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Abstract

Purpose: This study aimed to identify cases of developmental stuttering and associated 

comorbidities in de-identified electronic health records (EHRs) at Vanderbilt University Medical 

Center, and, in turn, build and test a stuttering prediction model.

Methods: A multi-step process including a keyword search of medical notes, a text-mining 

algorithm, and manual review was employed to identify stuttering cases in the EHR. Confirmed 

cases were compared to matched controls in a phenotype code (phecode) enrichment analysis to 

reveal conditions associated with stuttering (i.e., comorbidities). These associated phenotypes 

were used as proxy variables to phenotypically predict stuttering in subjects within the EHR that 

were not otherwise identifiable using the multi-step identification process described above.

Results: The multi-step process resulted in the manually reviewed identification of 1,143 

stuttering cases in the EHR. Highly enriched phecodes included codes related to childhood onset 

fluency disorder, adult-onset fluency disorder, hearing loss, sleep disorders, atopy, a multitude of 

codes for infections, neurological deficits, and body weight. These phecodes were used as 

variables to create a phenome risk classifier (PheRC) prediction model to identify additional high 

likelihood stuttering cases. The PheRC prediction model resulted in a positive predictive value of 

83 %.

Conclusions: This study demonstrates the feasibility of using EHRs in the study of stuttering 

and found phenotypic associations. The creation of the PheRC has the potential to enable future 

studies of stuttering using existing EHR data, including investigations into the genetic etiology.
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1. Introduction

The advent of large, diverse biomedical datasets has enabled agnostic, data-driven 

approaches in many areas of biomedical science. Electronic health records (EHRs) represent 

one such biomedical resource that encompasses large, readily accessible volumes of data. 

While the primary purpose of EHRs is to enhance individual patient care, they also provide a 

wealth of data useful for understanding disease patterns, treatment efficacy, and, when 

paired with DNA biobanks, the contribution of genetic factors in health. By combining 

demographic information with clinical notes, medication lists, and billing and procedural 

codes throughout the lifetime of a patient with DNA biobank samples, EHRs can facilitate 

novel approaches to questions that would be impractical to answer in traditional study 

designs. EHR-based studies are now commonplace in other fields, yet they represent an 

unexplored opportunity to expand the scope of developmental stuttering research. This 

project harnessed the power of data contained in EHRs to 1) identify stuttering cases via a 

text-mining algorithm and manual review, which in turn enabled us to 2) detect enrichments 

of co-occurring phenotypes (i.e., comorbidities) and 3) to create a phenome risk classifier 

(PheRC) to predict stuttering cases in EHR linked biobanks.

Over the past decade, hundreds of studies utilizing EHRs have been published (Denny et al., 

2011; Onitilo, Engel, Greenlee, & Mukesh, 2009; Walters et al., 2020). For example, 

Namjou et al. (2014) investigated whether genotyped data from previously published GWAS 

studies (i.e., known gene variants) were associated with 539 EHR-derived phenotypes 

(including speech disorders) within a pediatric cohort. These studies, among many others, 

have validated that data collected through routine clinical care and captured in EHRs can 

achieve similar data quality compared to prospective study collection. Furthermore, when 

clinical EHR data is paired with genotyped samples in a DNA biobank, genetic studies such 

as genome-wide association studies are feasible and effective for disease gene discovery.

Electronic health record studies fundamentally rely on a process called phenotyping, or 

reliably identifying cases and controls of diseases and conditions of interest within or 

between EHR data sets. This usually involves creating an algorithm using International 

Classification of Diseases, Ninth and Tenth Revision (ICD-9 and −10) codes, Current 

Procedural Terminology (CPT) codes, laboratory test results, prescriptions, vital sign 

measurements, and/or free text keyword search, and then testing the algorithm against expert 

manual review. Traditionally, phenotypic characterizations within large-scale EHRs have 

relied on the presence of a diagnostic billing code, for example, an ICD-9 or ICD-10 code. 

While billing codes are adequate indicators of many clinical phenotypes, some conditions 

such as developmental stuttering are not always well captured by these data. For example, 

conditions that do not lead to hospital visits, are diagnosed outside of a hospital or outpatient 

setting, have broad or nonspecific billing codes, or are not covered by health insurance may 

be under-identified in the EHR. To demonstrate the inadequacy of using billing codes alone 

for identifying developmental stuttering cases, a preliminary search of de-identified EHRs at 

Vanderbilt University Medical Center (VUMC) revealed that ICD-9 and ICD-10 billing 

codes were conspicuously sparse for developmental stuttering: the billing code search 

returned only 90 cases out of approximately 93,000 records (0.01 % prevalence), far below 
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the expected population 1–3 % prevalence (Pruett, Below, & Jones, 2018). For stuttering and 

other similar conditions, additional data beyond diagnostic codes is necessary for accurate 

phenotyping.

Underrepresentation of developmental stuttering using basic search methods in the EHR is 

likely driven by several factors. First, evaluation and treatment of communication disorders 

are typically performed by speech-language pathologists, not medical doctors, and many 

stuttering evaluations take place in public schools or in private speech-language pathology 

clinics. Consequently, these records regarding the evaluation and treatment of stuttering are 

generally not included in medical center EHRs. Second, communication disorders such as 

stuttering are often ancillary to the purpose of a doctor visit, so descriptions of speech and 

language may not be considered relevant to record in EHRs. Third, communication disorders 

may simply go unnoticed by medical professionals during an encounter. For example, 

stuttering is variable in nature and individuals may not overtly stutter during a medical 

consultation. In this case, unless a patient was specifically asked about his or her speech, or 

being seen for a speech-related reason, stuttering would not be noted in the EHR. Despite 

these hurdles, patients who stutter are regularly seen within medical center settings and 

some have sufficient notation to positively identify them as individuals who stutter.

Keyword searches and text-mining algorithms can augment diagnostic codes to identify 

potential cases of a given disease or disorder. In fact, depending on the condition and 

medical context, keywords may provide even better representation of the phenotype of 

interest. In our preliminary study, when “stuttering” was mentioned within VUMC EHR 

notes, words associated with the disorder were often used to describe conditions other than 

developmental stuttering (Pruett et al., 2018). In a manual review of 1,822 records returned 

from a keyword search, 29 % (521 records) contained exclusively non-speech related 

mentions of stuttering (Pruett et al., 2018). For example, the most common non-speech 

related usages of the keyword “stuttering” included: (1) “stuttering onset”, or a symptom 

that comes and goes, (2) “stuttering gait”, or a gait marked by instability and frequent 

halting, and (3) “stuttering angina”, or random or unstable heart pain. The widespread use of 

the terms provided evidence that a simple keyword search would be insufficient to define 

developmental stuttering cases in the EHR. Overall, the low prevalence of ICD codes 

combined with the high false-positive keyword search provided evidence that a more 

nuanced approach was necessary to define developmental stuttering within the EHR. It is not 

the case that information on stuttering is absent or irrelevant in these large databases, it is 

merely more difficult to parse than other disorders. Therefore, one purpose of the present 

study was to develop a valid and replicable approach to identify stuttering cases within 

EHRs.

Once developmental stuttering cases are identified, EHRs provide a practical and efficient 

method for investigating stuttering comorbidities, or the presence of one or more conditions 

that co-occur with developmental stuttering at a higher frequency than would be expected by 

random chance in a control sample. Interactions among conditions and diseases may have 

far-reaching effects on both personal health and the health care system at large. According to 

Valderas, Starfield, Sibbald, Salisbury, and Roland (2009), comorbidity is associated with 

worse health outcomes, more complex clinical management, and increased health care costs. 
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Mechanisms underlying the coexistence of two or more conditions in a patient include direct 

or indirect causation, shared risk factors, or independence, and understanding these 

mechanisms can impact clinical care, epidemiology, and health services planning (Valderas 

et al., 2009). Greater understanding of stuttering comorbidity may not only improve clinical 

care, but also our understanding of causes of stuttering.

Clinical and anecdotal evidence suggests a high incidence of comorbid speech, language, 

and attention disorders within patients with developmental stuttering (Arndt & Healey, 2001; 

Donaher & Richels, 2012). For the purpose of this study, diagnosed conditions or disorders 

rather than between-group differences, are considered comorbidities (for examples of studies 

that have examined between-group differences, but not statistically tested for differences in 

the frequency of diagnosed conditions or disorders associated with stuttering, see Ambrose, 

Yairi, Loucks, Seery, & Throneburg, 2015; Kefalianos et al., 2017; Reilly et al., 2013; 

Watkins, Ehud, & Grinager, 1999). To date, a variety of methods have been used to examine 

stuttering comorbidities. For example, using the National Health Interview Survey, Briley 

and Ellis (2018) found the presence of at least one disabling developmental condition (from 

among (a) intellectual disability, (b) learning disability, (c) attention-deficit/hyperactivity 

disorder (ADHD)/ADD, (d) seizures, (e) autism, Asperger’s, or pervasive developmental 

disorder (PDD), and (f) any other developmental delay) to be 5.5 times higher in children 

who stutter compared to children who do not. Additionally, using the 1995 Australian Health 

Survey, Keating, Turrell and Ozanne (2001) found children who stutter had a higher 

incidence of developmental delay and emotional problems as well as asthma, allergies, and 

deafness from among 16 pre-selected conditions. Furthermore, a mail survey sent to 

practicing speech-language pathologists in the United States inquiring about clients on their 

caseload suggested that 63 % of young children who stutter have co-occurring speech, 

language, or non-speech-language disorders from among 18 pre-selected conditions (Blood, 

Ridenour, Qualls, & Hammer, 2003). Other studies have taken a more targeted approach and 

examined individual conditions comorbid with stuttering including anxiety (e. g., Iverach et 

al., 2016; cf. Manning & Beck, 2013), inattention and hyperactivity (e.g., Donaher & 

Richels, 2012), and articulation and phonological disorders (e.g., Wolk, Conture, & 

Edwards, 1990). These studies have identified a number of disorders and conditions 

comorbid with developmental stuttering but were limited by 1) a reliance on either clinician 

or caregiver recall (Briley & Ellis, 2018), 2) lack of a control population (Blood et al., 2003; 

Donaher & Richels, 2012; Manning & Beck, 2013), and/or 3) a scope limited to preselected 

conditions (i.e., other potential comorbidities with stuttering may not be included on a given 

survey).

In contrast to these approaches, EHRs offer a greater depth and breadth of examined medical 

conditions. Consequently, queried comorbidities are not limited to a predetermined list and 

are not dependent on the recall of an examiner or examinee. Additionally, the average length 

of medical records encompass more years than most comorbidity studies, capturing 

conditions across a greater portion of the lifespan. Therefore, the present investigation aimed 

to assess conditions associated with stuttering using a novel method with the potential to 

both replicate previously identified comorbidities and explore latent, unstudied, 

comorbidities. A greater understanding of stuttering comorbidities, especially those beyond 

the scope of previous studies, has the potential to impact clinical care management and 
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reveal underlying shared etiology of associated conditions and diseases (Valderas et al., 

2009).

Further, identification of comorbidities enables the creation of a phenome risk classifier. 

Phenome risk classifiers use the association of comorbidities to create an algorithm to 

identify likely cases independent of positive diagnoses (e.g., no ICD-9 or −10 code and/or 

no positive keyword search identification) via underlying similarities to manually reviewed 

cases (e.g., a similar constellation of comorbid conditions). Using this tool, we can 

overcome the challenges in identifying developmental stuttering cases within EHRs to 

greatly increase the number of high-likelihood cases for genetic analysis within the 

Vanderbilt EHR. More broadly, this approach may be adapted and employed in other EHRs 

with limited free-text search abilities to identify high-likelihood stuttering cases, or other 

phenotypes that are not well captured by diagnostic codes themselves. For example, any 

significant genetic findings resulting from work within the Vanderbilt EHR could be 

replicated within other biobank-paired EHRs such as the UK Biobank or the eMERGE 

Network (Gottesman et al., 2013; Sudlow et al., 2015). This approach has been previously 

used to replicate known associations between conditions and genetic variants in studies 

examining asthma (Zhu et al., 2018) cognition (Davies et al., 2016), depression (Howard et 

al., 2018), glaucoma (Verma et al., 2016), muscle strength (Tikkanen et al., 2018), and 

osteoarthritis (Zengini et al., 2018), among many others, demonstrating the utility and 

feasibility of this approach across a wide variety of diseases and conditions. For the field of 

stuttering, this could lead to the discovery of population level causally-related stuttering 

genes.

Therefore, the purpose of this project is to translate these powerful approaches to the study 

of developmental stuttering. Accordingly, the present study represents the first agnostic, 

wide-scale EHR-based study of developmental stuttering and associated conditions. The 

major advantages to using EHRs to investigate developmental stuttering include: 1) access to 

much larger sample sizes than prospective cohort studies, numbering in the thousands to 

hundreds of thousands, 2) access to a greater depth and breadth of nonspeech-language 

pathology medical history (e.g., to assess a wide range of associated comorbidities), and, 

when paired with DNA biobanks, 3) access to existing EHR-linked genetic data. We 

employed these advantages to propel novel studies of the etiology of stuttering at scale. 

These studies are particularly critical, because despite large heritability estimates, strong 

familial trends, and high population prevalence, the genetic architecture of developmental 

stuttering is still largely unknown (Ambrose, Cox, & Yairi, 1997; Fagnani, Fibiger, Skytthe, 

& Hjelmborg, 2011; Yairi, Ambrose, & Cox, 1996; Yairi, Ambrose, & Cox, 1996). 

Therefore, in order to begin to address this gap in our knowledge, this project harnessed the 

power of data contained in EHRs to: identify stuttering cases via text-mining and manual 

review, detect comorbidities, and create a PheRC to predict high-likelihood stuttering cases 

in an EHR-linked biobank. As has been done with other conditions, this nascent work may 

enable the application of this approach to other biobanks and related genetic analyses in the 

area of developmental stuttering.
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2. Methods

2.1. Overall strategy

The first step to identifying conditions associated with developmental stuttering within the 

Vanderbilt University Medical Center (VUMC) EHR involved “defining” the developmental 

stuttering phenotype status by systematically labeling individuals with explicit indicators of 

disfluency as developmental stuttering cases and those without as population controls. Due 

to the dearth of developmental stuttering notation within the EHR (Pruett et al., 2018), this 

process involved (a) a keyword search of clinical notes followed by, (b) a text-mining 

algorithm, and (c) manual review. This multi-step approach was used to broadly search for 

developmental stuttering cases while limiting manual review in an otherwise prohibitively 

large (2.8 million records) clinical note set. Following identification, manually reviewed 

developmental stuttering cases were compared to matched population controls in a phecode 

enrichment analysis to reveal conditions comorbid with stuttering. Finally, these enriched 

phecodes were used as variables to create a phenome risk classifier (PheRC) prediction 

model to identify high-likelihood stuttering cases without the use of keywords and text-

mining. All code used to develop the text-mining algorithm, phecode enrichment analysis, 

and phenome risk classifier is publicly available and open for use at https://github.com/

belowlab/StutteringCART.

2.2. Data source – the Synthetic Derivative (SD) of the Vanderbilt University Medical 
Center EHR

Vanderbilt University Medical Center (VUMC), located in Nashville, Tennessee, is one of 

the largest academic medical centers in the United States and offers primary and specialty 

care in hundreds of adult and pediatric specialties with over 2 million patient visits each 

year. In addition to Vanderbilt University Hospital and Monroe Carell Jr. Children’s 

Hospital, VUMC comprises over 100 outpatient clinics in greater Tennessee. Furthermore, 

VUMC includes The Vanderbilt Bill Wilkerson Center for Otolaryngology and 

Communication Sciences, a multidisciplinary clinic that specializes in ear, nose, and throat 

diseases, and communication disorders such as hearing, speech, language, and voice 

problems.

The size and diversity of VUMC is reflected in the composition of the EHR. Vanderbilt 

University Medical Center maintains a de-identified EHR database called the Synthetic 

Derivative (SD) currently containing ~2.8 million patient records. The Synthetic Derivative 

is 52 % female, with a plurality of patients currently 18–44 years of age (33.1 %) and 15.7 

% currently under 18 years of age. Current race/ethnicity estimates are: 59.8 % Caucasian, 

9.6 % African American, 3.2 % Latino, 1.3 % Asian, 0.1 % Native American, 0.6 % other, 

0.2 % multiple, and 25.2 % unknown. It should be noted that the recording of race is done 

by a third party and the procedure is not uniform, leading to a high incidence of reporting 

error; this cannot be directly addressed in this study but should be acknowledged as a 

potential, though likely minimal, source of bias.

The VUMC SD interface allows the user to search data extracted from most of the major 

health information databases at Vanderbilt. Specifically, the search interface provides users 
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access to basic clinical and demographic information, such as ICD-9 and 10 codes, CPT 

procedure codes, medications, lab values, and free text from within medical notes, and 

returns de-identified data for review. Medical notes is an EHR category that contains free 

text, numerical, and categorical notes about an encounter. Medical note categories include 

admission notes, ancillary reports, discharge summaries, emergency department notes, 

family history, inpatient notes, general notes, nursing reports, pathology reports, outpatient 
notes, problem lists, and radiology reports. Medical notes make up the bulk of information 

on a patient and provide excellent context for understanding encounters in the EHR. Listed 

within medical note categories are: reason for the visit, medical history, general description 

of the patient, evaluation of the chief complaint, description of other relevant medical, social 

and familial context, test results, diagnoses, and follow-up plans. Medical notes also include 

transcripts of email, mail, and telephone correspondence between patients, providers, and 

referring providers. Psychological and psychiatric records are protected and not directly 

accessible, but neurology reports and psychological referral correspondence are accessible. 

New clinical data are added to the database bimonthly.

2.3. Identifying developmental stuttering cases in the EHR via keyword search and 
manual review

2.3.1. Exploratory keyword search—A list of exploratory keywords including 

descriptors of developmental stuttering in EHRs was developed based on investigator 

phenotypic expertise (Fig. 1, Step 1). A preliminary study of the VUMC SD examining 

cases with stuttering ICD 9 and 10 codes (n = 142) revealed that in free text chart notations 

written by doctors and nurses, stuttering was often misspelled and there were several words 

used to describe the condition (Pruett et al., 2018). However, in this preliminary study, every 

confirmed case of developmental stuttering contained at least one of these exploratory 

keywords, “stutter”, “studder” [sic], “stuttering”, “studdering” [sic], “stammer”, 

“stammering”, “disfluency”, and “dysfluency” within medical notes. Therefore, this list of 

exploratory keywords was used to initially filter the approximately 2.8 million records in the 

VUMC SD.

2.3.2. Initial manual review—Reviewers with expertise in stuttering then examined de-

identified text files with the exploratory keywords highlighted in context to determine if the 

observed keywords were used to describe developmental stuttering (Fig. 1, Step 2). Medical 

notes with standardized test scores from a speech-language pathologist indicating 

developmental stuttering (e.g., Stuttering Severity Instrument, or stuttering-like disfluencies 

from a speech sample), description of stuttering speech combined with supporting familial/

educational context (e.g., “Patient’s mother is concerned with child’s stuttering and 

describes teasing at school. Disfluency noted during encounter. Referral to speech-language 

pathologist.”) and mentions of stuttered speech without reference to confounding conditions 

like stroke, traumatic brain injury, seizures, and psychological/psychiatric conditions (e.g., 

“Patient displays stuttering in his speech, as per baseline.”) determined case status to be used 

in subsequent analyses. If case status could not be determined from the text surrounding 

keywords, the search was expanded outside the scope of the keywords (e.g., clarifying 

whether a disqualifying condition, such as stroke, occurred previously to the mention of 

stuttering). The purpose of this step is to remove cases where stuttering speech occurs as the 

Pruett et al. Page 7

J Fluency Disord. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



result of (a) stroke or traumatic brain injury, termed neurogenic stuttering, (b) side effects 

from pharmaceuticals, termed neuropharmacological stuttering, and (c) idiopathic stuttering 

in conjunction with psychosis or schizophrenia, termed psychogenic stuttering. While these 

conditions may present similarly to developmental stuttering, with an adult onset and being 

often transient in nature, they likely represent a distinct pathogenesis (Theys, van Wieringen, 

& De Nil, 2008) and were removed from consideration as cases or controls. Similarly, 

ambiguous cases lacking adequate inclusion criteria (described above) were also removed 

from consideration as cases or controls.

Because the records used for this exploratory keyword search and context development 

would be lost to subsequent steps, we opted to limit our search to the first 30 positively 

identified stuttering cases. Due to limited sample size, there is a tradeoff between using 

cases to develop the text-mining algorithm and using cases for enrichment analysis and 

model training/testing. Therefore, the relatively limited number of cases used in this filtering 

step preserved cases for subsequent steps.

2.3.3. Confirmatory keyword identification—Using confirmed stuttering cases from 

the initial manual review, we selected all words immediately surrounding (within ten words 

of) an exploratory keyword instance (i.e., “stutter”, “studder”, “stuttering”, “studdering”, 

“stammer”, “stammering”, “disfluency”, and “dysfluency”) and calculated the frequency of 

observation. We then identified words whose presence was enriched in the records of 

developmental stuttering cases (Fig. 1, Step 3). The seventeen most strongly associated 

words were considered “confirmatory keywords” (i.e., “mom”, “mother”, “mom’s”, 

“parent”, “parents”, “school”, “preschool”, “pre-school”, “child”, “children”, “birth”, “dad”, 

“father”, “dad’s”, “father’s”, “SSI-3”, and “SSI”) and were selected for use in subsequent 

filtering steps. This data allowed us to create a text-mining algorithm, which served as a 

search engine for identifying high-likelihood developmental stuttering cases by the words 

used to describe it within medical notes.

2.3.4. Text-mining algorithm—We developed this text-mining algorithm to identify 

high-likelihood cases and thus reduce the number of false positive keyword hits (Fig. 1, Step 

4). As a result, far fewer files required final manual review. Specifically, the algorithm tallies 

the number of confirmatory keywords within ten words of exploratory keyword instances to 

create a numerical score for each individual. After an initial trial with five or more 

confirmatory keyword phrases returned too few cases, the threshold was lowered to three 

confirmatory keyword phrases to cast a wider net of potential cases. Consequently, all 

patients with three or more instances of confirmatory keyword phrases (i.e. “mom”, 

“mother”, “mom’s”, “parent”, “parents”, “school”, “preschool”, “pre-school”, “child”, 

“children”, “birth”, “dad”, “father”, “dad’s”, “father’s”, “SSI-3”, and “SSI”) combined with 

exploratory keywords (i.e. “stutter”, “studder”, “stuttering”, “studdering”, “stammer”, 

“stammering”, “disfluency”, and “dysfluency”) were selected as high-likelihood 

developmental stuttering cases. Patients that had any direct mentions of “developmental 

stuttering” were also included.

2.3.5. Final manual review—An additional, final manual review (using the same 

procedure as the initial manual review) was conducted to remove false positive cases 
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identified by the text-mining algorithm (Fig. 1, Step 5). Again, false positives included cases 

of neurogenic, neuropharmacological, and idiopathic stuttering. Specifically, this process 

ensured that all developmental stuttering cases were manually reviewed and confirmed by 
the phenotyping team.

Ultimately, the end goal of the multi-step identification process was to maximize the positive 

predictive value, or the proportion of confirmed cases among those identified as potential 

cases, in order to reduce manual review in future studies. Positive predictive value is a 

function of both the design of the text-mining algorithm as well as the base rate of the 

condition within a population. For example, a study examining phenotyping diseases within 

EHRs using a combination of natural language processing and structured data found that 

positive predictive value ranged from 88 % for rheumatoid arthritis to 98 % for Crohn’s 

disease (Liao et al., 2015). Given the lack of specific billing codes for developmental 

stuttering within the VUMC SD, we assumed our keyword-based text-mining algorithm 

would result in a slightly lower positive predictive value. This multi-step process 

accomplishes the first aim of the project: identifying stuttering cases via a text-mining 

algorithm and manual review within the VUMC SD.

2.4. Comorbidity analysis via phecode enrichment

Once identified using the multi-step process described above, half of the developmental 

stuttering cases were randomly selected for the phecode enrichment analysis (i.e., 

comorbidity analysis), reserving the other half for the training and testing of the phenome 

risk classifier as described below. Each of these cases was assigned up to five controls 

matched for age (< 5 years of age difference), sex, race, ancestry, and number of clinical 

encounters (< 5 clinical visit difference between case and control). Clinical encounters were 

estimated by the number of unique days a patient received a diagnostic code (i.e., phecode), 

an index of the frequency of medical care and thus length of record.

Phecodes represent hierarchical diagnostic groupings for EHR data derived from ICD-9 

codes (Denny et al., 2010, 2013). There are 1,645 phecodes, loosely following the ICD-9 

code system, but revised based on statistical co-occurrence and code frequency. For 

example, Phecode 315 Developmental Delays and Disorders contains the subcategory 

Phecode 315.2 Speech and Language Disorder, which encompasses the following ICD-9 

categories: Developmental dyslexia (315.02), Other specific developmental reading disorder 

(315.09), Developmental speech or language disorder (315.3), Expressive language disorder 

(315.31), Mixed receptive-expressive language disorder (315.32), Speech and language 

developmental delay due to hearing loss (315.34), Childhood onset fluency disorder 

(315.35), and Other developmental speech disorder (315.39).

Enrichment analysis was used to compare the frequency of phecodes within the 

developmental stuttering cohort to selected controls. The approach uses a mathematical 

model (e.g., a distribution) to directly compute an empirical p value by calculating the 

frequency of each phecode in the stuttering case set compared to a null distribution created 

through multiple permutations of the randomized control set (Reimand et al., 2019). 

Specifically, for each permutation, one control was selected at random from each case’s 

matched set (i.e., 1 of the 5 controls for each stuttering case was randomly selected). By 
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selecting exactly one control from each case’s matched set, we ensured that the overall 

control demographic structure (e.g., age, sex, race, etc.) remained similar to the 

demographics of the stuttering case set and helps account for possible confounds. We then 

calculated the frequency of each phecode for this randomly selected set of controls. This 

process was repeated for 10,000 permutations, resulting in 10,000 randomized sets of 

controls as well as the observed phecode frequency for each of these sets, creating a null 

distribution. A p-value for each phecode was then calculated by comparing the observed 

phecode counts in the stuttering case set to the null distribution of phecode counts created 

through the 10,000 permutations. Phecodes were considered significantly enriched in the 

stuttering case set if the observed counts exceeded the maximum observed counts in the 

control set distribution. For example, the maximum frequency of the Phecode 315 

(Developmental delays and disorders) across all 10,000 randomized control sets was 128, 

whereas in our stuttering case set there were 351 patients who had this phecode; it is 

therefore significantly enriched in the stuttering case set. For further comparison, for 

Phecode 315, the 50th percentile of the observed counts across all 10,000 randomized 

control sets was 104 codes and the 99th percentile was 123 codes. For all significant 

phecodes, the stuttering case set had more observed codes than the maximum codes found 

across all 10,000 randomized control sets, corresponding to a conservative p-value threshold 

(p ~ 0). Phecodes which were observed in less than 3.5 % of developmental stuttering cases 

were excluded regardless of significance because these were deemed to be too infrequently 

occurring for comparison. For a sensitivity analysis, we repeated this methodology while 

restricting the developmental stuttering dataset to include only cases with Stuttering Severity 

Instrument (SSI) scores above “sub-clinical”, indicating that stuttering diagnosis was 

clinically measured and confirmed by speech-language pathologists. Overall, these steps 

accomplish the second aim of the project: to utilize a novel approach to detect enrichments 

of co-occurring phenotypes to examine developmental stuttering comorbidities across the 

breadth and depth of the VUMC SD.

2.5. Phenome risk classifier (PheRC) using machine learning

All significantly enriched phecodes (i.e., comorbidities) were used to model a decision tree 

classifier algorithm to create a phenome risk classifier (PheRC) to predict potential 

developmental stuttering cases. Broadly speaking, by mapping clinical phenotypes extracted 

from the EHR, the PheRC expresses the degree to which clusters of symptoms, represented 

by phecodes, predict a condition of interest, in this case developmental stuttering (for a 

similar approach that used symptom clusters and phecodes for identifying cases, see 

Bastarache et al., 2018). For example, a person with a higher frequency of codes that match 

the codes enriched in our developmental stuttering cohort (e.g., Developmental delays and 

disorders, Sleep disorders, Allergic reaction to food, etc.), would be identified as having 

underlying similarities to a person who stutters. Importantly, the predictiveness of any single 

phecode depends on the “impurity” of the phecode as a proxy variable. Impurity is 

determined by how effectively a certain phecode can split the dataset into stuttering and non-

stuttering cases. For example, if everyone with a given phecode stutters and everyone 

lacking that phecode doesn’t stutter, then that phecode has an impurity of 0. Conversely, if a 

phecode doesn’t predict stuttering status any better than a coin flip, then that phecode has an 

impurity of 0.5. Consequently, a patient could be a predicted stuttering case with 2 or 3 
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phecodes with very low impurities, or with 6 or 7 phecodes with higher levels of impurity. 

The binary outcome of the PheRC classifies individual patients within the EHR as either 

similar to our stuttering cohort or similar to the control cohort based on their phecodes. 

Those deemed similar to the stuttering cohort were considered PheRC-predicted cases based 

on comorbidities.

2.5.1. Build and test classification algorithm—To create the PheRC algorithm, the 

remaining half of the manually reviewed developmental stuttering cases not used in the 

comorbidity analysis were used to train and test the model. For the model training (or model 

creation), 80 % of stuttering cases with their accompanying phecodes were used in a gini-

index based classification and regression tree classification model, using the presence or 

absence of each phecode as predictors, and a binary determination of developmental 

stuttering cases or controls as the outcome (Pedregosa et al., 2011). To avoid overfitting the 

model, we minimized tuning our hyperparameters and avoided re-testing and training the 

PheRC model. No restrictions were placed on the tree depth or leaf node counts. Minimum 

samples per leaf was set to five. Twenty percent of the remaining manually reviewed 

developmental stuttering cases were used to test (or validate) the model, comparing 

developmental stuttering cases identified by manual review against PheRC-predicted cases. 

This step accomplishes the third aim of the project: to create a PheRC to predict potential 

developmental stuttering cases in EHR-linked biobanks.

3. Results

3.1. Exploratory keyword search

The exploratory keyword search returned 14,080 individuals with at least one keyword 

mention (“stutter”, “studder”, “stuttering”, “studdering”, “stammer”, “stammering”, 

“disfluency”, and “dysfluency”) in their records (Fig. 1, Step 1). These keywords cast a wide 

net but contained false positives from non-speech related uses of the words and/or stuttering 

resulting from exclusionary criteria.

3.2. Initial manual review

An initial manual review identified 30 developmental stuttering cases (Fig. 1, Step 2). The 

30 cases represented a sufficient number for the confirmatory keyword identification while 

also maintaining as many cases as possible for the subsequent steps (Pruett et al., 2018).

3.3. Confirmatory keyword identification

Based on analyses using the 30 confirmed developmental stuttering records, the top twenty 

confirmatory keywords associated with stuttering were chosen. Keywords that were also 

enriched within non-stuttering cases (“edition”, “test”, “total”) were excluded. The resulting 

seventeen confirmatory keywords associated with stuttering included: “mom”, “mother”, 
“mom’s”, “parent”, “parents”, “school”, “preschool”, “pre-school”, “child”, “children”, 
“birth”, “dad”, “father”, “dad’s”, “father’s”, “SSI-3”, and “SSI” (Fig. 1, Step 3). The 

identification of these confirmatory keywords was used to facilitate the creation of the text-

mining algorithm, described subsequently.
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3.4. Text-Mining

From the 14,080 individuals with stuttering-related exploratory keywords, the text-mining 

algorithm further reduced the number of high-likelihood cases to 1,567 (Fig. 1, Step 4). As 

previously mentioned, these 1,567 high-likelihood cases of developmental stuttering had: 1) 

at least three or more occurrences of confirmatory keyword phrases (i.e., “mom”, “mother”, 

“mom’s”, “parent”, “parents”, “school”, “preschool”, “pre-school”, “child”, “children”, 

“birth”, “dad”, “father”, “dad’s”, “father’s”, “SSI-3”, and “SSI”) combined with exploratory 

keywords (i.e., “stutter”, “studder”, “stuttering”, “studdering”, “stammer”, “stammering”, 

“disfluency”, and “dysfluency”), and/or 2) a direct mention of “developmental stuttering.”

3.5. Final manual review

Of the 1,567 high likelihood cases of developmental stuttering identified by the text-mining 

algorithm, 1,143 were determined to be true cases after manual review by members of the 

investigative team (Fig. 1, Step 5). This equates to a positive predictive value (the number of 

confirmed cases divided by the total number of suspected cases) of 73 %. The relatively high 

positive predictive value indicates the exploratory keyword search combined with the text-

mining algorithm successfully identified a much higher proportion of developmental 

stuttering cases compared to a keyword search alone (approximately 20 % positive 

predictive value, see Pruett et al., 2018). The average current age of developmental stuttering 

cases was approximately 17 with a standard deviation of 9. Birthdates for confirmed cases 

ranged from 1946 to 2015. Manual review typically required 3−5 min, with approximately 

10 % of cases requiring more extensive review.

As mentioned previously, positive indicators for developmental stuttering cases within the 

1,567 high-likelihood records included standardized test scores from a speech-language 

pathologist assessing developmental stuttering, description of stuttering speech combined 

with supporting familial/educational context, and mentions of stuttered speech without 

reference to confounding conditions like stroke, traumatic brain injury, seizures, and 

psychological/psychiatric conditions. Approximately 43 % of manually reviewed confirmed 

cases had a clinically documented developmental stuttering diagnosis as determined by 

Stuttering Severity Instrument scores and speech-language pathologist assessment. An 

additional ~20 % of manually reviewed stuttering cases had a speech-language pathology 

referral for stuttering concerns. Common exclusions within the 1,567 high-likelihood 

records included records with stuttering discussed in the context of (a) stroke or traumatic 

brain injury, termed neurogenic stuttering, (b) side effects from pharmaceuticals, termed 

neuropharmacological stuttering, and (c) idiopathic stuttering in conjunction with psychosis 

or schizophrenia, termed psychogenic stuttering. While these conditions are similar to 

developmental stuttering, with an adult onset and being often transient in nature, they likely 

represent a distinct pathogenesis (Theys et al., 2008). Ambiguous cases were rare and 

represented less than 1% of cases reviewed. These cases included mentions of stuttering 

(e.g., “Patient stuttering”) but lacked sufficient supporting context to confirm developmental 

stuttering. For demographics of confirmed developmental stuttering cases, see Table 1.
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3.6. Comorbidity analysis

According to our phecode enrichment analysis, compared to matched controls (n = 2765), 

developmental stuttering cases not used for the development of the phenome risk classifier 

(n = 572) were enriched for a variety of previously suggested comorbidities as well as 

potential novel comorbidities (Fig. 1, Step 6a). For demographics of cases and controls used 

for phecode enrichment, see Table 2.

Enriched phecodes associated with previously suggested comorbidities included 

Developmental Delays and Disorders (Phecode 315) (Arndt & Healey, 2001; Blood et al., 

2003), Speech and Language Disorder (Phecode 315.2) (Arndt & Healey, 2001; Blood et al., 

2003), Pervasive Developmental Disorders (Phecode 313) (Scott, 2015), Tics and Stuttering 

(Phecode 313.2) (Ooki, 2005), Hearing Loss (Phecode 389) and Conductive Hearing Loss 

(Phecode 389.2) (Arenas, Walker, & Oleson, 2017), Sleep Disorders (Phecode 327) (Macey 

et al., 2002), and a variety of codes related to the atopic triad including Acute Upper 

Respiratory Infections of Multiple or Unspecific Cites (Phecode 465) (Strom & Silverberg, 

2016a, 2016b), Allergic Reaction to Food (Phecode 930) (Strom & Silverberg, 2016a, 

2016b), Rash and Other Non-specific Skin Eruption (Phecode 687.1) (Strom & Silverberg, 

2016a, 2016b), Atopic/contact Dermatitis Unspecified (Phecode 939) (Strom & Silverberg, 

2016a, 2016b), and Cough (Phecode 512.8) (Strom & Silverberg, 2016a, 2016b).

Other enriched phecodes included Other Tests (Phecode 1010) and associated infections, 

Neurological Deficits (Phecode 292), Aphasia/Speech Disturbance (Phecode 292.1), 

Overweight, Obesity, and Hyperalimentation (Phecode 278), Symptoms Concerning 

Nutrition, Metabolism, and Development (Phecode 1002), and Lack of Normal 

Physiological Development (Phecode 264). All significantly enriched phecodes are 

presented in Table 3. For non-significant phecodes of interest (up to p = .12), see Table 4.

For the sensitivity analysis, we performed an additional phecode enrichment analysis which 

included only records containing Stuttering Severity Instrument (SSI) scores higher than 

“sub-clinical” with accompanying assessment by a speech-language pathologist (n = 243 

cases, 1,173 controls). Of the 38 phecodes identified in the phecode enrichment analysis, 27 

phecodes still exhibited enrichment (p < 0.05) in the sensitivity analysis. Two phenotypes 

that were no longer enriched, “Lack of coordination” (Phecode 350.3) and “Conductive 

hearing loss” (Phecode 389.2), had parent, or overarching, phecodes (“Abnormal 

movement” (Phecode 350) and “Hearing loss” (Phecode 389), respectively) which remained 

enriched in the sensitivity analysis. The other nine phecodes included: Candidiasis (Phecode 

112), Lack of normal physiological development (Phecode 264), Lack of normal 

physiological development; unspecified (Phecode 264.9), Epilepsy; recurrent seizures; 

convulsions (Phecode 345), Convulsions (Phecode 345), Otitis media (Phecode 381), Otitis 

media and eustachian tube disorders (Phecode 381.1), Suppurative and unspecified otitis 

media (Phecode 381.11), and Otalgia (Phecode 382).

3.7. Phenome risk classifier (PheRC) using machine learning

From the 1,143 confirmed developmental stuttering cases, 571 randomly selected cases, with 

up to five matched controls (n = 2754), were used to develop the gini-index decision tree 
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classifier. Of this set of 571 stuttering cases, 430 cases and their matched controls (n = 2070) 

were used to build the model, and 141 cases and their matched controls (n = 684) were used 

to test the model. Ultimately, of the 116 patients classified by the PheRC as high-likelihood 

cases, 97 were manually-reviewed positives from the case set and 19 were determined false 

positives from the control set, equating to a positive predictive value of >83 % (Fig. 1, Step 

6b). It’s important to note that the positive predictive value rate is an estimate; because we 

cannot be certain of the true absence of stuttering in the control group, we cannot calculate 

the exact sensitivity, specificity, or negative predictive value for this model. However, the 

high estimated positive predictive value makes it useful for case acquisition: that is, patients 

identified as PheRC-predicted stuttering cases are very likely to be correctly categorized. For 

the confusion matrix for developmental stuttering classification, see Table 5.

4. Discussion

The present study developed a multi-step process for identifying developmental stuttering 

cases within an EHR-based database. The subsequent phecode enrichment analysis of the 

VUMC EHR revealed phecodes enriched in developmental stuttering records, representing a 

variety of potential comorbid conditions. Using these phecode enrichments, a phenome risk 

classifier (PheRC) was developed to increase the number of likely developmental stuttering 

cases identified within EHRs using a prediction model to increase the number of cases and 

enable further genetic study using the EHR.

4.1. Identifying developmental stuttering in the synthetic derivative of the VUMC EHR

Because communication disorders such as stuttering are often ancillary to the purpose of a 

doctor visit at major medical centers, they are not well captured through billing codes. Thus, 

our keyword search and subsequent filtering steps using text-mining and manual review 

were needed for accurate phenotyping of cases. The first step to identifying conditions 

associated with developmental stuttering within the Vanderbilt University Medical Center 

(VUMC) EHR involved “defining” the developmental stuttering phenotype status by 

systematically labeling individuals with explicit indicators of disfluency as developmental 

stuttering cases and those without as population controls. Due to the dearth of developmental 

stuttering notation within the EHR (Pruett et al., 2018), this process involved (a) a keyword 

search of clinical notes followed by, (b) an initial manual review to identify cases to create 

(c) a text-mining algorithm to highlight high-likelihood cases (and further reduce the need 

for extensive manual review) and (d) a final manual review of all high-likelihood stuttering 

cases. This multi-step approach was used to broadly search for developmental stuttering 

cases while limiting manual review in an otherwise prohibitively large clinical note set. 

Through this approach, an initial database of approximately 2.8 million patients was 

narrowed to 14,080 patients with exploratory keyword hits, then reduced to 1,567 high-

likelihood cases as determined by text-mining, and, finally, after manual review, 1,143 

developmental stuttering cases were identified. While there is high confidence in manually 

reviewed cases, we note that descriptions of speech and language may not be considered 

relevant to record in EHRs, and/or communication disorders may simply go unnoticed by 

medical professionals during an encounter, so there may be “hidden” developmental 

stuttering cases in our control population, slightly impacting power.
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Despite these challenges, there was sufficient notation to positively identify 1,143 cases of 

stuttering by expert manual review. As we’ve shown, it is not the case that information on 

stuttering is absent or irrelevant in these large databases, but that identifying cases requires a 

careful review process. The approach developed here could be applied in other EHR 

databases with access to medical notes and may be adapted to identify other communication 

disorders that also fall outside the scope of typical medical encounters. The importance of 

comprehensively documenting conditions, even if they’re not related to the purpose of the 

visit, extends beyond stuttering. As Valderas et al. (2009) states, doing so would “enhance 

both the precision and generalizability of [comorbidity] findings, leading to improved 

understanding of the causes of co-occurring diseases and their consequences for health 

service providers and planners.”

4.2. Comorbidity analysis via phecode enrichment

Following identification and systematic review, confirmed developmental stuttering cases 

were compared to matched population controls in a phecode enrichment analysis to reveal 

conditions comorbid with stuttering within this sample. On balance, the methods employed 

in this study recapitulated some previously suggested stuttering comorbidities identified via 

other methods and produced intriguing possibilities for future comorbidity study.

Importantly, interpreting developmental stuttering comorbidities from the phecode 

enrichments requires understanding how the ICD-9 codes (from which the phecodes are 

derived) are used clinically. While some phenotypes that co-occur with developmental 

stuttering in the EHR may share biological underpinnings, others may be enriched due to the 

manner in which information is coded and utilized in the medical setting, such as an 

inappropriately broad billing code. The methods utilized within the EHR are distinct from 

previous stuttering comorbidity studies, which rely on clinician recall or are hypothesis 

driven. For example, our analysis of enriched phecodes examines the entire record of the 

subject and was not restricted to conditions observed concurrently with a mention of 

stuttering in medical notes. That being said, our EHR-based approach may be differentially 

powered to detect some enrichments, such as those that, like stuttering, are under-

documented in medical records. Therefore, the absence of a significant positive finding 

should not be taken as a negative finding but rather as a null finding. Additionally, the 

demographic characteristics of a study sample from a hospital-based population may enable 

the identification of phenotypic associations that would not be detectable in a study of a well 

population.

The two most highly enriched phecodes, Developmental Delays and Disorders (Phecode 

315) and Speech and Language Disorder (Phecode 315.2), encompass developmental 

stuttering, the phenotype of interest, and articulation disorders (Arndt & Healey, 2001; 

Blood et al., 2003). These enrichments provide evidence that developmental stuttering cases 

identified within the VUMC EHR contained expected speech conditions.

Pervasive Developmental Disorders (Phecode 313) and Tics and Stuttering (Phecode 313.2) 

were the next most enriched phecodes. These phecodes include the ICD-9 code for Adult 

Onset Fluency Disorder (307.0). This billing code was designated for acquired stuttering 

(i.e., neurogenic or psychogenic stuttering); however, according to experienced speech-
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language pathologists, the code was also commonly used for adult patients with 

developmental stuttering persisting into adulthood. Interestingly, while Pervasive 

Developmental Disorders was enriched, the autism-specific phecode Autism (313.3) was not 
significantly enriched (Table 4). There is increasing clinical interest in the interplay between 

autism and stuttering, especially autism-specific speech disfluencies (Sisskin & Wasilus, 

2014; Sisskin, 2006). Further study will be necessary to illuminate possible links between 

autism and developmental stuttering.

The enrichment of Hearing Loss (Phecode 389) and Conductive Hearing Loss (Phecode 

389.2) was particularly intriguing considering the history of stuttering, audition, and hearing 

loss. For decades, the prevailing consensus was that stuttering prevalence was lower among 

children with hearing loss, suggesting hearing loss may be a protective factor against 

stuttering (Backus, 1938; Harms & Malone, 1939; Montgomery & Fitch, 1988). However, 

more recent studies have challenged that assumption, finding preschool-aged children with 

mild to severe hearing loss have an increased stuttering prevalence (Arenas et al., 2017). In 

addition to hearing loss, studies of delayed auditory feedback, frequency shifted feedback, 

choral speech, and noise masking have shown that each of these aural phenomena can 

temporarily increase fluency in some people who stutter (Bloodstein & Bernstein Ratner, 

2008). While the underlying mechanisms leading to increased fluency are not fully 

understood, some have hypothesized that people who stutter have disrupted sensory 

feedback during speech production, and that decreased hearing may counteract this 

disrupted auditory feedback (Hutchinson & Ringel, 1975; Tourville, Reilly, & Guenther, 

2008; van Lieshout, Peters, Starkweather, & Hulstijn, 1993). The varying directionality of 

findings related to hearing loss combined with known aural phenomena that increase fluency 

suggests the interaction of stuttering and hearing loss warrants further investigation.

While not commonly studied in combination with stuttering, emerging evidence suggests 

possible sleep differences in people who stutter. For example, a study examining structural 

changes in the brain resulting from obstructive sleep apnea found that, compared to the 

control group, the experimental group had significantly more individuals who stutter (Macey 

et al., 2002). Additionally, a recent study found a difference in the likelihood of sleep 

problems and daily consequences of sleep deprivation among children who stutter (Briley, 

2019). Yet another study found that children who stutter, as a group, appear to exhibit more 

irregular biological patterns of sleep, hunger, and elimination patterns (Anderson, Pellowski, 

Conture, & Kelly, 2003). One hypothesis posits that sleep deprivation in childhood may 

interfere with memory consolidation required for early language and speech-motor mastery 

(Strom & Silverberg, 2016b).

Although the phecode for Asthma (495) fell short of our threshold for significance (Table 4), 

collectively, the significantly enriched phecodes for Acute Upper Respiratory Infections 

(Phecode 465), Allergic Reaction to Food (Phecode 930), Rash (Phecode 687.1), Atopic/

Contact Dermatitis (Phecode 939), and Cough (Phecode 512.8) comprise elements of the 

asthma-allergy-eczema atopic triad. These conditions are called a triad because they 

frequently occur together: more than 60 % of children with eczema also have asthma and/or 

allergies to environmental aeroallergens or certain foods (Kapoor et al., 2008). Retrospective 

analyses of the National Survey of Children’s Health and the National Health Interview 
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Survey conducted in 2016 found that a history of asthma, hay fever, food allergy, and 

eczema were associated with increased risk of speech disorder, and, anecdotally, some 

speech-language pathologists report asthma and allergies are more frequently observed 

among children who stutter on their caseload (Strom & Silverberg, 2016b). While the 

pathophysiology connecting developmental stuttering and atopy is unclear, one explanation 

points, again, to the effects of chronic disease and resultant chronic sleep deprivation during 

childhood (Strom & Silverberg, 2016a). This explanation is especially compelling since 

sleep disorders were also a significant comorbidity in this study.

Other significant enrichments were previously unobserved in the literature. Other Tests 

(Phecode 1010), an extensive category that includes billing and procedural codes for a 

variety of diagnostic tests encompassing viral and bacterial infection, vaccine prophylaxis, 

and allergy testing, was significantly enriched. Due to the breadth of codes included in this 

category, it is difficult to pinpoint any single condition or infectious agent associated with 

stuttering. However, broadly speaking, an increase in diagnostic testing suggests 

developmental stuttering is associated with a greater overall burden of childhood medical 

conditions. This association is further supported by significant phecodes for conditions 

including Fever of Unknown Origin (Phecode 783), Viral Infection (Phecode 79), Chronic 

Pharyngitis and Nasopharyngitis (Phecode 472), Otitis Media, Dermatophytosis (Phecode 

110), Candidiasis (Phecode 112), Infection of the Eye (Phecode 369), Otalgia (Phecode 

382), and Open Wounds of the Head, Neck, and Trunk (Phecode 870).

Additionally, phecodes associated with a range of neurological conditions affecting speech, 

language, and gross motor movements were enriched in the developmental stuttering group, 

including Neurological Deficits (Phecode 292), Aphasia/Speech Disturbance (Phecode 

292.1), Abnormal Movement (Phecode 350), Abnormality of Gait (Phecode 350.2), Lack of 

Coordination (Phecode 350.3), and Epilepsy and Convulsions (Phecode 345). Notably, 

Neurological Deficits and Aphasia/Speech Disturbance include ICD-9 codes for Aphasia 

(784.3) and Dysarthria (784.52), conditions that can present with speech disruptions similar 

to developmental stuttering. While clinicians may use related terminology to describe these 

conditions, our manual review process required documentation of developmental stuttering 

and excluded cases of acquired stuttering, so overlapping terminology alone would not 

account for the enrichment. Additionally, while the codes for Aphasia/Speech Disturbance 

and Abnormality of Gait are seen more frequently in the geriatric population and Epilepsy is 

seen more frequently in pediatrics, our age- and length-of-record matching procedure 

ensured that these codes are indeed enriched in comparison to the non-stuttering control 

sample and not as a result of age bias. Overall, these enriched neurological conditions pose 

the question of whether underlying vulnerabilities in the speech-motor and language 

systems, and the motor system at large, may be associated with developmental stuttering.

Furthermore, at first glance, the enriched codes for Overweight, Obesity, and 

Hyperalimentation (Phecode 278), Symptoms Concerning Nutrition, Metabolism, and 

Development (Phecode 1002), and Lack of Normal Physiological Development (Phecode 

264) appear contradictory in that phecodes for both excessive weight gain and weight loss 

are present. One interpretation is that atypical weight regulation may be associated with 

stuttering. Alternatively, weight loss and weight gain may represent two distinct 
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comorbidities. For example, Symptoms Concerning Nutrition, Metabolism, and 

Development and Lack of Normal Physiological Development include ICD-9 codes for 

Feeding Difficulties and Mismanagement (783.3) and Lack of Normal Physiological 

Development (783.40), conditions related to failure to thrive. While failure to thrive has 

many causes, children in families with inadequate support or resources are especially 

susceptible, and nutritional deficits during key developmental stages may have far-reaching 

impacts on physical, intellectual, and social growth, including speech and language 

development. In contrast, a cogent explanation regarding the association with weight gain is 

less clear and may require additional investigation of mediator conditions.

Importantly, the purpose of this phenome-wide, hypothesis-free testing is to be hypothesis 
generating; we cannot make assumptions about causality from our data. In this analysis we 

detect traits associated with stuttering, but these associations could be observed for a number 

of reasons: 1) associated traits may exert an effect on stuttering, increasing risk of stuttering 

either directly or through a mediator, 2) associated traits may similarly be affected by 

stuttering, 3) associations may be spurious 4) associations may be due to a common cause, 

5) associations may be synthetic (that is, due to correlation with a confounder that is 

associated with stuttering). Despite multiple possible explanations for association, this study, 

and others like it, are important first steps towards generating new hypotheses about how 

complex traits manifest clinically and lay the groundwork for future studies designed to 

validate novel associations and determine causality.

4.2.1. Clinical features associated with developmental stuttering not 
identified via comorbidity analysis—Numerous studies have examined differences in 

language development, temperament, and emotion between children who stutter and 

children who do not stutter. (e.g., Ambrose et al., 2015; Arenas et al., 2017; Eggers, Luc, & 

Van den Bergh, 2013; Jones, Choi, Conture, & Walden, 2014; Kefalianos et al., 2017; 

Singer, Walden, & Jones, 2019; Yairi & Ambrose, 2005). Despite a body of evidence 

showing differences within those domains, the current study did not find significantly 

enriched phecodes specifically related to developmental language disorders, temperament, or 

emotion. One possible explanation is that while these domains may, on average, differ 

between children who stutter and children who do not, the differences fall short of clinical 

diagnosis, or, like stuttering, are underreported in the EHR. Consequently, fully examining 

these domains within EHRs will require a different approach than the one employed in this 

study.

Additionally, our study used Bonferroni correction, a conservative multiple comparisons 

correction method, a critical step considering the number of non-independent comparisons 

made here. Based on our sample and methods, it is possible that our results contain false 

negatives. For example, anxiety (p = .01) and ADHD (p = .12), two conditions with previous 

evidence as stuttering comorbidities (e.g., Iverach et al., 2016; Donaher & Richels, 2012), 

did not reach significance after correction yet the phecodes were enriched at the 99th and 

90th percentiles of that seen in the control sample, respectively, relative to the control 

resampling distributions (see Table 4). Again, due to potential differences in our EHR-based 

sample, the absence of a positive finding in this case is not a negative finding, but rather a 

null finding. Recognizing this, we included a list of non-significant findings of interest that, 
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using less conservative multiple comparison correction methods, different sampling 

methods, or different diagnostic criteria, may be significant. Consequently, these findings 

warrant future consideration.

4.2.2. Sensitivity analysis—The purpose of this sensitivity analysis was to test if the 

phecode enrichments were still observed in the subset of cases that received clinical speech-

language pathology assessments and are therefore more similar to clinical research cohorts. 

We performed the phecode enrichment analysis on a restricted stuttering cohort, including 

only subjects with Stuttering Severity Instrument (SSI) results that were above “sub-clinical” 

with documentation of a positive diagnosis from a speech-language pathologist. This case 

set included 243 stuttering cases (roughly 42.5 % of the larger case set used in our primary 

analyses) and SSI results ranged from “mild” to “very severe”. Of the 38 phecodes identified 

in the primary phecode enrichment analysis, 27 phecodes still exhibited enrichment (p < .05) 

in the sensitivity analysis. Additionally, two phenotypes that were no longer enriched likely 

due to a reduction in power, “Lack of coordination” (Phecode 350.3) and “Conductive 

hearing loss” (Phecode 389.2), had parent, or overarching, phecodes (“Abnormal 

movement” (Phecode 350) and “Hearing loss” (Phecode 389), respectively) which remained 

enriched in the sensitivity analysis. It’s difficult to assess whether the remaining nine 

phecodes did not retain significance due to increased specificity of the developmental 

stuttering cohort used for the sensitivity analysis, or due to the decrease in statistical power 

that comes with removing ~57.5 % of our case set. A PheRC built using the 27 phecodes 

that exhibited enrichment in our sensitivity analysis had a positive predictive value of 81.2 

%, compared to 83.3 % in our primary analysis. The higher positive predictive value and 

largely similar enrichments support the relevance of our case definition strategy for 

identifying associated clinical measures and developing the phenome risk classifier.

4.3. Creation of the phenome risk classifier (PheRC)

In addition to highlighting phecode enrichments relative to a control sample, phecodes were 

used as variables to create a Phenome Risk Classifier (PheRC) prediction model to identify 

high-likelihood stuttering cases without the use of keywords and text-mining. The model 

identified 97 stuttering cases from the case set and 19 false positives from the control set for 

a positive predictive value of at least 83 % (Fig. 1, Step 6b). These results demonstrate that 

the PheRC successfully classified these cases of developmental stuttering independent of 

keywords, text-mining, and manual review. This is notable for future projects as it 1) greatly 

increases the number of cases phenotypically similar to stuttering available for genetic 

analysis within the Vanderbilt EHR and 2) provides an approach that may be adapted for use 

in other EHRs with limited free-text search abilities. For example, several large, EHR-linked 

biobanks provide limited access to individual medical notes. Using a PheRC-based 

approach, the lack of direct access to medical notes would not be a barrier. Even in instances 

where databases do allow free-text search of medical notes, the manual review process can 

be prohibitively time-intensive, and a PheRC-based approach could greatly assist in the 

identification of cases.
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5. Future direction: application of phenome risk classifier (PheRC)

As mentioned, the PheRC was developed to increase the number of cases phenotypically 

similar to developmental stuttering identified within the EHR for further study. When this 

tool is applied to an EHR-linked biobank, such as BioVU at VUMC, the PheRC enables a 

well-powered genome-wide association study (GWAS), an approach that will help to 

elucidate the biological mechanism of developmental stuttering, a disorder with unknown 

etiology. Additionally, an approach utilizing a PheRC, rather than one using text-based 

search, allows for the identification of cases in both publicly available and restricted-access 

genetic databases, such as UK Biobank or the eMERGE network, where text search is not 

permitted. These databases will be essential to validate any preliminary GWAS findings 

from VUMC’s BioVU and will be especially important considering the advantages of multi-

site EHRs (Baxter et al., 2021).

6. EHR limitations for developmental stuttering

This study has revealed previously unknown barriers to utilizing EHRs as a data source for 

developmental stuttering, and likely, communication disorders at large. Some of these 

barriers, such as keywords used to describe non-stuttering conditions, can be overcome 

through thoughtful research design; others, such as total lack of notation of stuttering within 

the EHR, are more systemic in nature. Fully overcoming these obstacles for future research 

will require coordination from the medical community and EHR developers to increase 

categorical and free-text descriptions of speech-language disorders. Refining EHRs is a 

continual process, and, hopefully, future iterations will move toward enhancing their 

research potential for communication disorders such as stuttering. Again, this highlights the 

importance of interdisciplinary collaboration and correspondence between academics, 

speech-language pathology clinicians, and the medical community.

7. Conclusion

Overall, our VUMC EHR review identified cases of developmental stuttering and revealed 

diverse phecode enrichments (i.e., comorbidities), some of which may suggest potential 

novel comorbidities. Our study also demonstrated the feasibility of a data-driven approach 

using a large, pre-existing dataset. Importantly, this approach depended on both clinical 

stuttering expertise combined with phenotyping via text-mining and machine learning.

Following the lead of other biomedical science fields, the next decade could transform how 

we look for patterns in data in the communication sciences. Rather than hand-selecting a set 

of variables, we can model using a patient’s entire chart; this study marks the first 

exploration of this process for stuttering. Better characterization of the enriched phecodes 

also has the potential to enhance patient care. Ultimately, understanding conditions 

associated with stuttering may help us further understand the etiology and development of 

stuttering through shared pathophysiology, as well as provide data needed for future 

characterizations such as estimating the heritability and genetic and epigenetic architecture 

that contribute to risk, hopefully yielding advances in our knowledge of this complex 

disorder.
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Fig. 1. 
Flow Chart Depicting Methodological Steps with Results.

Note. All code used to develop the text-mining algorithm, phecode enrichment analysis, and 

phenome risk classifier is publicly available and open for use at https://github.com/belowlab/

StutteringCART. Step 7 applies to future studies.
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Table 1

Demographics for Confirmed Developmental Stuttering Patients Following Manual Review.

Confirmed Developmental Stuttering Cases n (%)

Total 1143

Male 867 (75.3 %)

Female 276 (24.7 %)

Demographics  Mean (SD)

Age (years)  17.7 (9.8)

Race/Ethnicity n (%)

Caucasian 526 (46.0 %)

African American 321 (28.1 %)

Asian 16 (1.4 %)

Hispanic 68 (5.9 %)

Unknown 202 (17.7 %)
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Table 2

Case and Control Demographics for Phecode Enrichment Analysis.

Cases n (%) Controls n (%)

Total 572 (17.1 %) 2765 (82.9 %)

Male 432 (75.6 %) 2081 (75.3 %)

Female 140 (24.5 %) 684 (24.7 %)

Demographics Mean (SD) Mean (SD)

Age (years) 17.4 (9.48) 18.2 (10.2)

Visits 24.64 (34.0) 21.41 (28.7)

Race/Ethnicity n (%) n (%)

Caucasian 260 (45.5 %) 1286 (46.5 %)

African American 161 (28.1 %) 773 (28.0 %)

Asian 11 (2.0 %) 50 (1.8 %)

Hispanic 30 (5.2 %) 133 (4.8 %)

Unknown 100 (17.5 %) 489 (17.7 %)

Cases Matched Controls

0 (0%) 0

11 (1.9 %) 1

6 (1.1 %) 2

11 (1.9 %) 3

11 (1.9 %) 4

533 (93.2 %) 5
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Table 3

Significant Phecode Enrichments (developmental stuttering cases, n = 572; matched controls, n = 2765).

Significantly Enriched Phecodes

Phecode Description Count p. value p01 p05 p10 p50 p90 p95 p99 max

Childhood onset fluency disorder

315 Develomental delays and disorders 351 0.000 81 87 89 104 117 121 123 128

315.2 Speech and language disorder 337 0.000 64 74 77 89 102 106 109 115

Pervasive development disorders and adult onset fluency 
disorder

313 Pervasive developmental disorders 186 0.000 66 69 72 80 90 93 95 95

313.2 Tics and stuttering 141 0.000 15 17 19 25 30 32 35 37

Hearing loss

389 Hearing loss 79 0.000 38 43 45 53 59 62 66 66

389.2 Conductive hearing loss 46 0.000 18 22 23 30 35 37 39 44

Sleep disorders

327 Sleep disorders 47 0.000 18 24 25 30 35 36 39 42

Atopic triad

465 Acute upper respiratory infections of multiple or 
unspecified sites

174 0.000 131 135 140 150 163 164 171 172

930 Allergic reaction to food 20 0.000 4 6 6 10 14 15 16 19

687.1 Rash and other nonspecific skin eruption 63 0.000 29 33 34 41 48 50 52 53

939 Atopic/contact dermatitis due to other or 
unspecified

84 0.000 37 42 44 51 59 60 62 68

512.8 Cough 120 0.000 73 76 81 90 99 101 106 106

Diagnostic testing and infections

1010 Other tests 143 0.000 15 20 21 27 33 34 37 40

783 Fever of unknown origin 152 0.000 109 111 115 124 136 139 144 145

79 Viral infection 116 0.000 67 70 76 85 95 98 102 109

472 Chronic pharyngitis and nasopharyngitis 29 0.000 10 13 14 19 24 25 28 29

381 Otitis media and Eustachian tube disorders 149 0.000 94 104 108 120 131 133 136 143

381.1 Otitis media 144 0.000 89 99 101 114 125 126 129 131

381.11 Suppurative and unspecified otitis media 134 0.000 84 90 95 106 116 118 122 122

110 Dermatophytosis / Dermatomycosis 39 0.000 17 20 21 26 31 33 35 35

110.1 Dermatophytosis 38 0.000 16 18 20 24 29 31 33 34

112 Candidiasis 33 0.000 14 16 17 23 28 30 32 33

369 Infection of the eye 58 0.000 25 29 34 42 50 51 54 58

369.5 Conjunctivitis; infectious 54 0.000 22 26 29 37 44 46 50 53

382 Otalgia 27 0.000 5 9 11 16 21 21 23 25

870 Open wounds of head; neck; and trunk 54 0.000 21 31 31 39 46 47 49 50

870.3 Other open wound of head and face 38 0.000 12 17 19 25 30 32 35 36

Neurological deficits

292 Neurological disorders 55 0.000 21 23 26 32 37 39 41 41

292.1 Aphasia/speech disturbance 40 0.000 6 8 10 14 18 19 21 23
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Significantly Enriched Phecodes

Phecode Description Count p. value p01 p05 p10 p50 p90 p95 p99 max

350 Abnormal movement 53 0.000 14 15 17 22 27 28 31 32

350.2 Abnormality of gait 24 0.000 0 1 2 4 6 7 7 10

350.3 Lack of coordination 20 0.000 3 5 7 11 15 16 18 19

345 Epilepsy; recurrent seizures; convulsions 55 0.000 29 35 37 44 50 51 54 55

345.3 Convulsions 54 0.000 27 32 34 41 47 48 51 51

Weight Control

278 Overweight; obesity and other hyperalimentation 29 0.000 1 2 3 5 8 9 10 10

1002 Symptoms concerning nutrition; metabolism; and 
development

31 0.000 2 3 4 7 10 10 11 11

264 Lack of normal physiological development 83 0.000 53 55 56 65 73 74 79 82

264.9 Lack of normal physiological development; 
unspecified

43 0.000 19 21 23 28 33 36 38 40

Note. p values < .0001 indicated as 0.000 in the table. p01, p05, p10, p50, p90, p95, and p99 represent the number of phecodes found in the 1st, 5th, 
10th, 50th, 90th, 95th, and 99th percentile of the 10,000 control resamplings. max represents the maximum number of phecodes found in the 
10,000 control resamplings.
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Table 4

Non-Significant Phecodes of Interest (developmental stuttering cases, n = 572; matched controls, n = 2765).

Non-Significant Phecodes of Interest

Phecode Description Count p.value p01 p05 p10 p50 p90 p95 p99 max

300 Anxiety disorders 34 0.0100 16 20 21 26 32 33 34 36

476 Allergic rhinitis 77 0.0100 47 54 56 64 71 73 75 78

512 Other symptoms of respiratory system 163 0.0100 120 128 132 140 151 154 157 165

558 Noninfectious gastroenteritis 47 0.0100 23 28 30 35 41 43 47 49

264.3 Delayed milestones 33 0.0200 14 17 18 24 29 30 35 37

479 Other upper respiratory disease 56 0.0200 33 36 38 47 53 54 57 57

481 Influenza 28 0.0200 12 13 15 21 24 26 30 30

8 Intestinal infection 38 0.0400 15 20 24 30 36 38 40 42

313.3 Autism 23 0.0400 9 11 12 18 22 23 25 26

371 Inflammation of the eye 22 0.0400 9 11 13 17 21 22 25 26

495.2 Asthma with exacerbation 44 0.0400 24 25 26 32 39 41 45 47

915 Superficial injury without mention of infection 27 0.0400 13 14 16 21 27 27 29 31

474 Acute and chronic tonsillitis 55 0.0500 33 37 39 46 53 55 61 64

474.2 Chronic tonsillitis and adenoiditis 52 0.0500 32 34 36 43 49 52 58 61

465.2 Acute pharyngitis 75 0.0600 47 53 55 63 73 76 82 82

495 Asthma 74 0.0600 48 54 56 62 70 75 78 81

772.3 Muscle weakness 21 0.0600 8 11 11 16 21 22 26 27

512.1 Wheezing 50 0.0700 32 34 36 41 50 51 55 55

658 Maternal complication of pregnancy affecting fetus 
or newborn

27 0.0700 15 16 17 21 27 29 32 34

381.2 Eustachian tube disorders 39 0.0800 20 24 26 31 39 40 43 45

483 Acute bronchitis and bronchiolitis 59 0.0800 35 39 43 50 59 61 62 63

803.2 Fracture of radius and ulna 27 0.0900 13 15 17 22 27 29 31 31

327.3 Sleep apnea 38 0.1000 17 25 26 32 38 39 42 47

327.32 Obstructive sleep apnea 28 0.1000 11 17 18 23 28 30 33 35

313.1 Attention deficit hyperactivity disorder 49 0.1200 30 36 38 43 50 51 54 55

Note. p values < .0001 indicated as 0.000 in the table. p01, p05, p10, p50, p90, p95, and p99 represent the number of phecodes found in the 1st, 5th, 
10th, 50th, 90th, 95th, and 99th percentile of the 10,000 control resamplings. max represents the maximum number of phecodes found in the 
10,000 control resamplings.
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Table 5

Confusion Matrix for Developmental Stuttering Classification.

Manually Reviewed Developmental Stuttering Cases Matched Controls

Patients classified as high likelihood stuttering cases 97 19

Patients classified as low likelihood stuttering cases 44 665

Note. We cannot be certain of the true absence of stuttering in the control group; it is assumed that the prevalence of stuttering in the control group 
is approximately the population prevalence.
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