum drug resistance. By
examining the expression pattern of cancer stem cells markers (e.g., PROM1,
CD44, and EPCAM), it is found that CD44 positive population may render
drug resistance in HCC272. UMAP and pseudo-time analysis identify the
intratumoral heterogeneity and distinct evolutionary trajectories, of which
catenin beta-1 (CTNNB1), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and nuclear paraspeckle assembly transcript 1 (NEAT1) advantage
expression clusters are commonly shared across hepatobiliary organoids.
CellphoneDB analysis further implies that metabolism advantage organoids
with enrichment of hypoxia signal upregulate NEAT1 expression in CD44
subgroup and mediate drug resistance that relies on Jak-STAT pathway.
Moreover, metabolism advantage clusters shared in several organoids have
similar characteristic genes (GAPDH, NDRG1 (N-Myc downstream regulated
1), ALDOA, and CA9). The combination of GAPDH and NDRG1 is an
independent risk factor and predictor for patient survival. This study
delineates heterogeneity of hepatobiliary tumor organoids and proposes that
the collaboration of intratumoral heterogenic subpopulations renders
malignant phenotypes and drug resistance.
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1. Introduction

Extensive genetic and phenotypic variation
exist not only among tumors from dif-
ferent patients (intertumoral heterogene-
ity) but also within individual tumors (in-
ratumoral heterogeneity).[1] Tumor hetero-
geneity renders diversity of cancer signal-
ing pathways and drives phenotypic vari-
ation, which poses a significant challenge
to personalized cancer medicine.[2] Tran-
scriptomic diversity and cancer stem cells
(CSCs) plasticity[3] are prominent causes
of heterogeneity in cancer, generating di-
verse cell populations that can be sub-
jected to selection in the given microen-
vironment. The development of single-cell
level high-throughput sequencing technol-
ogy has accelerated the understanding of
driver gene mutations, aberrant regulatory
programs, and molecular subtypes for hu-
man tumors.[4] However, most of existing
studies relied on profiling technologies that
measure tumors in bulk, which is insuffi-
cient to globally explore and explain the het-
erogeneity and evolution.

Recent advances in single-cell technol-
ogy provide an avenue to explore the
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characteristics of the genome, transcriptome, and epigenome at
the single-cell level.[5] In the past several years, single-cell RNA
sequencing (scRNA-seq) has been applied in landscape construc-
tion of many parenchymal and nonparenchymal cells to rede-
fine cell-type compositions and discover new subsets in physi-
ological and pathological conditions. In addition, several stud-
ies revealed new insights into evolution and diversity in many
human solid tumors, including intracranial tumor,[6] head and
neck cancer,[7] breast cancer,[8] and lung cancer via scRNA-seq.
Currently, researches on hepatobiliary system were reported suc-
cessively, however, the intrinsic between heterogeneity and drug
response in hepatobiliary tumor is still unclear.

Precision oncology seeks to develop more physiological hu-
man cancer models. The emerging organoid technology al-
lows the in vitro long-term culture of patient-derived cancer
cells which faithfully recapitulates the in vivo phenotype.[7,8]

Organoids are derived from pluripotent stem cells or isolated
organ progenitors that differentiate to form an organ-like tis-
sue exhibiting multiple cell types.[7,8] Recently, organoids have
been applied to model various cancers, including prostate,[9]

pancreatic,[10] breast,[11] liver,[12] bladder,[13] and gastrointesti-
nal cancers,[14] and facilitate extensive delineation of the phe-
notypic and molecular heterogeneity within tumors. It can pre-
serve the genetic alterations and gene expression of the original
tumor,[14,15] possess metastatic potential in vivo,[15] and thereby
mirror features of the original tumor, including intratumoral het-
erogeneity. Tumor-derived[16] organoid has become a powerful
tool for tumor biology, stem cell biology, and drug-discovery re-
searches.

Owing to tremendous heterogeneity, it is a big challenge to es-
tablish a research model that can faithfully recapitulate the in vivo
phenotype and further investigate the heterogeneity and drug re-
sistance in hepatobiliary tumors. Here, we established patient-
derived hepatobiliary tumor organoids from seven patients and
employed scRNA-seq to dissect intertumoral and intratumoral
heterogeneity, which revealed the inherent variable in their ex-
pression of transcriptional programs related to cell cycle, hypoxia,
and epithelial status. In addition, we identified that CSCs hetero-
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geneity may contribute to a molecular and biological diversity in
tumor ecosystems and consequently drug responses. Further, we
demonstrated unique distinctive metabolic circuitry in resistant
subpopulations, which may hold the key of distinct molecular sig-
natures and drug resistance. These data revealed new insight into
tumoral heterogeneity of hepatobiliary tumor organoids and as-
sociated critical subpopulations in regulating tumor drug resis-
tance.

2. Results

2.1. Establishment of Patient-Derived Hepatobiliary Tumor
Organoids

To explore the cellular diversity in hepatobiliary tumors, we gen-
erated scRNA-seq profiles using established patient-derived hep-
atobiliary tumor organoids (Figure 1A). Before this, we obtained
hepatobiliary tumor tissue from patients who underwent sur-
gical resection with informed consent, isolated primary tumor
cells by collagenase digestion, and suspended the cells in Ma-
trigel drops and overlaid with optimized hepatobiliary tumor
organoid culture medium. To support growth and maintain long-
term expansion, a variety of small molecules and biologicals, in-
cluding epidermal growth factor (EGF), fibroblast growth fac-
tors (FGF2, FGF10), hepatocyte growth factor (HGF), Wnt ago-
nists R-spondin1, the transforming growth factor beta (TGF-𝛽)
inhibitor Noggin and the ROCK inhibitor (Y-27632) were added
(Figure 1A). In total, seven organoids from different primary hep-
atobiliary tumor patients were generated with detailed clinico-
pathological information (Table 1), including four patients with
hepatocellular carcinoma (HCC), two patients with intrahepatic
cholangiocarcinoma (ICC), and one patient with gallbladder can-
cer (GBC). Individual hepatobiliary tumor organoid lines dif-
fered greatly in their morphologies as observed by bright-field
microscopy, such as solid/compact structure for HCC organoids,
more irregularly shaped cyst-like structure for ICC organoids,
and glandular and tubular structure for GBC organoid (Fig-
ure 1B). Notably, after long-term expansion in vitro, those tumor-
derived organoids maintained comparable histopathological fea-
tures of their matched primary tumor tissues (Figure 1C).

2.2. Single-Cell Analysis of Cancer Cell Signatures and Underlying
Broad Drug Resistance in HCC272

Numerous studies show that single-cell sequencing technolo-
gies offer a powerful tool to dissect intertumoral and intratu-
moral transcriptomic heterogeneity.[15–17] To generate a delin-
eated transcriptional landscape of tumor organoids, we estab-
lished a single-cell atlas comprising 22 505 cells collected from
seven patients after initial quality controls. After normalization
and principal component analysis (PCA), 500 cells randomly ex-
tracted from each sample were performed uniform manifold ap-
proximation and projection (UMAP) analysis. As with other stud-
ies, clustering of cells was primarily driven by the organoids of
origin (intertumoral heterogeneity; Figure 2A). Patient-specific
clustering was reflected by the unique tumor mutation character-
istics of individuals (Table S1, Supporting Information). To inves-
tigate the expression pattern, we generated sample-specific genes
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Figure 1. Establishment of organoids from patient-derived hepatobiliary tumors. A) Workflow shows collection and processing of specimens of patient-
derived hepatobiliary tumor organoids for scRNA-seq and drug screening. B) Representative bright field images of HCC, ICC, and GBC tumor organoids
from seven different patients. HCC organoids form solid/compact structures, ICC tends to more irregularly shaped cyst-like structures, and GBC
organoids grow as glandular and tubular structures. Case ID was named according to histological subtypes of hepatobiliary tumor. Scale bar: 100
µm. C) Representative H&E staining of hepatobiliary tumor and derived organoid lines. Tissues generally present tumor epithelium surrounded by mes-
enchymal and inflammatory cells, while organoids are exclusively epithelial with tumor cell organization being remarkably well conserved. Scale bar: 200
µm. See Table 1 for detailed clinicopathological information.

Adv. Sci. 2021, 8, 2003897 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2003897 (3 of 13)



www.advancedsciencenews.com www.advancedscience.com

Table 1. Clinical information of seven primary hepatobiliary tumor patients.

Cell line HCC10 HCC272 HCC277 ICC284 HCC285 ICC161 GBC270

Patient ID 206357 213567 213801 214224 214548 212495 x

Gender M M M F F M M

Age 20 63 48 69 64 58 46

HBVa) – – + – + + +

Smoking + – + – – + –

Drinking – – + – – + –

MVIa) NAa) M2 M1 NA M0 NA NA

Cirrhosis – – + – – + –

WBCa) (109) 7.3 5.43 6.13 7.26 6.92 4.42 5.52

Hba) (g L−1) 178 137 168 125 125 151 169

PLTa) (109) 249 234 201 309 133 150 248

CEAa) (𝜇g L−1) 2.5 158.9 2.1 NA 0.7 3.9 1.3

AFPa) (𝜇g L−1) 4.4 1.4 1210 NA 168 9.9 2.6

CA724 (U mL−1)a) 0.6 211.8 NA NA NA 2 1.6

CA153 (U mL−1) 3.94 10.12 NA NA NA 24.4 10.65

CA199 (U mL−1) 9.7 5.3 18.8 NA 7.9 45.6 18.7

CA125 (U mL−1) 5 11 NA NA 7.9 19.1 56.4

NSEa) (ng mL−1) 13.73 13.59 NA NA NA 9.94 NA

Tumor size (mm) NA 96*72*40 106*98 52*45*23 68*123*110 62*54 78*36

a)HBV, hepatitis B virus; MVI, microvascular invasion; WBC, white blood cell; Hb, hemoglobin; PLT, platelet; CEA, carcinoembryonic antigen; AFP, alpha fetoprotein; CA,
carbohydrate antigen; NSE, neuron specific enolase; NA, not available.

by performing differential gene expression analysis to identify
the identity of each cell cluster (Table S2, Supporting Informa-
tion). Basic biological capabilities of tumor cells were acquired
during multistep development of tumors, including unlimited
replicative potential and activated invasion and metastasis.[18] We
thus evaluated the expression of gene sets related to proliferation
stages and found that HCC277 has the strongest proliferation
ability with highest S phase and G2M phase score. Epithelial-
mesenchymal transition (EMT) has been widely considered as
a potential driver of invasion and metastasis,[19] and is increas-
ingly recognized to be a continuous and variable process.[20] Like-
wise, HCC272 with low expression levels of epithelial marker
genes and high partial epithelial-mesenchymal transition (p-
EMT) score, suggesting its potential tumoral malignancy (Fig-
ure 2B,C).

Given the potential tumoral malignancy, we further explored
the exact gene expression pattern in HCC272. Several tumoral
malignancy-related genes (e.g., MET, PIK3R1, PRKCA, SHC1,
and STAT3) were found highly expressed in HCC272 in com-
parison with other tumors (Figure 2D,E). Functional enrichment
analyses showed that genes up-regulated in HCC272 were mainly
enriched for cancer-related functions, including HIF-1 signal-
ing, MAPK and PI3K-Akt signaling pathways, and EGFR tyro-
sine kinase inhibitor resistance (Figure 2F). To validate the role
of activated signaling for cell malignance, we first subjected two
inhibitors, MK-2206 2HCl (Akt1/2/3 inhibitor) and Trametinib
(MEK1/2 inhibitor), and assessed their effects on the viability
of organoids. Due to the multiple activated signaling enriched
in HCC272, it showed resistance to Trametinib (−9.97%) and
slight sensitivity to MK-2206 2HCl (30.75%) (Figure 2G). Since
MAPK, HIF-1, and PI3K pathways are associated with the resis-

tance of tyrosine kinase inhibitors (TKIs), we further applied 11
TKIs (including eight drugs approved for clinical use and three
in clinical trials) to examine the drug response (Table S3, Sup-
porting Information). As shown in Figure 2H, varied drug re-
sponse was pictured among different organoids, while HCC272
exhibited broad resistance to TKIs. Together, these data sug-
gested that constitutive activation of downstream pathways such
as PI3K-Akt may be a part of the factors that tumors produce drug
resistance.

2.3. CD44+ Subgroup May Contribute to the Drug Resistance of
HCC272

Tumor heterogeneity was shown to be controlled by the dis-
ruption of normal cell fate and aberrant adoption of stem cell
signals.[3] To better explore the cancer stemness within hepatobil-
iary tumor organoids, we globally examined the CSC-like mark-
ers which was reported in previous studies. As expected, the per-
centage of cells with known CSC-like markers (such as CD133
(PROM1), CD44, EPCAM, ANPEP (CD13), SOX9, OCT4,[21] etc.),
varied greatly among individual organoid (Figure 3A and Ta-
ble S4, Supporting Information), of which organoid HCC272
showed a much higher percentage of CSC-like marker positive
cells. Especially, HCC272 consisted of the highest proportion of
CD44+ cells. CD44 is involved in the tumor cell invasion and
migration in liver cancer.[22] To investigate the proportion of
CD44+ cells, we performed the IHC in the primary tumor tis-
sues and identified that CD44+ cells were significantly enriched
in HCC272 (Figure S1, Supporting Information), implicating a
potential role of CD44+ cells in developing drug resistance.
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Figure 2. Single-cell transcriptome atlas of patient-derived hepatobiliary tumor organoids. A) UMAP plot of all the single cells from seven patient-derived
hepatobiliary tumor organoids reveals tumor-specific clusters. 500 cells were extracted randomly from each sample. B) UMAP plot of all the single cells
colored by different score, including S Score, G2M Score, Epithelium Score, and p-EMT Score. Related score was determined by the average expression
of representative markers genes. Color key from gray to red indicates relative score levels from low to high. For scoring gene list and scoring, see Tables
S5–S7 in the Supporting Information. C) The proportions of cells with different cell cycle or malignancy of each tumor organoid. D) Volcano plots of
differential expression genes of HCC272. Upregulated tumoral malignancy-related genes were labeled. E) Violin plots showing tumoral malignancy-
related genes of each tumor organoid. The width of a violin plot indicates the kernel density of the expression values. F) KEGG enrichment analysis
of HCC272 participated in a wide range of cancer-related functions. G) Forest plot depicts inhibition ratio of MK-2206 2HCl (Akt1/2/3 inhibitor) or
Trametinib (MEK1/2 inhibitor) in six organoid lines. The assessment of each drug has been independently repeated at least twice. Data were presented
as mean of multiple inhibition ratios. H) Heatmap shows inhibition ratio of 11 drugs in six organoid lines. Detailed drug information is listed in Table S3
and related inhibition ratio in Table S8 in the Supporting Information. Color key from blue to red indicates relative inhibition ratio from low to high.
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Figure 3. Characterizing individual organoid CSCs and its heterogeneity by single-cell RNA-seq. A) Scatterplots showing the cell percentage (%) of
representative cell surface markers (reported as a stem marker of hepatobiliary system tumors) in individual organoids. Also see Table S4 in the Sup-
porting Information. B) Scatterplots showing the cell percentage (%) of representative double or triple cell surface marker expressing cells in individual
organoids (PROM1, EPCAM, and CD44). Also see Tables S9 and S10 in the Supporting Information. C) A Venn diagram is shown of single cells that
expresses the representative most common hepatobiliary CSC-like markers (PROM1, EPCAM, and CD44). D) UMAP plot of all the single cells marked
by three hepatobiliary CSC-like markers PROM1, EPCAM, and CD44. E) Expression levels of representative liver CSC-like marker genes in each subgroup
are plotted onto the UMAP map. Color key from gray to red indicates relative expression levels from low to high. The “expression level” was normalized
by “logNormalize” method in “Seurat.” F) Volcano plots of differential expression genes of HCC272 CD44high cluster. Upregulation related genes were
labeled. G) KEGG-enrichment analysis of HCC272 CD44high cluster. H) Simplified scheme of the signaling pathway including target of used drugs and
related inhibition ratio in HCC272 organoid line.

UMAP analysis further revealed heterogenic distribution of
three liver CSC-like markers (PROM1, EPCAM, and CD44)
within tumor organoids (Figure 3D,E). It should be noted that
besides single positive CSCs, we observed small proportion of
double positive or triple positive CSCs with distinct distribution
within each organoid (Figure 3B,C). Organoid ICC284 processed

the highest percentage of PROM1/CD44, PROM1/EPCAM,
CD44/EPCAM double positive and PROM1/CD44/EPCAM
triple positive cells. Interestingly, in line with the expression
pattern of mono-positive maker, higher ratio of multi-positive
(CD44/PROM1, CD44/EPCAM and CD44/PROM1/EPCAM)
tumor cells was found in organoid HCC272 in comparison
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with other three HCC organoids (Figure 3B), suggesting that
the abnormal enrichment of CD44+ cells might be another
responsible for its drug resistance.

To determine whether the abnormal activated pathways in
CD44+ cluster is involved in drug resistance in HCC272, we com-
pared the difference of gene expression between CD44+ clus-
ter and the rest cells in HCC272 organoid. As shown in Fig-
ure 3F, total 380 genes were up-regulated (e.g., IFNGR2, IL10RB,
CCND1, STAT3, OSMR, IFNAR1, and PIK3R1) in CD44+ cells.
KEGG pathway enrichment analysis further revealed HIF-1 sig-
naling, cancer metabolism, PI3K-Akt and Jak-STAT pathways
were activated simultaneously (Figure 3G). Jak-STAT pathway is
a principal signaling for many cytokines and growth factors and
thus closely related to certain diseases, including cancer.[23] The
administration of STAT3 inhibitor (Cryptotanshinone) showed
stronger inhibition (46.60%) on the proliferation of HCC272 than
other inhibitors targeting AKT or MEK (Figure 3H), suggesting
the large dependence on Jak-STAT3 signaling in CD44+ cells to
form the drug resistance of organoid HCC272.

2.4. Transcriptome Signatures of Intratumoral Heterogeneity

To better understand the intratumoral heterogeneity and their po-
tential mechanism for cell malignance, UMAP analysis was ap-
plied to identify heterogenous clusters with diverse gene expres-
sion pattern in each organoid (Figure 4A). With the same PCA
ratio and resolution, organoids are divided into different num-
ber of subgroups, which indicates different level of heterogeneity
within individuals. Basing on population level expression data,
we screened ten co-expressed genes (CTNNB1 (catenin beta-1),
HNRNPH1, ATP1B1, PPP1CB, NEAT1 (nuclear paraspeckle as-
sembly transcript 1), MALAT1, SAT1, GAPDH (glyceraldehyde-3-
phosphate dehydrogenase), ANXA2, BRI3), of which synergetic ex-
pression of CTNNB1, HNRNPH1, and PPP1CB genes was found
in all seven organoids with dramatically varied percentage of pop-
ulation (ranging from more than 50% in HCC277 to less than
5% in ICC161) (Figure 4B). Meanwhile, the distinct distribu-
tion of two genes, GAPDH or NEAT1 was also observed in these
organoids. GAPDH is a well-known housekeeping gene, whereas
recent studies reported that it could promote liver tumorigenesis
by modulating glycolysis.[24] NEAT1 is a nuclear lncRNA that is
an essential structural component of paraspeckles, which leads to
HCC progression in response to hypoxia stress.[25] UMAP anal-
yses showed that these genes were up-regulated with different
degree in individual organoid sample (Figure 4C). Additionally,
the synergetic expression of NEAT1 and MALAT1 was also found
in the same cluster in most organoids (Figure 4B).

Importantly, trajectory and pseudo-time analysis via Monocle
further defined HCC10 and HCC277 as proliferation advantage
organoids with CTNNB1-enriched clusters aggregated at the be-
ginning of evolution tree, indicating CTNNB1 positive cluster
might be the driver population for organoid proliferation. In-
terestingly, HCC272, ICC161, and GBC270 were designated as
metabolism advantage in which GAPDH-enriched cluster was
found located at the top of the trunk (Figure 4D), suggesting
that the reciprocal regulation of GAPDH-enriched cluster was
necessary for their metabolism advantage. Other two organoids,
HCC285 and ICC284, showed more complicated progression tra-

jectory. Either CTNNB1 or GAPDH-enriched cluster appeared at
the later time of evolutionary process as well, whereas NEAT1-
enriched cluster might co-evolved in other clusters (Figure 4D).
Taken together, these data suggested that these heterogenetic cell
subgroups might play the pivotal role for maintaining the devel-
opment of organoids.

2.5. Crosstalk between GAPDH-Enriched Cluster and
NEAT1-Enriched Cluster May Lead to the Drug Resistance of
HCC272

As GAPDH-enriched cluster was identified as the primary sub-
group in organoid HCC272, we wondered whether the pres-
ence of GAPDH-enriched cluster might be involved in the main-
tenance of metabolism advantage and drug resistance. As ex-
pected, KEGG pathway analysis identified the enrichment of
carbon metabolism, biosynthesis of amino acids, and glycoly-
sis/gluconeogenesis in GAPDH-enriched clusters in these three
metabolism advantage organoids (Figure 5A). Notably, in line
with overall characteristics in organoid HCC272 (Figure 2F),
HIF-1 signaling pathway was also found enriched in GAPDH-
enriched cluster. Expression network analysis further revealed
the central role of GAPDH in activating HIF-1 signaling path-
way (Figure 5B). We then inspected the distribution of CD44
among clusters in HCC272 and found the significantly higher
level of CD44 in T3-NEAT1high cluster instead of CTNNB1high or
GAPDH high cluster (Figure 5C,D). Since CD44+ cells could con-
tribute to drug resistance by activating Jak-STAT signaling path-
way, we thus compared the expression levels of Jak-STAT related
genes in these four clusters in HCC272. As shown in Figure 5E,
CCND1, FNAR1, IFNGR2, IL10RB, PIK3R1, and STAT3 were
significantly enriched in T3-NEAT1high cluster, suggesting a reg-
ulation of NEAT1 to CD44 expression in T3 cluster. In the follow-
ing study, we screened out another resistant organoid HCC217 by
drug screening (Figure S2A, Supporting Information). It shows
significant resistance to Trametinib, MK-2206 2HCl, and 11 TKIs
that we have performed to HCC272. Similarly, CD44+ cells are
highly existed in HCC217 (Figure S2B,C, Supporting Informa-
tion) and particularly enriched in NEAT1 cluster by scRNA-seq
analyses (Figure S2D, Supporting Information), in accordance
with the drug resistance pattern in HCC272. Additionally, we
chose two samples without resistant phenotype as controls when
performing analyses, HCC25 (CD44 low) and HCC75 (CD44
high but without enrichment in NEAT1 cluster), implicating a
potential dependence on both NEAT1 and CD44 within one clus-
ter in contributing to the drug resistance. Consistent with our
findings, studies have demonstrated the vital role of NEAT1 for
CD44 expression.[26]

We next sought to elucidate the interaction between T1-
GAPDH high and T3-NEAT1high clusters in developing drug resis-
tance. CellPhoneDB analyses showed an apparently increased in-
teractions of receptor–ligand pairs between T1-GAPDH high and
T3-NEAT1high (Figure 5F), suggesting a close cell–cell commu-
nications among these two clusters. Particularly, EGFR-MIF and
CD74-MIF are dominant in T3-T1 communication (Figure 5F).
MIF, upregulated by HIF-1𝛼 through potential hypoxia induced
mechanism,[27] is the key ligand secreted from T1-GAPDH high

for activating EGFR pathway in T3 cluster. The epidermal growth
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Figure 4. Intratumoral heterogeneity and tumor evolution trajectory of patient-derived hepatobiliary tumor organoids. A) UMAP plot of all the single cells
in individual hepatobiliary tumor organoids. Also see Table S11 in the Supporting Information. B) Heatmap shows genes (rows) that are differentially
expressed in seven individual organoids clusters (columns). Ten co-expressed genes were listed and critical genes were labeled. C) UMAP plot of all
the single cells marked by CTNNB1, GAPDH, and NEAT1 in each organoid. Color key from blue to yellow indicates relative expression levels from low
to high. D) Single-cell trajectory and pseudo-time analysis of all the seven organoids defined the proliferation advantage cluster and the metabolism
advantage one.
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Figure 5. Diversified metabolic circuitry in resistant subgroups. A) Gene set enrichment analysis of metabolism advantage subpopulation in three indi-
vidual organoids. B) A simplified scheme showing protein interaction in the functional interaction network of HIF-1 signaling pathway. The interactions
were generated using ingenuity pathway analysis (IPA, Ingenuity Systems). C) UMAP representation of four subgroups generated from HCC272 organoid
line. D) Left: UMAP plot of HCC272 organoid line marked by CD44 or NEAT1. Color key from blue to yellow indicates relative expression levels from
low to high. Right: Violin plots depict corresponding gene expression of CD44 or NEAT1 in HCC272 organoid line. E) Violin plots of Jak-STAT signaling
pathway activation-related genes of the subgroup in HCC272 organoid line. F) Ligand–receptor complexes specific to T1-GAPDHhigh and T3-NEAT1high

clusters using CellPhoneDB. G) Overview of molecular interactions between T1-GAPDHhigh and T3-NEAT1high clusters in developing drug resistance in
HCC272. H) KM plots of TCGA data divided by GAPDH, NDRG1, ALDOA, and CA9 expression. I) Expression of GAPDH and NDGR1 indicating different
outcome in clinical. J) Forest plot of clinical indicators and riskScore (calculated by GAPDH and NDGR1). K) ROC curve of riskScore.
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factor receptor (EGFR) pathway plays an important role in the
carcinogenesis of HCC and could mediate the expression of
NEAT1.[28,29] Meanwhile, the interaction of CD74-MIF could me-
diate pathologic proliferation of T3 cluster.[30] Interestingly, Cell-
PhoneDB analyses revealed the similar feedback regulation from
T3-NEAT1high to T1-GAPDH high. The GRN and MIF secreted
by T3-NEAT1high conferred the capacity of drug resistance and
proliferation to T1-GAPDH high by activating EGFR pathway, im-
plicating a regulatory circuit between T1-GAPDH high and T3-
NEAT1high in HCC272 (Figure 5G).

Since GAPDH-enriched cluster with high metabolic status
plays a pivotal role in shaping the hypoxia tumor environment,
we examined the gene expression pattern of GAPDH-enriched
clusters and identified the common shared genes including
GAPDH, NDRG1 (N-Myc downstream regulated 1), ALDOA,
and CA9 in these metabolism advantage organoids. To further
demonstrate the clinical relevance of the common shared genes,
we used the TCGA dataset and found a significant association
between high expression of the genes and poor patient OS when
compared to patients whose tumors showed a lower expression
of the common genes (Figure 5H). Besides, patients with high
expressions of both GAPDH and NDRG1 tend to have the worst
prognosis in comparison with other groups (Figure 5I). Mul-
tivariate analysis further verified the combination of NDRG1
and GAPDH is an independent risk factor for disease progres-
sion (Figure 5J) with superior accuracy (AUC = 0.715) to predict
clinical survival (Figure 5K). Taken together, these findings sup-
port the assertion that metabolism advantage with enrichment
of GAPDH-enriched cluster reshapes the hypoxia microenviron-
ment and interplay between distinct subpopulations might en-
hance tumor malignant phenotypes and render worse prognosis.

3. Discussion

Tumor heterogeneity in hepatobiliary tumor represents a main
obstacle to personalized cancer treatment. Thus, it is highly de-
sirable to explore such heterogeneity and its impacts on drug re-
sponse using a research model that can faithfully recapitulate
the in vivo phenotype of hepatobiliary tumors. Single-cell ge-
nomic provides a viable strategy to understand the genetic and
phenotypic diversity at the single-cell level, which may also help
to understand complex ecosystems in tumor. Here, we applied
scRNA-seq to characterize patient-derived hepatobiliary tumor
organoids, which was currently recognized as the powerful tu-
mor research model. We found evidence of inherent variable of
transcriptional programs related to cell cycle and epithelial ex-
pression across hepatobiliary tumor organoids. Biological and
transcriptomic heterogeneity of CSCs within tumor organoids
were also found, which was related to chemo-resistance. Inter-
estingly, further analysis revealed that resistant subpopulations
with unique metabolic circuitry were response to distinct molec-
ular signatures and drug resistance. Our findings may provide a
mechanistic explanation as to why some patients respond while
others do not, and provide insight into the heterogeneity of hep-
atobiliary tumor organoids and define drug resistance associated
with CSCs.

Among our key findings is the identification of biological
and transcriptomic heterogeneity in patient-derived hepatobil-
iary tumor organoids. Hepatobiliary tumors are characterized

by a high degree of tumoral heterogeneity. Unlike other ma-
lignant tumors, such as breast cancer or lung cancer that has
multiple markers of genetic mutations to determine tumor be-
haviors, the gene mutation spectrum of hepatobiliary tumors
is wide and lacks clear characteristics, resulting extensive ge-
netic and phenotypic variation. In this study, by generating tran-
scriptional atlas of hepatobiliary tumor organoid in single-cell
level, we showed that different samples are inherently various
in cell cycle and epithelial expression, which is consistent with
their proliferation ability, potential drug-resistance risk, and tu-
moral malignancy, respectively. Notably, we further identified
multiple reported malignancy-related genes (e.g., MET, PIK3R1,
PRKCA, PTEN, SHC1, and STAT3) upregulated in HCC272,
and demonstrated that these genes were mainly enriched for
cancer-related functions, which were associated with broad drug
resistance.

Another important finding is the presence of CSC heterogene-
ity within tumor organoids, which tempers our understanding of
drug resistance. CSC plasticity[4] is a prominent cause of genetic
heterogeneity in cancer, playing a vital role in tumor survival, pro-
liferation, metastasis, and recurrence. First, cell surface markers
analyses clearly showed that CSCs varied greatly among individ-
ual organoids. Second, it is of interest to note that CD44high cells
in HCC272 exhibited a distinctive pattern, which might cause
distinct transcription and more drug resistance than other tu-
mor organoids. Third, by exploring co-expressed genes, trajec-
tory, and pseudo-time analysis, we defined the CTNNB1-enriched
subpopulation as the proliferation advantage cluster and the
GAPDH-enriched as the metabolism advantage one. Specifically,
the metabolism advantage organoid HCC272 could remodel tu-
mor microenvironment through accelerating the usage of glu-
cose, enhancing hypoxia-induced HIF-1 signaling, and leading to
the upregulation of NEAT1 in CD44high cells, which induce the
hyper-activation of Jak-STAT signaling eventually caused drug
resistance. It is suggested that understanding the distinctive
metabolic circuitry in resistant subpopulations may help us char-
acterize the CSC heterogeneity and predict therapeutic response.

A limitation of this study is that the findings are mainly based
on a small number of clinical samples, and the interpretation of
tumor heterogeneity is somewhat limited. However, scRNA-seq
still provides deconstructive analysis and the discovery of poten-
tial mechanisms provides credible help for precision treatment
of individuals. Encouragingly, we have now established a huge
hepatobiliary tumor organoid biobank based on gene variation
spectrum and genetic characteristics of the Chinese population
that might allow us to acquire high-quality single cells for single-
cell transcriptome analysis. Further studies will be focused on us-
ing our established patient-derived hepatobiliary tumor organoid
biobank to perform integrative analysis from multiple-levels, in-
cluding genome, transcriptome, metabolome, and epigenome, to
provide more valuable resources for clinical practice.

In summary, our study herein provides important insights into
hepatobiliary tumor heterogeneity, especially the diversification
of CSC distribution and the complexity of cell evolution trajec-
tory. Meanwhile, we revealed that CD44 positive subpopulation
is responsible for drug resistance by hyper-activating Jak-STAT
signaling pathway, which is induced by NEAT1 upregulated in
hypoxia burden. Further studies with larger sample size should
be warranted to better clarify the association between tumor
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heterogeneity and unfavorable clinical features after resection or
drug treatment.

4. Experimental Section
Human Hepatobiliary Tumor Specimens: Fresh hepatobiliary resected

tumors were collected with informed consent from patients who were en-
rolled at Eastern Hepatobiliary Surgery Hospital (Shanghai, China) with-
out preoperative treatment. This study of human specimen collection was
approved by the Ethics Committee of Eastern Hepatobiliary Surgery Hos-
pital. Clinical information is available in Table 1. For each tumor specimen,
a small fragment was snap frozen for histology and the remainder of the
provided tissue was dissociated and processed for organoid culture.

Tumor Dissociation: Fresh resected tissue was minced, rinsed with
phosphate buffered saline (PBS; Thermo Fisher Scientific), and incubated
in digestion buffer on an orbital shaker at 37 °C. Incubation time of the
specimen was dependent on the amount of collected tissue and ranged
from 30 to 90 min, until the majority cell clusters were in suspension.
The digestion buffer was composed of Dulbecco’s modified Eagle medium
(DMEM; GIBCO) with 4 mg mL−1 collagenase D (Roche), 0.1 mg mL−1

DNase I (Sigma), 2 × 10−6 m Y27632 (Sigma-Aldrich), and 100 µg mL−1

Primocin (InvivoGen). After tissue digestion, DMEM media containing
10% fetal bovine serum was added to the suspension to inactivate col-
lagenase D and cell suspension was then filtered through a 70 µm Nylon
cell strainer and spun 5 min at 300–400 g. During processing, 10 µL of this
cell suspension could be counted by Trypan Blue to determine the concen-
tration of live cells. The pellet was washed in cold Advanced DMEM/F12
(Thermo Fisher Scientific) twice and kept cold.

Hepatobiliary Tumor Organoids Culture: The pellet was then resus-
pended with optimized hepatobiliary tumor organoid culture medium,
which was composed of Advanced DMEM/F12 supplemented with 1%
penicillin/streptomycin, 1% GlutaMAX-I, 10 × 10−3 m HEPES, 100 µg
mL−1 Primocin, 1:50 B27 supplement (without vitamin A), 1.25 × 10−3

m N-acetyl-l-cysteine, 50 ng mL−1 mouse recombinant EGF, 100 ng mL−1

recombinant human FGF10, 1 ng mL−1 recombinant human FGF-basic,
25 ng mL−1 recombinant human HGF, 10 × 10−6 m forskolin, 5 × 10−6 m
A8301, 10 × 10−6 m Y27632, 10%, vol/vol Rspo-1 conditioned medium,
30%, vol/vol Wnt3a-conditioned medium, and 5%, vol/vol Noggin condi-
tioned media. 5000–10 000 isolated cells mixed with cold Matrigel Base-
ment Membrane Matrix (CORNING) and 50 µL drops of Matrigel-cell sus-
pension were allowed to solidify on prewarmed 24-well suspension culture
plates at 37 °C for 30 min. Upon complete gelation, 500 µL of organoid
medium was added to each well and plates were transferred to humidified
37 °C/5% CO2 incubators at either 2% or ambient O2. The culture was re-
plenished with fresh media every 3−4 days during organoid growth. Dense
cultures with organoids were usually passaged with a split ratio of 1:3 ev-
ery 2–3 weeks by dissociation with TrypLE Express (Gibco) and re-seeded
into new Matrigel.

Histological Analysis and Immunohistochemistry: Tumor tissue and
organoids were fixed with 4% paraformaldehyde overnight, washed, and
embedded into paraffin blocks. Sections (4–5 µm) were deparaffinized and
stained with hematoxylin and eosin (H&E) for histological analysis. For Im-
munohistochemistry, after sections were made and hydrated, they were in-
cubated with blocking buffer with H2O2 for 15 min and boiled with citrate
(pH = 6.0). After cooling down, sections were treated with pre-blocking
buffer and incubated with primary antibodies at 4 °C overnight. Sections
were incubated with secondary antibodies and 3,3’-diaminobenzidine
stained. Primary antibodies were used including CK19 (ABCAM, ab52625),
AFP (Thermo Fisher Scientific, PA5-16658), CD24 (eBioscience, 14-0242-
85), HepPar1 (NOVUS, NBP2-45272), Arginase (ABCAM, ab91279), CD44
(ABCAM, ab157107), PROM1 (ABCAM, ab19898), and EPCAM (ABCAM,
ab71916). Immunohistochemistry was performed using the Leica BOND-
MAX (Leica Biosystems).

Organoid Drug Screening: Information of 13 used drugs, including
drug names, targets, IC50, and source, is provided in Table S3 in the
Supporting Information. 10 µL of Matrigel was dispensed into 384-well

microplates and allowed to polymerize. Cells from organoid were plated
(3×103 per well) and cultured in 384-well culture plates (CORNING) for
24 h, and drugs were added to the culture medium at a final concentra-
tion of 10 × 10−6 m. After 4 days of drugs incubation, cell viability was
assayed using CellTiter-Glo 3D Reagent (Promega) in accordance with the
manufacturer’s instructions. 0.1% dimethyl sulfoxide was used as a con-
trol. When the ratio of the average level of cell viability in the presence of
the drugs (n = 2) compared to the control (n = 2) was under 0.5, and the
suppressive effect was considered to be significant.

Preparation of Single-Cell Suspensions: Organoids were harvested and
dissociated into single cells following the passaging procedure described
above. Single cell was resuspended with cold PBS, and 10 µL of this cell
suspension was counted by Trypan Blue to determine the concentration
of live cells. Living cell rate was preferably above 90%. 30 000–50 000 cells
were needed to generate scRNA-seq.

scRNA-seq: CountessII Automated Cell Counter (Thermo Fisher Sci-
entific, USA) was used to count cells waiting to be tested and the concen-
tration was adjusted to an ideal concentration of 1×106 mL−1. Then, cDNA
was marked by 10X GemCode Technology. Gel beads containing barcode
information were first mixed with cells and enzymes. Droplets were flowed
into the reservoir and were collected and then dissolved and released
primer sequences for reverse transcription. cDNA was used as templates
to amplify polymerase chain reaction (PCR). A sequencing library was con-
structed by mixing products containing barcode amplification information
in each droplet. First, DNA fragments were broken into 200–300 BP frag-
ments by Biorupter Ultrasound Fragmentation Instrument. Next, DNA li-
brary was amplified by PCR with sequencing connector P5 and sequencing
primer R1. Finally, prepared samples were subjected to the 10Х single-cell
sequencing analysis platform.

scRNA-seq Data Analysis: "Cell Ranger" version 2.0 was utilized to con-
vert Illumina base call files to FASTQ files. These FASTQ files were aligned
to the hg19 human reference genome and transcriptome provided by 10X
Genomics. The gene versus cell count matrix from “Cell Ranger” was
used for downstream analysis. The raw reads were processed using the
“Cell Ranger” pipeline to obtain the unique molecular identifier (UMI).
The UMI counts were transformed and normalized using the “Normalize-
Data” function in “SEURAT” package version 2.3.1, with the normalization
method set to “logNormalize” and the scale factor set to 10 000 total UMIs
per cell. Cell cycle effects were adjusted by regressing out the G2/M and S
phase gene expression scores using the “ScaleData” function in “SEU-
RAT.” PCA was performed using the highly variable genes identified by
the “SEURAT” function “FindVariableGenes” with default parameters. For
each individual model, the number of principal components was selected
based on representing 85% of total variance. The UMAP transformation
was conducted on selected principal components using the “RunUMAP”
function with a default perplexity value of 30.

Whole-Genome Sequencing and Somatic Mutation Calling: DNA was
extracted from primary tissue and patient-derived organoid, and libraries
with an insert size of 500–600 bp were prepared according to the pro-
tocol provided by Illumina. The libraries were sequenced on an Illu-
mina Nova6000 instrument with paired reads of 75–101 bp. WGS data
were treated according to the Genome Analysis Toolkit[31] best practices
workflow. First, raw fastq data were treated with trimmomatic (v0.39)[32]

for adapter trimming and low-quality reads filtering and then aligned to
hg19 human genome reference using BWA-mem (v0.7.15).[33] Samtools
(v1.4)[34] was used to convert the resulting SAM files to compressed BAM
files and then sort the BAM files. PCR duplicates were marked with Pi-
card, and base quality scores were recalibrated using BaseRecalibrator tool
of GATK (v4.0.9.0). Next, Mutect2[31] in GATK was run to call somatic
point mutations and indels from the tumor-normal paired bam files. In
addition, each normal file was conducted with tumor-only mode of Mu-
tect2 and then creating a panel of normal file to filter out expected ar-
tifacts and germline variations. The resulted VCF files were annotated
with ANNOVAR.[35] Variations with allele frequency less than 0.05 were
filtered out. Cancer-related genes were identified by COSMIC and OncoKB
database.[36,37]

Cell Cycle and p-MET Scoring: First, each cell is allocated a fraction of
its cycle based on the expression of its G2/M and S phase marker genes.

Adv. Sci. 2021, 8, 2003897 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2003897 (11 of 13)



www.advancedsciencenews.com www.advancedscience.com

The expression levels of these marker genes should be inversely related,
and cells that do not reflect these marker genes may be in the G1 phase.
The “CellCycleScoring” function was used to calculate the cell cycle score
and store the S and G2/M scores in the metadata, as well as the predicted
classification of each cell in the G2M, S, or G1 stage. Meanwhile, two pre-
viously reported gene sets (Table S2, Supporting Information) were used
to score the epithelial differentiation status and p-EMT (partial epithelial
mesenchymal transition) status of cancer cells. Scoring was used to mea-
sure and identify degrees of malignancy in different clusters and gating
cells with high malignancy to predict the prognosis of patients.

Trajectory and Pseudo-Time Analysis: "Monocle," an R package de-
signed for scRNA-seq data, was used to identify DE genes that vary across
different clusters. The mean expression level of each isoform was modeled
by generalized additive models (GAMs) which relate one or more predictor
variables to a response variable as

g (E (Y)) = 𝛽0 + f1 (x1) + f2 (x2) + ⋅ ⋅ ⋅ + fm (xm) (1)

where Y is a response variable, and xi’s are predictor variables. The func-
tion g is a link function, typically the log function, and fi’s are nonparamet-
ric functions, such as cubic splines or other smoothing functions. Gene
expression level across cells was modeled by a Tobit model; with some
approximations, Monocle’s GAM is thus

E (Y) = s (Ψt (bx , si)) + 𝜖 (2)

where Ψt(bx,si) is the assigned pseudo-time of a cell and s is a cubic
smoothing function with (by default) three effective degrees of freedom. 𝜖
is the error term that is normally distributed with a mean of zero. The DE
test was performed with a x2-approximation of the likelihood ratio test.

RiskScore and Evaluation of Prognostic Indicators: The selected genes
were screened using TCGA database to analyze the prognostic differences
of patients. RiskScore was calculated independently from the two genes
GAPDH and NDRG1, and ROC curves were plotted on the basis of these
scores.

Statistical Analysis: All statistical analyses were performed in “R” and
“GraphPad Prism” (GraphPad 7.0) software. Each in vitro experiment was
independently repeated at least twice. Data were analyzed as mean± SEM.
The significance of differences between the two groups was assessed by
log-rank test. Two-sided p values < 0.05 were considered statistically sig-
nificant. Detailed statistical methods in this paper can be found above.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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