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Abstract

How should schools assign students to more rigorous math courses so as best to help their 

academic outcomes? We identify several hundred California middle schools that used 7th-grade 

test scores to place students into 8th-grade algebra courses and use a regression discontinuity 

design to estimate average impacts and heterogeneity across schools. Enrolling in 8th-grade 

algebra boosts students’ enrollment in advanced math in ninth grade by 30 percentage points and 

eleventh grade by 16 percentage points. Math scores in tenth grade rise by 0.05 standard 

deviations. Women, students of color, and English-language learners benefit disproportionately 

from placement into early algebra. Importantly, the benefits of 8th-grade algebra are substantially 

larger in schools that set their eligibility threshold higher in the baseline achievement distribution. 

This suggests a potential tradeoff between increased access and rates of subsequent math success.

INTRODUCTION

Between 1990 and 2015, the proportion of eighth graders in United States public schools 

enrolled in algebra or a more advanced mathematics course more than doubled to 44 

percent. This increase was particularly pronounced in California, where 8th-grade algebra 

enrollment rates peaked at 68 percent in 2013, in the wake of a decades-long policy effort to 

make algebra the default mathematics course for eighth graders. The push to enroll more 

students in 8th-grade algebra is predicated on the idea that exposing students to more 

advanced material accelerates their skills acquisition (Allensworth et al., 2014; Hemelt, 

Schwartz, & Dynarski, 2019; Kurlaender, Reardon, & Jackson, 2008) and improves their 

labor market outcomes (Goodman, 2019). Yet evidence on the effects of course acceleration 

is mixed. Both high-achieving and low-achieving students can thrive in well-designed 

algebra classrooms (Cortes, Goodman, & Nomi, 2015; Heppen et al., 2012). However, 

recent quasi-experimental evaluations suggest that, on average, algebra policies administered 
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at scale have modest or even negative average effects on students’ mathematics achievement 

(Clotfelter, Ladd, & Vigdor, 2015; Domina et al., 2015; Dougherty et al., 2017).

In this paper, we argue that, in order to understand the effects of 8th-grade algebra courses, it 

is essential to explicitly model cross-school variation in the effects of course exposure. 

Schools differ considerably in the ways they approach 8th-grade algebra (Domina et al., 

2016; Rickles, 2011). We thus expect the effects of 8th-grade algebra exposure to vary 

considerably across schools. We use data from all eighth graders in California public schools 

across four cohorts to identify schools in which students’ rates of enrolling in 8th-grade 

algebra varied discontinuously at a threshold in the 7th-grade math test score achievement 

distribution. We then use a fuzzy regression discontinuity design to examine the average 

local effect of 8th-grade algebra on achievement and course-taking outcomes, as well as the 

extent to which these effects vary across schools and student demographics.

Our analyses indicate that the average effects of 8th-grade algebra enrollment on students’ 

advanced math course enrollment are substantial and positive, while the average effects on 

mathematics and English language arts (ELA) test scores are modest. Enrolling in 8th-grade 

algebra boosts students’ enrollment in advanced math in ninth grade by 30 percentage points 

and eleventh grade by 16 percentage points. Math scores in tenth grade rise by 0.05 standard 

deviations (sd). Encouragingly, we find that women, students of color, and English-language 

learners benefit disproportionately from accelerated coursework.

Importantly, however, we find substantial cross-school variation in the achievement effects 

of 8th-grade algebra. For example, we find that approximately 38 percent of the site-specific 

effects of 8th-grade algebra on students’ math achievement on the 10th-grade California 

High School Exit Exam (CAHSEE) are negative. The benefits of 8th-grade algebra are 

substantially larger in schools that set their eligibility threshold higher in the baseline 

achievement distribution. This suggests a potential tradeoff between increased access and 

rates of subsequent math success.

Our paper makes two major contributions. First, we contribute to the educational policy 

literature by providing unbiased estimates of the effects of accelerated coursework drawn 

from a wide range of educational settings as well as showing how these effects vary across 

students and schools. Several studies indicate that enrolling in advanced courses improves 

students’ achievement and their likelihood of success in both higher education and in careers 

involving advanced quantitative skills net of a rich set of observational controls (Attewell & 

Domina, 2008; Gamoran et al., 1997; Gamoran & Hannigan 2000; Long, Conger, & Iatarola, 

2012; Rose, & Betts, 2004; Schmidt et al., 2001, 2012; Stein et al., 2011). However, a range 

of confounding factors potentially bias these observational estimates. The handful of 

existing experimental and quasi-experimental studies, meanwhile, provide a remarkably 

uneven accounting of the effects of 8th-grade algebra assignment, with experimental 

analyses from one setting returning positive test score effects of nearly 0.4 standard 

deviations (Heppen et al., 2012) and quasi-experimental analyses from another setting 

returning negative test score effects of nearly 0.5 standard deviations (Clotfelter, Ladd, & 

Vigdor, 2015). Interpreted as reasonably well-identified upper- and lowerbound estimates, 
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this body of research would seem to suggest that the effects of 8th-grade algebra vary 

substantially across time and place.

Second, we combine a regression discontinuity design with methods developed to measure 

cross-site variation in multi-site research settings. Much like the North Carolina district that 

Dougherty et al. (2015, 2017) study, several of California’s largest public school districts 

have course placement policies that instruct schools to place students into 8th-grade algebra 

if the students scored above a set threshold on the 7th-grade mathematics California 

Standards Test (CST). Fresno Unified and Long Beach Unified, for example, both mandated 

that students who scored higher than 325 (halfway between the thresholds for being 

categorized as “basic” and “proficient” under No Child Left Behind) on the 7th-grade CST 

be placed in algebra as eighth graders. This approach garnered substantial attention among 

educators across the state (Marsh, Bush-Mecenas, & Hough, 2017). If implemented with 

fidelity, such formula-based placement policies provide an opportunity to apply regression 

discontinuity methods to estimate the effects of advanced course enrollments. Such analyses 

hinge on the assumption that, in the absence of the formula-based assignment, there would 

be a continuous relationship between prior CST scores and later outcomes for students 

across the prior CST distribution. Discontinuities in that relationship at the assignment 

threshold thus provide a “good as random assignment” (Lee & Lemieux, 2010) signal 

regarding the effects of 8th-grade algebra assignment on student achievement (Imbens & 

Lemieux, 2007).

In the typical application of regression discontinuity methods, however, the researcher 

knows the location of the placement threshold. While we are aware of policies in 

approximately 37 California schools that use 7th-grade test scores to place students in 8th-

grade algebra, there are approximately 1,500 schools serving middle school grades in 

California in any given year, many of which likely use similar placement strategies. We 

build on the work of Card, Mas, and Rothstein (2008) to empirically identify settings in 

which assignment practices facilitate regression discontinuity analyses. We then take 

advantage of the fact that we are estimating regression discontinuity analyses in multiple 

settings to explicitly model variation in the effects of 8th-grade algebra across schools (e.g., 

Raudenbush, Reardon, & Nomi, 2012).

Cross-site effect heterogeneity is a common phenomenon in a policy landscape defined by 

federalism and local discretion. Prior research documents substantial site-level variation in 

the effects of multiple policy interventions, including early childhood education (Bloom & 

Weiland, 2015), charter schools (Angrist, Pathak, & Walters, 2013; Clark Tuttle et al., 2015), 

and welfare-to-work programs (Bloom, Hill, & Riccio, 2003). There is good reason to 

expect similar effect heterogeneity in our setting. Approximately one-quarter of California 

middle schools enrolled virtually all eighth graders in algebra, while a quarter reserved 8th-

grade algebra for a small group of high-performing students (Domina et al., 2016). These 

disparate placement rates reflect differences between educators who believe “it’s better to 

challenge kids” and those who “don’t want students to be in a class where they’re … not 

going to be successful” (Rickles, 2011, p. 508). In line with earlier evidence suggesting that 

high-achieving students benefit more than lower-achieving students from advanced courses 

(Clotfelter, Ladd, & Vigdor 2015; Domina, 2014; Simzar, Domina, & Tran, 2016), we find 
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that the effects of 8th-grade algebra are most positive in schools that restrict access to the 

course to high-achieving students. However, as we also find that students who have 

historically lacked access to advanced mathematics courses benefit the most from 8th-grade 

algebra placement, our results highlight the tradeoff facing policymakers in relatively low-

performing schools.

DATA

Our analyses use data provided by the California Department of Education (CDE) 

containing information on all sixth through eleventh graders enrolled in California public 

schools between the 2005/2006 to 2012/2013 school years. From these data, we create a 

panel of four cohorts of eighth graders who completed eighth grade between the 2007/2008 

and 2010/2011 school years, which allows us to follow them from sixth through tenth grade 

(through eleventh grade for the first three cohorts). In these years, the California Department 

of Education was culminating a decades-long policy effort aimed at broadening students’ 

access to 8th-grade algebra, a course once reserved for a relatively small proportion of high-

achieving students. In 2008, the state declared algebra the “sole course of record” for 

accountability in 8th-grade mathematics, threatening schools with accountability penalties 

for enrolling eighth graders in pre-algebra or other less advanced courses. Court actions and 

the state’s 2010 move to the Common Core State Standards prevented the algebra-for-all 

policy’s full implementation. However, these policy efforts induced California middle 

schools to develop new approaches to middle school mathematics course placements.

Our administrative data include students’ 6th- through 11th-grade California Standards Test 

(CST) subject identifiers and scores, 10th-grade California High School Exit Exam 

(CAHSEE) scores, as well as basic student-level demographics and school and district 

identifiers. The CSTs, administered each spring for accountability purposes, are designed to 

measure student mastery of state academic standards. Students take an end-of-grade ELA 

CST in grades 3 to 11. By contrast, math CSTs are course-specific. While virtually all 

California students take the same grade-level CST annually through the seventh grade, 

eighth graders who enroll in algebra take the algebra CST and eighth graders who enroll in 

pre-algebra take the 8th-grade general mathematics CST. As such, the test identifier 

associated with students’ 8th-grade math CST provides information on students’ 8th-grade 

math course enrollment.1 Table 1 (below) provides a descriptive summary of these data.

Since our analyses hinge on the association between 7th-grade CSTs and 8th-grade course 

placements comparing students in algebra to a general math course, we exclude students 

who take the algebra CST as seventh graders and students who take end-of-grade tests 

designed for students with severe learning disabilities (collectively, this is approximately 17 

percent of the 8th-grade population).

1Although course-enrollment data are not publicly available for all California public school students, analyses of data from one large 
California public school district indicates that end-of-course tests provide a highly reliable proxy for course content. In this district, 
approximately 99 percent of eighth graders who enroll in pre-algebra courses take the 8th-grade General Mathematics California 
Standards Test (CST) (Penner et al., 2015). Similarly, 99 percent of students in algebra I courses enroll in the 8th-grade algebra CST. 
Analyses of data from another large California public school district point to a similarly high level of correspondence between course 
enrollment and end-of-course CST completion (Taylor, 2011).
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METHODS

Student selection into algebra is likely driven by a number of observed and unobserved 

factors. In this paper, we implement an augmented regression discontinuity design to 

estimate the local average treatment effect (LATE) of 8th-grade algebra on students’ math 

and ELA achievement as well as high school math course-taking. Such a design is ideally 

suited to a scenario in which schools and districts place students into 8th-grade algebra using 

an explicitly articulated system based on observable factors, such as students’ 7th-grade 

math achievement. However, while California incentivized algebra enrollment over the 

1990s and 2000s, the state did not implement a universal enrollment policy, nor did it require 

schools and districts to report how they enrolled students in 8th-grade algebra. As a result, 

we observe pronounced heterogeneity in middle school math placement policies and 

practices across the more than 300 districts and 1,500 schools that serve California middle 

school students (e.g., Domina et al., 2016). Since several California districts had stated 

policies of placing students into 8th-grade courses based on a 7th-grade test score-threshold, 

we search across the state for test score-based assignments. However, even in districts with 

explicit policies, the implementation of these threshold-based assignment mechanisms 

varied across schools: some schools followed the district guidelines, others adapted them by 

moving the cut score, and still others ignored the guidelines altogether.2 As such, we focus 

our paper on school-based regression discontinuities.

Identifying Discontinuities in 8th-Grade Algebra Assignments

We implement an algorithm to identify settings in which students’ likelihood of 8th-grade 

algebra placement varies discontinuously based on 7th-grade math CST scores, using data 

from each of the 1,479 California schools that enrolled at least 50 eighth graders in a given 

cohort. Separately for each of the school-by-year combinations, we conduct a series of first-

stage linear probability OLS regressions:

Algit = β0 + β11 CST i, t − 1 ≥ x + β2 CST i, t − 1 − x + β31 CST i, t − 1 ≥ x
* CST i, t − 1 − x

+ ϵit .
(1)

In each run of equation (1), Algit is a dichotomous variable distinguishing students who 

enroll in 8th-grade algebra from students who enroll in grade-level general mathematics in 

year t, and CST is student i’s score on the 7th-grade math CST in year t-1. Because the 

CSTs in all subjects and grades are discrete, we prefer a linear-spline functional form for 

equation (1) and we cluster our standard errors at the school level (Gelman & Imbens, 2014; 

Lee & Card, 2008).3 We restrict our search to iterate across potential thresholds x between 

295 and 355, a range that includes two key policy-relevant thresholds: “basic” (score of 300) 

2We do not have detailed information about the reasons schools adapted or ignored guidelines. However, it is likely that schools made 
adjustments to fill the classes that they planned to offer, and that they faced capacity constraints in the number of algebra teachers 
available.
3The results are more conservative with a quadratic functional form. However, as most quadratic terms in the school specific 
regressions are not statistically significant, we prefer the linear specification. Results from the quadratic specification are available 
upon request.
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and “proficient” (score of 350). For each potential threshold x, we also restrict our analyses 

to students within 75 points of x (roughly one sd on the 7th-grade math CST).4

For each iteration, we store: 1) The magnitude of the discontinuity in the rate of algebra 

placement at the assumed cut point, β1; 2) the amount of variance explained, R2, by equation 

(1); 3) the location of the assumed discontinuity, x; 4) the t-statistic for the simple test 

β1 = 0; and 5) the percent of students in algebra at the right- and left-hand side of x, 

estimated from the model. Hansen (2000) demonstrated that the value of x, which 

maximizes the R2 from equation (1), identifies a break in the forcing variable. Following 

prior applied work (Andrews, Imberman, & Lovenheim, 2017; Bertrand, Hanna, & 

Mullainathan, 2010; Chay, McEwan, & Urquiola, 2005; Goodman, Hurwitz, & Smith, 2015; 

Pan, 2015; Steinberg, 2014), we use this value of x, which represents an estimated structural 

break in the likelihood of treatment, conditional on a continuous forcing variable, in a 

traditional fuzzy regression discontinuity (RD) framework.

While we execute the search process and estimate β1 across all schools, we cannot use the 

full sample to estimate the test statistic for β1 = 0 since doing so could overidentify RD 

schools (Card, Mas, & Rothstein, 2008; Hansen, 2000; Pan, 2015). To ensure that the 

thresholds we identify are meaningful, we bootstrap confidence intervals for β1 at x for each 

school-year combination (Pan, 2015). Specifically, we resample students with replacement 

within a given school year to create 1,000 bootstrap replicates and estimate equation (1) at 

the proposed algebra cutoff (i.e., x) and store β1 each time. We then calculate 99 percent 

confidence intervals from the empirical distribution of the 1,000 β1 for each school-year 

setting.5 We consider a school-year combination in which the 99 percent confidence interval 

for β1 does not include zero to be a school in which students’ likelihood of 8th-grade algebra 

placement varies discontinuously at a threshold x in a given year. We use these 

discontinuities to estimate the effects of 8th-grade algebra assignment in each school-year 

combination.

Of the 1,479 schools (and 4,469 school-by-year units) in the search sample, we initially 

identify 972 school-year settings (in 603 unique schools) that use a course placement system 

in which students’ placement rates vary discontinuously at a threshold on the 7th-grade math 

test score distribution and pass our bootstrap test. In Table 1, we provide a descriptive 

comparison of California middle schools in which we find evidence of discontinuous 8th-

grade math course assignment based on 7th-grade test scores (RD schools) and our non-RD 

schools. Table 1 further distinguishes between our initial RD search sample that includes the 

972 school-year sites that pass the bootstrap test and our main analytic “trimmed sample” 

that includes only the 753 school-year sites that also pass a placebo test (discussed shortly). 

Sixth- and 7th-grade math and ELA scores are approximately 0.15 standard deviations lower 

4The range of possible CST scores runs from 150 to 600. Under No Child Left Behind, scores were given performance labels: far 
below basic was 150 to 256, below basic was 257 to 299, basic was 300 to 349, proficient was 350 to 413, and advanced was 414 to 
600. Students who scored above 350 were considered to be at grade level. We limit our search to scores between 295 and 355, as the 
density of the 7th-grade math CST thins out above and below these limits.
5To ensure that our results are not sensitive to the specific thresholds we use to determine whether schools are RD schools, we also 
estimate our models using one- and two-tailed 95 and 99 percent confidence intervals. We find similar results across these groups of 
schools.
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in RD schools than in non-RD schools. Further, RD schools have larger shares of Hispanic 

students as well as students from a lower socioeconomic level, and fewer White students 

compared to non-RD schools.

As a first test on the validity of our search process, we pool all of the possible RD schools 

into a single data set, re-centering each RD around the school-year specific cutoff. We then 

use this pooled data set to estimate equation (1) to examine the overall magnitude of the 

pooled first stage, which we report in the first column of panel A in Table 2. On average, 

there is a 41 percentage point difference in the likelihood of taking algebra in eighth grade 

for students just above their school-year specific threshold compared to students just below 

their school-year specific threshold.

In column 2 of panel A (Table 2), we report the results of an adapted McCrary test to see if 

there is bunching or manipulation of students’ test scores around the discontinuity (McCrary, 

2008). For each school year, we collapse our data down to the individual CST score. In this 

case, each cell represents the number of students who received a given score (e.g., 300) in a 

given school-year combination. We then estimate equation (1) using these cell counts as 

dependent variables. While statistically significant, the results suggest that the difference in 

cell size between scores just to the right and left of the cutoff differ only by .282 of a 

student.6

In the rest of the columns in panel A, we report the results of placebo RDs that use students’ 

prior achievement, demographics, and completion of the 10th-grade CAHSEE as dependent 

variables. Differences in student characteristics at RD thresholds may indicate endogenous 

placement of students at the margin of either side of the cutoff, or an endogenous selection 

of where to locate the placement threshold. Potentially most problematic to our analysis, 

students just above their school-year specific cutoffs score .02 to .05 standard deviations 

higher on their 6th- and 7th-grade ELA and 6th-grade math CST compared to students just 

below their school-year specific cutoffs (these test scores are standardized by grade, subject, 

and year). In this case, however, manipulation of student test scores is unlikely since such 

manipulation would require educators to alter student scores in administrative record 

databases or to alter student responses on 7th-grade tests based on a precise awareness of the 

7th-grade math threshold and students’ 6th-grade math test score (as well as students’ 6th- 

and 7th-grade ELA scores). Similarly, while it is possible that schools could try to pick a 

7th-grade math test score for their cutoff such that a handful of students above the threshold 

did better on 6th-grade math (and do better on their 6th-grade ELA CSTs) than students just 

below the cutoff, this also seems unlikely.

We address the discontinuity in students’ prior achievement by first averaging students’ 6th-

grade math and ELA CSTs and 7th-grade ELA CST into a single test score. We then rerun 

equation (1) separately for each of the 972 school-year combinations that passed the 

bootstrap test, using students’ averaged prior achievement as our dependent variable. For 

each site-specific regression, we store the p-value for the t-test that β1 = 0. We remove from 

6We also ran the density test suggested by Cattaneo, Jansson, and Ma (2018) using the Stata program -rddensity- which likewise 
suggests that bunching is not a substantial concern (p=.53).
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the sample schools with a p-value ≤ .2 (i.e., schools that exhibit some evidence of having a 

statistically significant discontinuity in students’ prior achievement at the estimated 

threshold).7 We identify 753 school-year settings (in 510 unique schools) that pass this 

placebo test, which we call the “trimmed sample.” In panel B of Table 2, we report the 

results for the first stage (column 1), the adapted McCrary test (column 2), and the placebo 

regressions (columns 3 through 13). The discontinuity in students’ 6th-grade math CST 

scores at the school-year specific thresholds has decreased but is still statistically significant 

while the discontinuities in students’ 6th- and 7th-grade ELA scores have disappeared. We 

do not think the small difference in 6th-grade math scores is due to human manipulation, and 

the difference does not appear to reflect meaningful unobserved differences between 

students just above and below the cutoff. In Appendix A, we present our main results using 

our full sample, including specifications that directly control for students on the 6th-grade 

math CST.8

In Figure 1, we show the pooled first stage for our trimmed sample. The relationship 

between 7th-grade test scores and algebra placement in eighth grade appears linear with a 

noticeable jump at the estimated school-year cutoff. In Figure 2, we show the distribution of 

estimated 7th-grade cutoffs. It is notable that this distribution has sizable spikes at 300 and 

350, the state’s threshold for labeling a student’s mathematics skills “basic” and 

“proficient.” In these schools, students who score 299 on the 7th-grade math CST (and 

whose mathematics skills are thus rated as “below basic” by state law) are substantially less 

likely to be placed in 8th-grade algebra than students who score 301 (and whose 

mathematics skills are thus rated “basic”). The histogram reveals a similar spike at 350, the 

state’s proficiency threshold. In addition, we observe a smaller spike at 325, the threshold 

that Fresno Unified and Long Beach Unified both articulated in their explicit, district-wide 

8th-grade algebra placement policies. Indeed, more than half of the schools that we identify 

as regression discontinuity settings have placement thresholds at one of these three 

accountability policy-relevant points in the 7th-grade math CST score distribution. We 

present a version of our results limiting our search to schools that have a discontinuity point 

at 300, 325, or 350 in Appendix A.9

In Table 3, we present statistics from the RD search algorithm for non-RD schools, the 

schools that passed the bootstrap test (i.e., the “initial RD sample”), and the trimmed sample 

of RD schools (the schools that also passed the placebo test). As noted above, in order for a 

school year to be identified as a regression discontinuity setting, students’ rates of 8th-grade 

mathematics course enrollment must vary discontinuously at a point in the 7th-grade 

mathematics test score distribution. RD schools have a much larger first stage coefficient 

(.48 compared to −.004), R2 (.57 compared to .35), and t-statistics (5.4 compared to −0.08) 

from equation (1). Each of these comparisons is consistent with the conclusion that our RD 

7We chose .2 as a conservative p-value given the small sample sizes in some school-year cells. Our main results are similar if we 
choose a less conservative value (e.g., p.05).
8If the placebo results reflected meaningful unobservable differences, we would expect that our models predicting advanced course 
enrollments in ninth through eleventh grade would vary across our initial RD sample, our trimmed sample, and our analyses that 
include prior achievement as a control variable. All appendices are available at the end of this article as it appears in JPAM online. Go 
to the publisher’s website and use the search engine to locate the article at http://onlinelibrary.wiley.com.
9All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s website and use the search 
engine to locate the article at http://onlinelibrary.wiley.com.
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search algorithm identifies school-year settings that use substantially different approaches to 

placing students in 8th-grade algebra than the non-RD schools.

Estimating the Effects of 8th-Grade Algebra Assignments

Since our search algorithm identifies many school years in which compliance with treatment 

is not absolute, we use fuzzy regression discontinuity models to estimate the effects of 8th-

grade algebra assignment in these sites (Hahn, Todd, & Van der Klaauw, 2001; Trochim, 

1984). These models make three key assumptions: (1) selection into 8th-grade math courses 

is strongly determined by the placement formula; (2) students and teachers are unable to 

control students’ location on either side of the cutoff; (3) potential outcomes are a 

continuous function of the assignment variable at the cutoff (such that a student who scored 

300 on a 7th-grade math achievement test is not appreciably different from a classmate who 

scored 299 on the same test). If these assumptions hold, our discontinuity analyses provide 

internally valid estimates of the causal effects of 8th-grade algebra for students near the 

threshold in each of these schools (Imbens & Lemiuex, 2007; Lee & Lemiuex, 2010; 

McCrary, 2008).

A typical fuzzy RD design will predict treatment participation as a function of a forcing 

variable and an exogenous cutoff, and then use predicted treatment in a second-stage model 

to estimate the local average treatment effect (LATE) of a policy or program on an outcome 

of interest. While our analyses follow these general steps, we also want to account for the 

potential treatment effect heterogeneity across our 753 school-year RD sites. One approach 

to estimating the effects across sites is to pool cases across these school-year RDs into a 

single RD analysis. However, as Cattaneo et al. (2016) note, substantial information about 

effect heterogeneity is lost by simply pooling estimates into a single state-wide (re-centered) 

regression discontinuity.

We therefore use a method developed by Raudenbush, Reardon, and Nomi (2012) that uses 

site-specific intercepts (i.e., fixed effects) and random coefficients to account for treatment-

effect heterogeneity in multi-site research settings. Their approach has two benefits over 

simply pooling our data into a single fuzzy RD and ignoring heterogeneity. First, their 

approach generates a weighted LATE where the weight is a function of both treatment 

participation compliance and the precision of site-specific LATEs. Second, the method 

estimates the variance of treatment effects across sites.

The first step in our fuzzy RD method is to estimate equation (1) separately for each school-

year RD site and to estimate Algist.10 With these predictions in hand, we pool our data 

centering the forcing variable around school-year specific cutoffs and estimate the following 

second-stage model:

10This is equivalent to estimating equation (1) over our pooled data set with k instruments, where k is equal to the number of school-
year RD sites.
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Y is, t + p = δ0 + δ1Algist + δ2 CST is, t − 1 − x + δ31 CST is, t − 1 ≥ x
∗ CST is, t − 1 − x + αst

+ ηis, t + p .
(2)

In equation (2), we estimate the outcome of interest for student i, in school s, at time t+p 
(where p is the number of years since eighth grade in time t) as a linear function of their 

predicted algebra participation (Algist), the forcing variable (i.e., the distance between their 

7th-grade math CST and the school’s placement threshold, (CSTis,t−1 − x)); an interaction 

between indicator variable for scoring above the school’s cutoff and the forcing variable 

(1[CSTis,t−1 ≥ x] * (CSTis,t−1 − x)); and a school-year fixed effect (αst). Our coefficient of 

interest (δ1) captures the pooled LATE effect of participating in 8th-grade algebra on 

students’ outcomes across all RD sites. Our dependent variables include measures of 

advanced math course-taking in high school, high school math achievement, and middle and 

high school ELA achievement. For advanced course-taking, we measure whether students 

completed geometry in ninth grade, algebra II in tenth grade, and an advanced math course 

in eleventh grade (e.g., pre-calculus).

Following Raudenbush, Reardon, and Nomi (2012), we estimate equation (2) as a mixed 

model with site-specific intercepts (our school-year fixed effects αst) and a random 

coefficient for our coefficient of interest (i.e., δ1 ∼ N(δ1, τδ
2) where δ1 is the mean LATE 

across RD sites and τδ
2 is the estimated variance of the site-specific LATEs). equation (2) 

will produce a consistent estimate of δ1 if the heterogeneity in cross-site treatment 

compliance is not correlated with cross-site treatment effects. This bias could arise, for 

example, if across sites the perceived quality of 8th-grade algebra influenced decisions to 

comply with treatment. Reardon and co-authors (2014) developed a method to account for 

“compliance-effect covariance bias” in multi-site research settings. Our results using their 

bias-corrected estimator are very similar to those in Table 4. 11 We cluster our standard 

errors at the school-year level. In Appendix B, we present the results of our fuzzy RD 

analysis using a number of alternative estimation techniques and samples.12

RESULTS

Figures 3 and 4 present our reduced form (or intent-to-treat [ITT] analysis) scatter plots for 

two of our outcomes of interest: 10th-grade math CAHSEE scores (Figure 3) and 

accelerated mathematics course-taking in eleventh grade (Figure 4). These figures show that 

7th-grade math CST scores are positively correlated with students’ 10th-grade math 

CAHSEE achievement and 11th-grade accelerated course-taking, and that these 

relationships are approximately linear. In both figures, we see evidence of a discontinuity at 

the threshold, so that students just above the school-year algebra threshold differ in their 

11Our points estimates using their bias-corrected estimator for our main effects are .0751 for 10th-grade math CAHSEE, .0378 for 
10th-grade ELA CAHSEE, .301 for accelerated course-taking in ninth grade, .207 for accelerated course-taking in tenth grade, .153 
for accelerated course-taking in eleventh grade, and .033 to 048 for ELA achievement in grades 8 to 11.
12All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s website and use the search 
engine to locate the article at http://onlinelibrary.wiley.com.
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10th-grade math CAHSEE achievement and 11th-grade accelerated math course-taking 

compared to students just below the threshold.

In Table 4, we build on Figures 3 and 4 by presenting our ITT results of the effect of algebra 

on students’ 10th-grade CAHSEE achievement, high school course-taking, and ELA CST 

scores in panel A, as well as our two-stage fuzzy RD LATE results in panel B. We also 

present the variance of our LATE estimates (τδ
2) in panel B. We see in panel B that students 

just above their school-year specific thresholds who completed algebra in eighth grade 

outscored their peers just below the threshold who completed general mathematics in eighth 

grade by .053 sd (math) and .034 sd (ELA) on the CAHSEE tests. We also find that 8th-

grade algebra placement increases students’ odds of completing advanced math courses in 

grades 9 through 11 (columns 3 to 6). While these results are perhaps unsurprising given the 

hierarchical structure of high school mathematics course sequences, it is worth noting that 

more than half of California students placed into 8th-grade algebra repeat it in ninth grade 

(Liang, Heckman, & Abedi, 2012). As such, it is reassuring to note that placement in 8th-

grade algebra increases students’ likelihood of 9th-grade geometry placement by nearly 30 

percentage points, 10th-grade algebra II by nearly 20 percentage points, and 11th-grade 

trigonometry or pre-calculus by 16 percentage points. Finally, we find evidence that taking 

algebra in eighth grade had a small spillover effect on ELA achievement: We find consistent 

evidence of an effect of roughly .02 to .03 sd on ELA achievement on CSTs in grades 8 

through 11, as well as the 10th-grade ELA CAHSEE. Although our data do not allow us to 

examine the mechanisms producing these spillover effects, it seems likely that they are 

driven by peer effects, as prior research suggests that students in algebra are more likely to 

take their ELA courses with other algebra students as well (e.g., Domina et al., 2019). 

Appendix B reports results from supplemental analyses showing that these results are robust 

across multiple samples and alternative estimation methods (e.g., local linear regressions).13

While the results in Table 4 provide useful information about the average benefit of 8th-

grade algebra for students near a school-year specific placement threshold, they may conceal 

substantial variation in the effects of 8th-grade algebra across diverse academic settings. The 

variance around our fuzzy RD estimates suggests wide variation in the school-year specific 

effects. For example, we find an average LATE of .053 sd for math CAHSEE achievement 

with a τδ
2 = .025 (or a standard deviation of .16), suggesting that 38 percent of the site-

specific treatment effects are negative. In Figure 5, we graphically represent the wide 

distribution of positive and negative effects via a histogram and kernel density plot of 

empirical Bayes estimates from equation (2) for the 10th-grade math CAHSEE; Figure 6 

presents the analogous distribution for 11th-grade math course-taking.

Cross-Site Heterogeneity

We next turn to examining cross-site heterogeneity. One important way in which the 

effectiveness of 8th-grade algebra may vary across sites has to do with the location of 

schools’ 7th-grade math CST placement threshold. The location of the placement threshold 

13All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s website and use the search 
engine to locate the article at http://onlinelibrary.wiley.com.
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may affect 8th-grade algebra in a number of ways. For example, schools that use higher test 

score thresholds are reserving algebra for their most prepared students, while schools with 

thresholds toward “basic” allow more students to take algebra as well as more students with 

weaker math backgrounds. If the effects of algebra vary with student readiness or if the 

quality of algebra instruction varies with school norms about course provisions, the local 

effects of 8th-grade algebra placement could vary. (See Appendix Table C1 for basic 

demographic differences among schools with cutoffs at 300, 325, and 350.14) Similarly, 

many schools appear to use an accountability policy-relevant threshold (e.g., 300, 325, or 

350), while others used thresholds in between these scores. While the schools that use 

accountability policy-relevant thresholds have strong face validity, they may conflate both 

the effect of accountability performance labeling (e.g., Papay, Murnane, & Willett, 2016) 

and the effect of algebra.

We explore these possibilities graphically in Figures 7 and 8. In these figures, we plot the 

site-specific treatment effects for 8th-grade algebra on 10th-grade math CAHSEE (Figure 7) 

and 11th-grade advanced math course-taking (Figure 8) against schools’ 7th-grade math 

CST thresholds, and fit a flexible local linear regression line.15 If our estimates of the effects 

of 8th-grade algebra conflate potential accountability effects at thresholds of 300, 325, and 

350, we would expect to see noticeable peaks or valleys at these thresholds compared to the 

points in between. However, we do not see a noticeable pattern between effects at 300, 325, 

and 350 versus the non-accountability policy-relevant points in either figure. While we are 

unable to document the school-specific reasons for the use of different 7th-grade math CST 

thresholds, the lack of a systematic difference between schools using 300, 325, and 350 

versus a cutoff in between these points supports the use of all placement thresholds in our 

evaluation of 8th-grade algebra.

Consistent with our earlier research (Domina, 2014; Domina et al., 2015) as well as work in 

Chicago (Allensworth et al., 2009) and North Carolina (Clotfelter, Ladd, & Vigdor, 2015), 

the patterns in Figures 7 and 8 indicate that students benefit more from early algebra 

assignment when access to the class is restricted to relatively high-achieving students. The 

relationship between 8th-grade algebra effectiveness and the algebra placement threshold is 

particularly striking when comparing students’ likelihood of remaining on the advanced 

course-taking track in high school. By eleventh grade, students in the schools that have 

cutoffs of at least 340 still maintained a 20 to 25 percent point advantage in the likelihood of 

taking advanced math, but this advantage is closer to five percentage points for students at 

the margin of algebra in a school with a cutoff near 300. In Appendix A, we present similar 

figures for the rest of our main outcomes of interest.16

14All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s website and use the search 
engine to locate the article at http://onlinelibrary.wiley.com.
15We use an Epanechniko kernel, local polynomial order of one, and a bandwidth of two CST points.
16One noteworthy finding is that the positive relationship between the size of the effect and the location of threshold may only hold 
for mathematics outcomes. The relationship between the threshold location and 10th-grade ELA CAHSEE scores is negative, and 
threshold location has a flat-to-negative relationship with 8th- to 11th-grade ELA CST scores. All appendices are available at the end 
of this article as it appears in JPAM online. Go to the publisher’s website and use the search engine to locate the article at http://
onlinelibrary.wiley.com.
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In order to ensure that the relationship between algebra placement thresholds and students’ 

high school outcomes is not a byproduct of the difference in student demographics across 

the thresholds, we estimate simple OLS regressions of site-specific effects of 8th-grade 

algebra on three site-level demographics: 7th-grade math CST threshold, the share of 

students who are socioeconomically disadvantaged (SED) (an index created by the CDE that 

includes students who either qualify for free and reduced-price lunch or whose parents have 

not received a high school diploma), and the 8th-grade cohorts’ average standardized 7th-

grade math CST scores. The results presented in Table 5 suggest that the patterns shown in 

Figures 7 and 8 hold even after controlling for student poverty and prior achievement. For 

example, going from a cutoff score of 300 to 350 is associated with an increase in the 

average effect of 8th-grade algebra of .02 sd on the 10th-grade math CAHSEE and 25, 20, 

and 15 percentage points, respectively, on the likelihood of taking advanced math courses in 

ninth, tenth, and eleventh grades.

Student-Level Heterogeneity

Up to this point, our analysis has focused on the local effect of 8th-grade algebra on 

students’ 10th-grade CAHSEE achievement, high school math course-taking, and ELA 

achievement in grades 8 to 11, as well as how these effects vary across our RD sites. 

However, it is also important to understand how the effect of 8th-grade algebra varies across 

student subgroups, especially those who are less likely to be exposed to accelerated math 

curriculum. In our final analysis, we estimate the effects of 8th-grade algebra separately for 

male, female, Black, Hispanic, White, Asian, socioeconomically disadvantaged (SED), non-

SED, English-language learners (ELL), and non-ELL students; we report these results in 

Table 6.

We find no evidence of a negative average effect of 8th-grade algebra on 10th-grade math 

and ELA CAHSEE scores, high school math course-taking, and 8th- through 11th-grade 

ELA CST scores in any of the student subgroups that we examine. Our results suggest that 

students who often do not get the same access to accelerated curriculum—female, minority, 

low-income, and ELL students—all benefit from algebra in eighth grade, and often benefit 

more than other students. The positive effect of 8th-grade algebra on high school 

mathematics course-taking, for example, is larger for female students who completed 

algebra in eighth grade than for their male peers. This effect is perhaps explained by 

previous research demonstrating that girls’ mathematics course-taking decisions are highly 

responsive to their peers’ course-taking decisions (Frank et al., 2008; Riegle-Crumb, Farkas, 

& Muller, 2006), so that initial placement in eighth grade serves in providing girls not only 

access to an advanced course trajectory, but also to a set of peers who influence later course-

taking outcomes. To the degree that curricular choices in RD schools are driven less by 

student interest, parent pressure, and teacher evaluations, this finding is also congruent with 

research observing that highly standardized educational systems tend to have smaller gender 

gaps in mathematics (Ayalon, 2002; Ayalon & Livneh, 2013).

We also find important positive effects for Black students. Not only does 8th-grade algebra 

have a large positive effect on math CAHSEE scores for Black students (.15 sd), but Black 

students assigned to 8th-grade algebra also experience large test score gains on the ELA 

McEachin et al. Page 13

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CAHSEE and the 8th- through 11th-grade ELA CST. On each of these outcomes, Black 

students thus receive greater benefits from enrolling in 8th-grade algebra than White 

students. If threshold-based assignment policies also narrow Black/White gaps in exposure 

to accelerated coursework (Dougherty et al., 2015), these policies may help to narrow Black/

White achievement gaps through undermining racial segregation and opportunity hoarding 

within schools (Lewis & Diamond, 2015). Likewise, the analyses reported in Table 7 

indicate that the large benefits that ELL students receive from 8th-grade algebra on their 

math CAHSEE scores and high school math course-taking do not come at the expense of 

ELA achievement. In fact, ELL students who complete algebra in eighth grade score .06 

to .1 sd higher on the ELA CAHSEE and CST. This underscores that ELL students’ effort in 

advanced math courses does not detract from their mastery of English and performance on 

ELA tests. Future research should explore whether the effects we observe here last through 

post-secondary education and into the labor market (e.g., Goodman, 2019; Hemelt, 

Schwartz, & Dynarski, 2019).

We also estimated the student subgroup models separately by algebra cutoffs of 300, 325, 

and 350, and report the results in Appendix C.17 The patterns are largely consistent with the 

general finding that students do better in 8th-grade algebra when they are exposed to higher-

achieving peers (e.g., a cutoff near 350). Our heterogeneity findings highlight both the 

promise that efforts to enroll students in accelerated coursework holds for students and the 

challenges that schools face in successfully implementing these efforts. That is, on the one 

hand, our results suggest schools with more stringent requirements for accelerated 

curriculum have better student outcomes. However, students of color and students from low-

income backgrounds are less likely to enroll in these schools. On the other hand, students of 

color, female students, and ELL students gain the most from accelerated curriculum. So, 

although our findings suggest that schools should make a special effort to enroll traditionally 

underserved students in advanced courses, they also suggest that using lower thresholds to 

assign students to accelerated courses lowers the benefits of these classes for students. 

Balancing these two implications is a difficult task.

CONCLUSIONS

Over the past two decades, school systems across the United States have experimented with 

a number of different approaches to curricular intensification. Our analyses estimate the 

causal effects of early algebra on students’ outcomes, finding evidence of small positive 

local average effects for achievement and larger positive local average effects on students’ 

access to subsequent advanced math courses. In addition, by documenting a substantial 

degree of heterogeneity across schools and students in the effects of early algebra, our 

analyses provide a deeper understanding of the contextual factors related to the success of 

curricular intensification. Before we highlight our key contributions to the field and policy 

implications of our findings, it is important to keep in mind our study’s limitations.

17All appendices are available at the end of this article as it appears in JPAM online. Go to the publisher’s website and use the search 
engine to locate the article at http://onlinelibrary.wiley.com.
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First, while our examination of 8th-grade algebra uses a large data set from a highly 

populated, diverse state, we lack information on the instructional and curricular mechanisms 

that might contribute to the effects of 8th-grade algebra assignments and the variation in 

these effects across schools. Exploratory analyses indicate that the variation in the effects of 

8th-grade algebra across schools is not explained by textbook differences. However, we lack 

data on the extent to which teacher quality, classroom assignment practices, and local status 

hierarchies vary with 8th-grade algebra assignment across schools. Future research can help 

clarify the extent to which these and other factors contribute to the variation in the effects of 

8th-grade algebra.

Second, there are important questions about the extent to which our findings generalize. We 

rely on a nonrandom sample of schools that appear to use 7th-grade math CST scores to 

place students in algebra in eighth grade. These schools are, on average, lower performing 

and have larger shares of students of color and who are considered SED by the CDE. 

Although we know of some districts that used explicit placement thresholds (e.g., Fresno 

Unified and Long Beach Unified School Districts), we are unable to distinguish between 

schools that a priori established a threshold from those whose thresholds were a mechanical 

byproduct of space constraints in algebra classrooms.

With that said, our paper does extend the field in a number of ways and has implications for 

future curricular acceleration policies. First, we provide quasi-experimental estimates of the 

local average treatment effect of 8th-grade algebra enrollments for thousands of students 

across a diverse set of California middle schools on a wide range of short- and medium-term 

academic outcomes. Our estimates of the local average treatment effects of early algebra on 

student achievement are closer to zero than correlational estimates on nationally 

representative data (e.g., Stein et al., 2011), and are near the middle of the broad distribution 

of experimental and quasi-experimental estimates. Our analyses suggest that enrolling in 

8th-grade algebra boosts students’ math performance by approximately 0.05 sd. These 

estimated effect sizes are more modest than experimental estimates from schools in rural 

New England (Heppen et al., 2012), but more positive than instrumental variable analyses 

from North Carolina in the 1990s (Clotfelter, Ladd, & Vigdor, 2015), and roughly equivalent 

to more recent regression discontinuity estimates from a single school district in North 

Carolina (Dougherty et al., 2017). Further, we find small, positive effects on students’ ELA 

test scores, suggesting that the benefits to students’ academic achievement operate broadly 

beyond mathematics, perhaps due to peer effects. Finally, we find that enrolling in 8th-grade 

algebra substantially boosts students’ advanced mathematics course-taking rates throughout 

high school, ultimately increasing students’ likelihood of being on track to take calculus in 

twelfth grade by approximately 16 percentage points.

Our second contribution to the literature on curricular intensification is to document the 

pronounced heterogeneity in local average effects of early algebra across California middle 

schools. Prior studies conceptualize early algebra placement as a single treatment across the 

different schools being studied and focus on its average effect. By contrast, our analyses 

acknowledge that many key aspects of the early algebra experience vary across school 

settings. In particular, we focus on the relationship between school-level variation in 8th-

grade algebra course placement thresholds and the effects of 8th-grade algebra. In some 
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schools, 8th-grade algebra is reserved for higher-achieving students; in others, the course is 

open to students with a wider array of pre-algebraic skills. This effect heterogeneity may 

help to explain the remarkable dispersion among experimental and quasi-experimental 

estimates of the effects of 8th-grade algebra. In light of the fact that algebra placement has 

large positive effects in some California middle schools, large negative effects in others, and 

a range of effects in between, it is perhaps not surprising that well-estimated analyses of the 

effects of early algebra in different settings yield different results. Treatment effect 

heterogeneity is a crucial, and crucially underestimated, parameter for policy research. The 

degree of heterogeneity that we document here may not be unusual in education more 

broadly in the United States, given that local actors have considerable discretion over 

whether and how to implement policy directives (Weiss et al., 2017). Modeling that 

treatment effect heterogeneity is an important first step toward better understanding policy 

implementation processes and their consequences.

Beyond documenting the heterogeneity in the effects of 8th-grade algebra placement across 

California middle schools, our analyses provide insights into the sources of this 

heterogeneity. These analyses are necessarily exploratory, as schools’ decisions around 

issues such as where to locate placement thresholds are not exogenous. Nonetheless, these 

analyses provide some descriptive evidence about the contexts in which early algebra is and 

is not effective. We find that the effects of 8th-grade algebra tend to be more positive in 

schools that restrict access to algebra to students who had higher 7th-grade mathematics test 

scores.

This variation across contexts has important implications for understanding the capacity of 

access to early algebra course placement policies to narrow achievement gaps. While these 

results are necessarily impressionistic, they are consistent with the hypothesis that students 

need either a high degree of academic preparation (or substantial academic support) to 

benefit from access to accelerated coursework. For example, Chicago public schools found 

success in a double-dose algebra curriculum for ninth graders that included a particular 

focus on instructional strategies for students with below-average prior achievement (e.g., 

Cortes, Goodman, & Nomi, 2015; Nomi & Allensworth, 2013). In calling attention to the 

pronounced site-level heterogeneity in the effects of early algebra, our analyses draw 

attention to the importance of moving beyond one-size-fits-all accounts of curricular 

intensification.

Third, our results indicate that the effects of 8th-grade algebra are positive in all student 

subgroups but are particularly evident among groups of students who often have less access 

to advanced mathematics coursework. We find important and policy-relevant benefits of 8th-

grade algebra for female, Black, ELL, and SED students. For the students at the margin of 

algebra placement in our RD schools, 8th-grade algebra served to help narrow important and 

persistent achievement and attainment gaps. Future research should focus on whether these 

benefits persist through post-secondary education and the labor market. However, in light of 

evidence establishing causal links between high school courses and labor market outcomes 

(Goodman, 2019), we suspect accessing 8th-grade algebra substantially influences students’ 

life courses.
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Finally, our results provide insight into an important policy paradox. Prior work suggests 

that individual students benefit from being placed into advanced courses, but that policies 

aimed at placing all students into advanced coursework have negative effects (Domina et al., 

2015; Penner et al., 2015). Put differently, the partial equilibrium effect of early algebra (the 

effect of moving an individual student from pre-algebra to algebra) is positive, but the 

general equilibrium effect of early algebra at scale (moving all students into algebra) is 

negative.18 At first glance, it seems likely that understanding the local average effects is less 

policy-relevant than understanding what would happen if a policy was adopted at scale. 

However, our results highlight that the partial equilibrium effect can be extremely relevant 

for policies concerned with equity. Specifically, we find outsized effects for groups of 

students that have historically not had access to advanced coursework, suggesting that 

policies aimed at ensuring access for these students, without universalizing access, could 

play a powerful role in creating more equitable educational outcomes.

In addition to these empirical contributions to the literature on curricular intensification, our 

analyses have methodological implications for studies in a wide range of policy settings. The 

regression discontinuity design (RDD) is rapidly becoming a workhorse methodology for 

causal estimation in policy research. Regression discontinuity designs are particularly useful 

in educational research, where they provide opportunities to separate the effects of 

educational interventions operating at scale from potentially confounding selection 

processes, while avoiding the expense, logistical challenges, and potential ethical issues 

surrounding randomized control trials. Traditional RD estimates are typically only possible 

in settings where assignment to treatment conditions vary discontinuously at a known 
threshold in an observed forcing variable. In practice, this is a major limitation since there 

are many settings where a treatment threshold is likely but unknown to the researcher. 

Applying an RD search algorithm to a setting where treatment placement discontinuities are 

likely to exist in other contexts may create opportunities for rigorous evaluation of the 

heterogeneous effects of a wide range of policy interventions.
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APPENDIX A

Figure A1. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 10th-Grade ELA 

CAHSEE.

Figure A2. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 9th-Grade Accelerated 

Math Course-Taking.
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Figure A3. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 10th-Grade Accelerated 

Math Course-Taking.

Figure A4. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 8th-Grade ELA CST.
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Figure A5. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 9th-Grade ELA CST.

Figure A6. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 10th-Grade ELA CST.
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Figure A7. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 11th-Grade ELA CST.

Figure A8. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 10th-Grade ELA CAHSEE and 

the Location of the 7th-Grade Math CST Algebra Placement Cutoff.
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Figure A9. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 9th-Grade Advanced Math 

Course-Taking and the Location of the 7th-Grade Math CST Algebra Placement Cutoff.

Figure A10. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 10th-Grade Advanced Math 

Course-Taking and the Location of the 7th-Grade Math CST Algebra Placement Cutoff.
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Figure A11. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 8th-Grade ELA CST and the 

Location of the 7th-Grade Math CST Algebra Placement Cutoff.

Figure A12. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 9th-Grade ELA CST and the 

Location of the 7th-Grade Math CST Algebra Placement Cutoff.
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Figure A13. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 10th-Grade ELA CST and the 

Location of the 7th-Grade Math CST Algebra Placement Cutoff.

Figure A14. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 11th-Grade ELA CST and the 

Location of the 7th-Grade Math CST Algebra Placement Cutoff.

APPENDIX B

In this appendix, we report our main results using a number of different samples, model 

specifications, and estimation techniques. We start with two main samples. First, we have 
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the full set of 972 school-year observations that passed our bootstrap test that we call the 

“full sample.” Second, we have the trimmed sample used in the analysis in the main paper 

that includes the 753 school-year observations that not only passed the bootstrap test but also 

our placebo test using students’ 6th- and 7th-grade math and ELA CST scores as a 

dependent variable in equation (1). We call this sample the “trimmed sample.” The key 

difference between the full and trimmed samples is that the former does not correct for the 

small discontinuity in prior achievement at the placement thresholds, while the latter does. 

Therefore, across the specifications reported below, in each one we include results for the 

full sample that control for students’ 6th-grade math CST scores.

We also introduce two new subsamples. The first includes schools that have an algebra 

placement policy using 7th-grade math CST scores of 300, 325, or 350. We call these 

“policy-relevant cut scores” since 300 and 350 correspond with the cutoff for the “basic” and 

“proficient” performance categories—the former considered below grade-level, and the 

latter considered grade-level. We also include the score of 325 because a number of school 

districts stated policies using this score. Second, we include a set of schools in districts with 

known policies that use 7th-grade math CST scores for 8th-grade algebra placement.

Finally, we introduce two new specifications/estimation approaches to the random 

coefficient model with site fixed effects and site-by-treatment instruments used in the article. 

The first uses the same pooled data set used in the article but estimates equation (1) with a 

single instrument and equation (2) without a random coefficient but keeps the rest of the 

specification including school-year fixed effects. The second also uses the same pooled data 

set from the manuscript but estimates equations (1) and (2) using a local linear regression 

with a triangular kernel and a bandwidth estimated following Calonico, Cattaneo, and 

Titiunik (2014). We use the Stata command -rdrobust- to estimate this model (Calonico et 

al., 2017).

We present the results across Tables B1 to B21. There are a few exceptions where the results 

deviate slightly from the main paper; however, the qualitative results from our main model in 

equation (1) hold across these alternative specifications. For example, the results from the 

local linear specification tend to report larger positive effects of 8th-grade algebra on student 

outcomes than our random coefficient model in the article. We interpret the collection of our 

results as students in 8th-grade algebra in our RD sites experiencing positive test score 

improvements on the math CAHSEE and being more likely to take advanced math courses 

in high school than students just below the algebra placement threshold who completed a 

remedial math course in eighth grade.

Table B1.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a random coefficient model with site fixed effects (Full Sample).

Panel A: ITT Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST
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Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

1[CST 
> = 
Cutoff]

0.039*** 0.033*** 0.133*** 0.089*** 0.064*** 0.031*** 0.035*** 0.038*** 0.033***

(0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.006) (0.006) (0.007)

Panel B: Fuzzy RD Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Algebra 0.065*** 0.061*** 0.289*** 0.198*** 0.151*** 0.051*** 0.060*** 0.058*** 0.049***

(0.010) (0.011) (0.012) (0.010) (0.009) (0.011) (0.011) (0.012) (0.014)

τ2 0.022 0.018 0.044 0.036 0.027 0.026 0.022 0.024 0.022

# of 
Students

186763 186815 201443 201443 150817 201060 189922 181456 129651

# of 
School 
Years

972 972 972 972 703 972 972 972 703

# of 
Schools

603 603 603 603 508 603 603 603 508

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test. The coefficients are from a 
two-stage model with treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment 
(8th-grade algebra). The model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST 
scores are above the school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction 
between the indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the 
school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B2.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a random coefficient model with site fixed effects (Full Sample; conditional on 6th-grade 

math CST).

Panel A: ITT Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

1[CST> 
= 
Cutoff]

0.023*** 0.018*** 0.129*** 0.085*** 0.061*** 0.015** 0.019*** 0.022*** 0.014*

(0.005) (0.005) (0.006) (0.005) (0.005) (0.005) (0.005) (0.006) (0.007)

Panel B: Fuzzy RD Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade
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Algebra 0.037*** 0.039*** 0.281*** 0.191*** 0.146*** 0.023* 0.035*** 0.034** 0.020

(0.009) (0.010) (0.012) (0.011) (0.010) (0.010) (0.010) (0.011) (0.013)

τ2 0.125 0.178 0.249 0.215 0.169 0.000 0.000 0.000 0.000

# of 
Students 178085 178126 190820 190820 142202 190477 180996 173305 123497

# of 
School 
Years

972 972 972 972 703 972 972 972 703

# of 
Schools 603 603 603 603 508 603 603 603 508

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test. The coefficients are from a 
two-stage model with treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment 
(8th-grade algebra). The model also includes a control for students’ 6th-grade math CST scores. The model also uses a 
linear spline specification with an indicator for whether students’ 7th-grade CST scores are above the school-specific policy 
threshold, a linear control for students’ 7th-grade CST scores, and an interaction between the indicator variable and the 
linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B3.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a random coefficient model with site fixed effects (Full Sample; schools with policy 

cutpoints of 300, 325, or 350 only).

Panel A: ITT Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

1[CST> 
= 
Cutoff]

0.030*** 0.025*** 0.133*** 0.091*** 0.069*** 0.025*** 0.028*** 0.028*** 0.021*

(0.006) (0.006) (0.007) (0.006) (0.006) (0.007) (0.007) (0.007) (0.009)

Panel B: Fuzzy RD Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Algebra 0.046*** 0.050*** 0.286*** 0.201*** 0.165*** 0.039** 0.048*** 0.037** 0.033+

(0.011) (0.012) (0.014) (0.012) (0.012) (0.013) (0.013) (0.014) (0.017)

τ2 0.026 0.021 0.044 0.037 0.028 0.028 0.024 0.029 0.025

# of 
Students

122192 122251 132015 132015 96584 131759 124915 119313 83142

# of 
School 
Years

630 630 630 630 443 630 630 630 443

# of 
Schools

451 451 451 451 357 451 451 451 357

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test and that have an algebra 
placement cutoff using 7th-grademath CST scores of 300, 325, or 350. The coefficients are from a two-stage model with 
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treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment (8th-grade algebra). The 
model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST scores are above the 
school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction between the 
indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-year 
level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B4.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a random coefficient model with site fixed effects (Full Sample; schools in districts with 

known policies only).

Panel A: ITT Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> 
= 
Cutoff]

0.026 0.019 0.243*** 0.152*** 0 121*** 0.005 −0.011 0.008 0.018

(0.016) (0.016) (0.022) (0.020) (0.022) (0.016) (0.017) (0.020) (0.021)

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.035 0.031 0.447*** 0.279*** 0.259*** −0.006 −0.011 0.019 0.001

(0.028) (0.029) (0.034) (0.032) (0.041) (0.036) (0.035) (0.039) (0.045)

τ2 0.019 0.012 0.044 0.034 0.021 0.027 0.022 0.016 0.019

# of 
Students

13654 13675 14615 14615 9362 14591 13821 13218 8097

# of 
School 
Years

69 69 69 69 42 69 69 69 42

# of 
Schools

37 37 37 37 27 37 37 37 27

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test and that are in districts with 
known placement policies using 7th-grade math CST scores. The coefficients are from a two-stage model with treatment-
by-site instruments, school-year fixed effects, and a random coefficient for the treatment (8th-grade algebra). The model 
also uses a linear spline specification with an indicator for whether students’ 7th-grade CST scores are above the school-
specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction between the indicator 
variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.
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Table B5.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a random coefficient model with site fixed effects (Trimmed Sample; schools with policy 

cutpoints of 300, 325, or 350 only).

Panel A: ITT Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade 10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

1[CST> 
= 
Cutoff]

0.023*** 0.012+ 0.135*** 0.094*** 0.071*** 0.009 0.012+ 0.014+ 0.013

(0.007) (0.007) (0.008) (0.007) (0.006) (0.007) (0.006) (0.007) (0.009)

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.034** 0.026* 0.294*** 0.206*** 0.169*** 0.014 0.019 0.015 0.016

(0.013) (0.013) (0.015) (0.014) (0.014) (0.013) (0.013) (0.014) (0.017)

τ2 0.029 0.028 0.045 0.037 0.028 0.033 0.032 0.037 0.031

# of 
Students

95876 95909 103480 103480 76540 103290 97862 93407 65919

# of 
School 
Years

492 492 492 492 351 492 492 492 351

# of 
Schools

376 376 376 376 298 376 376 376 298

Notes: This sample uses the trimmed sample of school-year observations that pass our bootstrap and placebo test and that 
have an algebra placement cutoff using 7th-grade math CST scores of 300, 325, or 350. The coefficients are from a two-
stage model with treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment (8th-
grade algebra). The model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST 
scores are above the school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction 
between the indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the 
school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B6.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a random coefficient model with site fixed effects (Trimmed Sample; schools in districts 

with known policies only).

Panel A: ITT Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST
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Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> 
= 
Cutoff]

0.014 −0.004 0.237*** 0.139*** 0.109*** −0.016 −0.023 −0.006 0.009

(0.019) (0.014) (0.025) (0.022) (0.026) (0.015) (0.016) (0.019) (0.020)

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.033 0.017 0.441*** 0.266*** 0.254*** −0.025 −0.011 0.017 −0.010

(0.031) (0.028) (0.041) (0.035) (0.052) (0.030) (0.031) (0.031) (0.037)

τ2 0.019 0.011 0.047 0.035 0.024 0.025 0.018 0.013 0.016

# of 
Students

10952 10976 11729 11729 6690 11712 11096 10624 5804

# of 
School 
Years

55 55 55 55 30 55 55 55 30

# of 
Schools

34 34 34 34 21 34 34 34 21

Notes: This sample uses the trimmed sample of school-year observations that pass our bootstrap and placebo test and that 
are in districts with known placement policies using 7th-grade math CST scores. The coefficients are from a two-stage 
model with treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment (8th-grade 
algebra). The model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST scores are 
above the school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction between 
the indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-
year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B7.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a pooled model with site fixed effects (Full Sample).

Panel A: ITT Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Panel A: ITT Estimates of Taking 8th Grade Algebra

1[CST> 
= 
Cutoff]

0.042*** 0.035*** 0.129*** 0.088*** 0.060*** 0.033*** 0.036*** 0.039*** 0.033***

(0.005) (0.005) (0.005) (0.004) (0.004) (0.005) (0.006) (0.006) (0.007)

Panel B: Fuzzy RD Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST
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Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Algebra 0.095*** 0.079*** 0.290*** 0.197*** 0.139*** 0.074*** 0.081*** 0.088*** 0.075***

(0.011) (0.012) (0.011) (0.009) (0.009) (0.012) (0.012) (0.014) (0.016)

# of 
Students

186763 186815 201443 201443 150817 201060 189922 181456 129651

# of 
School 
Years

972 972 972 972 703 972 972 972 703

# of 
Schools

603 603 603 603 508 603 603 603 508

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test. The coefficients are from a 
pooled model with school-year fixed effects and a single instrument. The model also uses a linear spline specification with 
an indicator for whether students’ 7th-grade CST scores are above the school-specific policy threshold, a linear control for 
students’ 7th-grade CST scores, and an interaction between the indicator variable and the linear control for students’ 7th-
grade CST scores. Standard errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B8.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a pooled model with site fixed effects (Full Sample; conditional on 6th-grade math CST).

Panel A: ITT Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Panel A: ITT Estimates of Taking 8th Grade Algebra

1[CST> 
= Cutoff

0.026*** 0.020*** 0.125*** 0.084*** 0.058*** 0.016** 0.020*** 0.024*** 0.015*

(0.005) (0.005) (0.005) (0.004) (0.004) (0.005) (0.005) (0.006) (0.007)

Panel B: Fuzzy RD Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Algebra 0.059*** 0.046*** 0.284*** 0.191*** 0.134*** 0.037** 0.045*** 0.053*** 0.034*

(0.011) (0.012) (0.011) (0.010) (0.010) (0.012) (0.012) (0.013) (0.016)

# of 
Students

178085 178126 190820 190820 142202 190477 180996 173305 123497

# of 
School 
Years

972 972 972 972 703 972 972 972 703

# of 
Schools

603 603 603 603 508 603 603 603 508

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test. The coefficients are from a 
pooled model with school-year fixed effects and a single instrument. The model also includes a control for students’ 6th-
grade math CST. The model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST 
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scores are above the school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction 
between the indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the 
school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B9.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a pooled model with site fixed effects (Full Sample; schools with policy cutpoints of 300, 

325, or 350 only).

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Panel A: ITT Estimates of Taking 8th Grade Algebra

1[CST> 
= Cutoff

0.034*** 0.027*** 0.131*** 0.092*** 0.066*** 0.027*** 0.030*** 0.030*** 0.021*

(0.006) (0.007) (0.006) (0.005) (0.005) (0.007) (0.007) (0.007) (0.009)

Panel B: Fuzzy RD Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Algebra 0.075*** 0.060*** 0.286*** 0.200*** 0.150*** 0.060*** 0.065*** 0.065*** 0.046*

(0.013) (0.014) (0.013) (0.012) (0.012) (0.015) (0.015) (0.016) (0.020)

# of 
Students

122192 122251 132015 132015 96584 131759 124915 119313 83142

# of 
School 
Years

630 630 630 630 443 630 630 630 443

# of 
Schools

451 451 451 451 357 451 451 451 357

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test and that have an algebra 
placement cutoff using 7th-grade math CST scores of 300, 325, or 350. The coefficients are from a pooled model with 
school-year fixed effects and a single instrument. The model also uses a linear spline specification with an indicator for 
whether students’ 7th-grade CST scores are above the school-specific policy threshold, a linear control for students’ 7th-
grade CST scores, and an interaction between the indicator variable and the linear control for students’ 7th-grade CST 
scores. Standard errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B10.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a pooled model with site fixed effects (Full Sample; schools in districts with known policies 

only).

Panel A: ITT Effects
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10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Panel A: ITT Estimates of Taking 8th Grade Algebra

1[CST> 
= Cutoff

0.031* 0.021 0.248*** 0.155*** 0.117*** 0.006 −0.011 0.010 0.018

(0.014) (0.017) (0.017) (0.015) (0.018) (0.017) (0.016) (0.019) (0.021)

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.058* 0.039 0.466*** 0.292*** 0.248*** 0.012 −0.020 0.018 0.038

(0.028) (0.031) (0.029) (0.027) (0.035) (0.032) (0.031) (0.035) (0.044)

# of 
Students

18538 18559 19858 19858 13323 19825 18757 17918 11417

# of 
School 
Years

69 69 69 69 42 69 69 69 42

# of 
Schools

37 37 37 37 27 37 37 37 27

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test and that are in districts with 
known placement policies using 7th-grade math CST scores. The coefficients are from a pooled model with school-year 
fixed effects and a single instrument. The model also uses a linear spline specification with an indicator for whether 
students’ 7th-grade CST scores are above the school-specific policy threshold, a linear control for students’ 7th-grade CST 
scores, and an interaction between the indicator variable and the linear control for students’ 7th-grade CST scores. Standard 
errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B11.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a pooled model with site fixed effects (Trimmed Sample).

Panel A: ITT Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Panel A: ITT Estimates of Taking 8th Grade Algebra

1[CST> 
= Cutoff

0.035*** 0.019*** 0.131*** 0.090*** 0.063*** 0.015** 0.017** 0.023*** 0.021**

(0.006) (0.006) (0.006) (0.005) (0.005) (0.005) (0.006) (0.006) (0.008)

Panel B: Fuzzy RD Effects

10th-Grade CAHSEE Advanced Math Course-Taking ELA CST
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Math ELA 9th 
Grade

10th 
Grade

11th 
Grade

8th 
Grade

9th 
Grade

10th 
Grade

11th 
Grade

Algebra 0.079*** 0.042*** 0.295*** 0.202*** 0.145*** 0.034** 0.037** 0.052*** 0.047**

(0.013) (0.012) (0.012) (0.011) (0.011) (0.012) (0.012) (0.014) (0.017)

# of 
Students

144351 144363 155513 155513 117755 155241 146910 140405 101441

# of 
School 
Years

753 753 753 753 550 753 753 753 550

# of 
Schools

510 510 510 510 424 510 510 510 424

Notes: This sample uses the trimmed sample of school-year observations that pass our bootstrap and placebo test. The 
coefficients are from a pooled model with school-year fixed effects and a single instrument. The model also uses a linear 
spline specification with an indicator for whether students’ 7th-grade CST scores are above the school-specific policy 
threshold, a linear control for students’ 7th-grade CST scores, and an interaction between the indicator variable and the 
linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B12.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a pooled model with site fixed effects (Trimmed Sample; schools with policy cutpoints of 

300, 325, or 350 only).

Panel A: ITT Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Panel A: ITT Estimates of Taking 8th Grade Algebra

1[CST> 
= Cutoff

0.029*** 0.015* 0.131*** 0.092*** 0.065*** 0.012+ 0.013* 0.017* 0.014

(0.007) (0.007) (0.007) (0.006) (0.006) (0.007) (0.007) (0.008) (0.009)

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.063*** 0.033* 0.287*** 0.201*** 0.149*** 0.025+ 0.029* 0.037* 0.031

(0.015) (0.015) (0.015) (0.013) (0.014) (0.014) (0.015) (0.017) (0.021)

# of 
Students

95876 95909 103480 103480 76540 103290 97862 93407 65919

# of 
School 
Years

492 492 492 492 351 492 492 492 351

# of 
Schools

376 376 376 376 298 376 376 376 298
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Notes: This sample uses the trimmed sample of school-year observations that pass our bootstrap and placebo test and that 
have an algebra placement cutoff using 7th-grade math CST scores of 300, 325, or 350. The coefficients are from a pooled 
model with school-year fixed effects and a single instrument. The model also uses a linear spline specification with an 
indicator for whether students’ 7th-grade CST scores are above the school-specific policy threshold, a linear control for 
students’ 7th-grade CST scores, and an interaction between the indicator variable and the linear control for students’ 7th-
grade CST scores. Standard errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B13.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a pooled model with site fixed effects (Trimmed Sample; schools in districts with known 

policies only).

Panel A: ITT Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Panel A: ITT Estimates of Taking 8th Grade Algebra

1[CST> 
= Cutoff

0.021 −0.002 0.242*** 0.143*** 0.107*** −0.014 −0.022 −0.004 0.010

(0.017) (0.017) (0.019) (0.017) (0.021) (0.016) (0.016) (0.018) (0.020)

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.038 −0.004 0.451*** 0.265*** 0.226*** −0.026 −0.040 −0.008 0.020

(0.032) (0.032) (0.032) (0.030) (0.041) (0.029) (0.030) (0.033) (0.042)

# of 
Students

15146 15166 16223 16223 10578 16198 15327 14637 9058

# of 
School 
Years

55 55 55 55 30 55 55 55 30

# of 
Schools

34 34 34 34 21 34 34 34 21

Notes: This sample uses the trimmed sample of school-year observations that pass our bootstrap and placebo test and that 
are in districts with known placement policies using 7th-grade math CST scores. The coefficients are from a pooled model 
with school-year fixed effects and a single instrument. The model also uses a linear spline specification with an indicator 
for whether students’ 7th-grade CST scores are above the school-specific policy threshold, a linear control for students’ 
7th-grade CST scores, and an interaction between the indicator variable and the linear control for students’ 7th-grade CST 
scores. Standard errors are clustered at the school-year level.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.
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Table B14.

First-stage estimates from a local linear regression specification.

Panel A: Initial RD Search Sample

First 
Stage

Density 
Test

6th- 
Grade 
Math 
CST

6th- 
Grade 
ELA 
CST

7th- 
Grade 
ELA 
CST

Male 
Student

SED 
Student

Asian 
Student

Black 
Student

Hispanic 
Student

ELL 
Student

Has 
10th- 
grade 
Math 

CAHSEE

Has 
10th- 
Grade 
ELA 

CAHSEE

1[CST> = 
Cutoff]

0.369***
(0.013)

−0.071
(0.290)

0.05**
(0.017)

0.035+
(0.018)

0.032+
(0.019)

−0.008
(0.008)

−0.001
(0.013)

0.016**
(0.005)

−0.003
(0.006)

−0.016
(0.014)

−0.019+
(0.010)

0.002
(0.004)

0.003
(0.004)

Bandwidth 17.766 25.897 28.516 35.058 31.029 25.065 39.563 31.585 30.908 34.955 23.324 27.966 29.427

# of 
Students

201443 201443 190820 190918 201215 201443 201406 201013 201013 201013 201341 201443 201443

# of 
School 
Years

972 972 972 972 972 972 972 972 972 972 972 972 972

Panel B: Trimmed Sample

First 
Stage

Density 
Test

6th- 
Grade 
Math 
CST

6th- 
Grade 
ELA 
CST

7th- 
Grade 
ELA 
CST

Male 
Student

SED 
Student

Asian 
Student

Black 
Student

Hispanic 
Student

ELL 
Student

Has 
10th- 
grade 
Math 

CAHSEE

Has 
10th- 
Grade 
ELA 

CAHSEE

1[CST> = 
Cutoff]

0.373***
(0.014)

0.072
(0.323)

0.039*
(0.019)

0.007
(0.020)

0.002
(0.022)

−0.008
(0.009)

0.001
(0.015)

0.022***
(0.006)

−0.004
(0.007)

−0.017
(0.017)

−0.005
(0.011)

−0.001
(0.005)

0.001
(0.005)

Bandwidth 19.183 21.904 25.955 31.366 29.177 24.912 34.019 23.708 22.785 28.776 23.512 23.31 25.22

# of 
Students

155513 155513 147088 147149 155330 155513 155481 155159 155159 155159 155432 155513 155513

# of 
School 
Years

753 753 753 753 753 753 753 753 753 753 753 753 753

Notes: The coefficients are estimated using a local linear regression with a triangular kernel using Stata’s -rdrobust- 
command. Bandwidths are estimated using the method outlined in Calonico, Cattaneo, and Titiunik (2014).
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B15.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a local linear regression (Full Sample).

Panel A: ITT Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA
9th 

Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> = 
Cutoff] 0.048** 0.068*** 0.114*** 0.085*** 0.062*** 0.056** 0.054** 0.052** 0.047*

(0.017) (0.018) (0.009) (0.008) (0.008) (0.020) (0.019) (0.018) (0.020)

Bandwidth 29.007 20.771 20.546 24.484 20.08 25.775 26.989 27.409 30.148

Panel B: Fuzzy RD Effects
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10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA
9th 

Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.129** 0.188*** 0.304*** 0 224*** 0 128*** 0.142** 0.141** 0.14** 0.134*

(0.047) (0.051) (0.020) (0.019) (0.015) (0.053) (0.051) (0.050) (0.058)

Bandwidth 29.28 19.625 28.287 30.942 26.179 29.074 27.973 26.465 26.431

# of 
Students 186763 186815 201443 201443 150817 201060 189922 181456 129651

# of 
School 
Years

972 972 972 972 703 972 972 972 703

# of 
Schools 603 603 603 603 508 603 603 603 508

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test. The coefficients are 
estimated using a local linear regression with a triangular kernel using Stata’s -rdrobust- command. Bandwidths are 
estimated using the method outlined in Calonico, Cattaneo, and Titiunik (2014).
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B16.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a local linear regression (Full Sample; condition on 6th-grade math CST).

Panel A: ITT Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> = 
Cutoff] 0.025* 0.042** 0.108*** 0.078*** 0.058*** 0.032* 0.028* 0.024+ 0.015

(0.013) (0.014) (0.009) (0.008) (0.008) (0.015) (0.014) (0.015) (0.018)

Bandwidth 27.76 19.554 20.843 24.539 21.913 21.913 24.105 23.224 20.921

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.079* 0.118** 0.296*** 0.213*** 0.164*** 0.085+ 0.081+ 0.063 0.049

(0.039) (0.043) (0.021) (0.020) (0.021) (0.043) (0.040) (0.041) (0.048)

Bandwidth 19.803 16.789 23.709 25.746 19.535 20.228 21.804 21.868 22.201

# of 
Students 186763 186815 201443 201443 142202 201060 189922 181456 129651

# of 
School 
Years

972 972 972 972 703 972 972 972 703
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# of 
Schools 603 603 603 603 508 603 603 603 508

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test. The coefficients are 
estimated using a local linear regression with a triangular kernel using Stata’s -rdrobust- command. Bandwidths are 
estimated using the method outlined in Calonico, Cattaneo, and Titiunik (2014). Model also controls for students’ 6th-grade 
math CST.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B17.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a local linear regression (Full Sample; schools with policy cutpoints of 300, 325, or 350 

only).

Panel A: ITT Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> = 
Cutoff]

0.037 0.047* 0.113*** 0.085*** 0.065*** 0.047+ 0.047+ 0.039+ 0.021

(0.023) (0.022) (0.011) (0.009) (0.009) (0.026) (0.025) (0.024) (0.028)

Bandwidth 25.411 26.866 20.069 22.693 21.516 27.676 27.726 31.513 28.555

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.102 0.142* 0.303*** 0.238*** 0.182*** 0.148+ 0.123+ 0.096 0.046

(0.063) (0.067) (0.027) (0.027) (0.026) (0.076) (0.072) (0.071) (0.097)

Bandwidth 26.22 19.147 19.685 17.098 20.474 17.987 20.988 18.875 15.584

# of 
Students

122192 122251 132015 132015 96584 131759 124915 119313 83142

# of 
School 
Years

630 630 630 630 443 630 630 630 443

# of 
Schools

451 451 451 451 357 451 451 451 357

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test and that have an algebra 
placement cutoff using 7th-grademath CST scores of 300, 325, or 350. The coefficients are estimated using a local linear 
regression with a triangular kernel using Stata’s -rdrobust- command. Bandwidths are estimated using the method outlined 
in Calonico, Cattaneo, and Titiunik (2014).
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

McEachin et al. Page 38

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Table B18. Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using a local linear 
regression (Full Sample; schools in districts with known policies only).

Table B18.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a local linear regression (Full Sample; schools in districts with known policies only).

Panel A: ITT Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> = 
Cutoff] 0.048 0.086 0.186*** 0.120*** 0.086** 0.052 0.032 0.061 0.075

(0.049) (0.060) (0.030) (0.026) (0.031) (0.065) (0.063) (0.067) (0.078)

Bandwidth 30.091 23.023 22.837 20.855 22.070 24.356 23.664 20.413 34.292

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.125 0.215 0.448*** 0.293*** 0.245** 0.150 0.076 0.179 0.291

(0.126) (0.148) (0.064) (0.055) (0.074) (0.163) (0.151) (0.178) (0.249)

Bandwidth 24.033 22.879 23.253 23.797 24.647 21.389 23.706 18.274 22.672

# of 
Students 13654 13675 14615 14615 13323 14591 13821 13218 8097

# of School 
Years 69 69 69 69 42 69 69 69 42

# of 
Schools 37 37 37 37 27 37 37 37 27

Notes: This sample uses all 972 initial school-year observations that passed the bootstrap test and that are in districts with 
known placement policies using 7th-grade math CST scores. The coefficients are estimated using a local linear regression 
with a triangular kernel using Stata’s -rdrobust- command. Bandwidths are estimated using the method outlined in 
Calonico, Cattaneo, and Titiunik (2014).
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B19.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a local linear regression (Trimmed Sample).

Panel A: ITT Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> = 
Cutoff] 0.051* 0.067** 0.120*** 0.087*** 0.069*** 0.038+ 0.028 0.036+ 0.041+
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(0.021) (0.022) (0.010) (0.009) (0.008) (0.022) (0.021) (0.021) (0.023)

Bandwidth 19.913 17.785 22.277 24.764 26.630 24.007 25.721 26.569 31.078

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.130** 0.163** 0.313*** 0.236*** 0.189*** 0.099+ 0.078 0.091+ 0.109+

(0.053) (0.057) (0.023) (0.023) (0.022) (0.059) (0.057) (0.055) (0.062)

Bandwidth 25.293 19.642 28.295 23.005 24.362 27.166 26.986 28.863 30.888

# of 
Students 144351 144363 155513 155513 117755 155241 146910 140405 101441

# of 
School 
Years

753 753 753 753 550 753 753 753 550

# of 
Schools 510 510 510 510 424 510 510 510 424

Notes: This sample uses the trimmed sample of school-year observations that passed the bootstrap and placebo test. The 
coefficients are estimated using a local linear regression with a triangular kernel using Stata’s -rdrobust- command. 
Bandwidths are estimated using the method outlined in Calonico, Cattaneo, and Titiunik (2014).
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B20.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a local linear regression (Trimmed Sample; schools with policy cutpoints of 300, 325, or 350 

only).

Panel A: ITT Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> = 
Cutoff] 0.042 0.046+ 0.116*** 0.086*** 0.066*** 0.036 0.033 0.026 0.022

(0.027) (0.026) (0.012) (0.011) (0.010) (0.029) (0.028) (0.027) (0.030)

Bandwidth 23.826 24.815 23.988 24.679 25.835 28.04 30.003 31.684 36.034

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.106 0.148* 0.304*** 0.225*** 0.185*** 0.097 0.089 0.068 0.051

(0.071) (0.073) (0.028) (0.027) (0.029) (0.079) (0.076) (0.078) (0.097)

Bandwidth 25.281 21.317 27.117 25.656 23.533 25.637 25.468 20.668 18.87
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# of 
Students 95876 95909 103480 103480 76540 103290 97862 93407 65919

# of 
School 
Years

492 492 492 492 351 492 492 492 351

# of 
Schools 376 376 376 376 298 376 376 376 298

Notes: This sample uses the trimmed sample of school-year observations that passed the bootstrap and placebo test and that 
have an algebra placement cutoff using 7th-grade math CST scores of 300, 325, or 350. The coefficients are estimated 
using a local linear regression with a triangular kernel using Stata’s –rdrobust-command. Bandwidths are estimated using 
the method outlined in Calonico, Cattaneo, and Titiunik (2014).
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

Table B21.

Fuzzy RD estimates of 8th-grade algebra course assignment on educational outcomes using 

a local linear regression (Trimmed Sample; schools in districts with known policies only).

Panel A: ITT Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

1[CST> = 
Cutoff]

0.038 0.064 0.192*** 0.115*** 0.085* 0.029 0.015 0.042 0.097

(0.054) (0.065) (0.032) (0.028) (0.035) (0.069) (0.065) (0.068) (0.091)

Bandwidth 31.939 24.4 26.844 25.275 25.844 25.535 26.58 22.826 27.951

Panel B: Fuzzy RD Effects

10th-Grade 
CAHSEE

Advanced Math Course-Taking ELA CST

Math ELA 9th Grade
10th 

Grade
11th 

Grade
8th 

Grade
9th 

Grade
10th 

Grade
11th 

Grade

Algebra 0.091 0.162 0.439*** 0.26*** 0.238* 0.065 0.041 0.079 0.391

(0.128) (0.157) (0.065) (0.056) (0.076) (0.158) (0.157) (0.145) (0.291)

Bandwidth 26.437 22.691 26.993 27.197 32.917 25.276 23.058 27.638 20.215

# of 
Students

10952 10976 11729 11729 10578 11712 11096 10624 5804

# of School 
Years

55 55 55 55 30 55 55 55 30

# of 
Schools

34 34 34 34 21 34 34 34 21

Notes: This sample uses the trimmed sample of school-year observations that passed the bootstrap and placebo test and that 
are in districts with known placement policies using 7th-grade math CST scores. The coefficients are estimated using a 
local linear regression with a triangular kernel using Stata’s -rdrobust- command. Bandwidths are estimated using the 
method outlined in Calonico, Cattaneo, and Titiunik (2014).
+

p<0.10
*
p<0.05

**
p<0.01
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***
p<0.001.

APPENDIX C

Table C1.

Student demographics and achievement by algebra policy cutoff (300, 325, or 350).

Algebra Cutoff = 300 Algebra Cutoff = 325 Algebra Cutoff = 350

Mean SD N Mean SD N Mean SD N

Share of 8th graders in algebra 0.626 0.484 24338 0.518 0.5 22853 0.437 0.496 56289

7th-grade CST math (std.) −0.493 0.563 24338 −0.287 0.599 22853 0.049 0.612 56289

7th-grade CST ELA (std.) −0.485 0.744 24304 −0.332 0.769 22808 0.02 0.756 56249

Black 0.086 24324 0.071 22807 0.064 56128

White 0.122 24324 0.132 22807 0.273 56128

Hispanic 0.720 24324 0.671 22807 0.544 56128

SED 0.777 24334 0.768 22852 0.594 56283

Table C2.

Student demographics and achievement by 8th-grade math course and algebra policy cutoff 

(300, 325, or 350).

Algebra Cutoff = 300 Algebra Cutoff = 325 Algebra Cutoff = 350

Not Algebra Algebra Not Algebra Algebra Not Algebra Algebra

Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N

Within 
School 
Decile 
7th-
Grade 
CST 
Math

2.93 1.90 9095 6.76 2.32 15243 3.33 2.06 11014 7.21 2.15 11839 3.65 2.20 31682 7.49 2.05 24607

7th-
Grade 
CST 
Math 
(std.)

−0.98 0.41 9095 −0.20 0.43 15243 −0.72 0.43 11014 0.11 0.43 11839 −0.32 0.45 31682 0.52 0.45 24607

Within- 
School 
Decile 
7th-
Grade 
CST 
ELA

3.67 2.40 9073 6.40 2.63 15231 3.98 2.52 10984 6.67 2.55 11824 4.21 2.55 31655 6.86 2.52 24594

7th-
Grade 
CST 
ELA 
(std.)

−0.93 0.65 9073 −0.22 0.67 15231 −0.71 0.68 10984 0.02 0.68 11824 −0.29 0.68 31655 0.42 0.65 24594

Black 0.11 9090 0.07 15234 0.08 10994 0.06 11813 0.07 31603 0.05 24525

White 0.09 9090 0.14 15234 0.11 10994 0.16 11813 0.23 31603 0.33 24525

Hispanic 0.76 9090 0.70 15234 0.73 10994 0.62 11813 0.61 31603 0.46 24525

SED 0.82 9093 0.75 15241 0.82 11014 0.72 11838 0.66 31677 0.51 24606
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Table C3.

Fuzzy RD effects of 8th-grade algebra on 10th-grade math CAHSEE by student subgroup 

and school policy cutoff.

10th-Grade CAHSEE

Math ELA

c = 300 c = 325 c = 350 c = 300 c = 325 c = 350

Male 0.088** 0.055 0.045+ 0.085* 0.022 0.048+

(0.029) (0.040) (0.025) (0.039) (0.034) (0.026)

Female 0.035 0.068+ 0.070** 0.117*** 0.047 0.033

(0.032) (0.035) (0.023) (0.035) (0.037) (0.025)

Black 0.070 0.193** 0.181*** 0.082 0.166* 0.104+

(0.068) (0.062) (0.039) (0.071) (0.074) (0.060)

Hispanic 0.049+ 0.024 0.058* 0.077** 0.007 0.073**

(0.026) (0.034) (0.023) (0.024) (0.031) (0.024)

White 0.035 0.213** 0.095*** 0.145* 0.192* 0.078*

(0.062) (0.065) (0.028) (0.068) (0.083) (0.037)

Asian 0.107 0.141+ 0.089+ −(0.139) 0.071 0.023

(0.109) (0.072) (0.047) 0.012 (0.061) (0.051)

SED 0.052+ 0.062+ 0.057* 0.085** 0.020 0.081**

(0.027) (0.033) (0.024) (0.027) (0.029) (0.025)

Non-SED 0.014 0.146** 0.103*** 0.066 0.062 0.033

(0.053) (0.054) (0.027) (0.054) (0.048) (0.027)

ELL 0.144** 0.074+ 0.197*** 0.073+ 0.027 0.084+

(0.045) (0.041) (0.042) (0.041) (0.041) (0.043)

Non-ELL −0.004 0.073* 0.046* 0.053+ 0.023 0.031

(0.026) (0.032) (0.019) (0.031) (0.033) (0.020)

Notes: We first partition the data by student subgroup and school policy cutoff. The coefficients are from a two-stage model 
with treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment (8th-grade 
algebra). The model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST scores are 
above the school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction between 
the indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-
year level. SED = Socioeconomically disadvantaged, and ELL = English Language Learner.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.
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Table C4.

Fuzzy RD effects of 8th-grade algebra on 11th-grade accelerated math course-taking by 

student subgroup and school policy cutoff.

Advanced Course Taking

9th-Grade 10th-Grade 11th-Grade

c = 300 c = 325 c = 350 c = 300 c = 325 c = 350 c = 
300

c = 325 c = 350

Male 0.077*** 0.205*** 0.335*** 0.039* 0.117*** 0.258*** 0.025 0.088** 0.204***

(0.020) (0.029) (0.025) (0.017) (0.024) (0.023) (0.018) (0.032) (0.023)

Female 0.123*** 0.299*** 0.452*** 0.060* 0.187*** 0.342*** 0.018 0.119*** 0.288***

(0.028) (0.032) (0.024) (0.026) (0.028) (0.024) (0.021) (0.034) (0.022)

Black 0.070+ 0.234*** 0.450*** 0.066+ 0.101** 0.316*** 0.070* 0.088* 0.255***

(0.039) (0.043) (0.038) (0.034) (0.037) (0.038) (0.032) (0.042) (0.043)

Flispanic 0.110*** 0.223*** 0.388*** 0.049* 0 122*** 0.300*** 0.014 0.065* 0.258***

(0.022) (0.032) (0.026) (0.021) (0.025) (0.023) (0.020) (0.033) (0.022)

White 0.092* 0.194*** 0.358*** 0.063+ 0.114** 0.282*** 0.037 0.038 0.203***

(0.042) (0.041) (0.028) (0.034) (0.039) (0.027) (0.036) (0.041) (0.027)

Asian 0.185** Q 
424***

0.519*** 0.114+ 0.374*** 0.391*** 0.128 0.300*** 0.340***

(0.068) (0.062) (0.037) (0.063) (0.059) (0.042) (0.085) (0.078) (0.043)

SED 0.110*** 0.258*** 0.395*** 0.056** 0.154*** 0.292*** 0.025 0.114*** 0.243***

(0.022) (0.030) (0.026) (0.020) (0.023) (0.024) (0.019) (0.028) (0.022)

Non-
SED

0.082* 0.238*** 0.393*** 0.037 0.155*** 0.315*** 0.007 0.101* 0.257***

(0.032) (0.036) (0.027) (0.025) (0.034) (0.025) (0.025) (0.048) (0.025)

ELL 0.120*** 0.284*** 0.416*** 0.077** 0.178*** 0.320*** 0.043+ 0.150*** 0.335***

(0.029) (0.035) (0.036) (0.024) (0.033) (0.036) (0.023) (0.035) (0.038)

Non-
ELL

0.101*** 0.241*** 0.406*** 0.041+ 0.143*** 0.311*** 0.012 0.085** 0.254***

(0.025) (0.030) (0.023) (0.023) (0.025) (0.022) (0.019) (0.032) (0.020)

Notes: We first partition the data by student subgroup and school policy cutoff. The coefficients are from a two-stage model 
with treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment (8th-grade 
algebra). The model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST scores are 
above the school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction between 
the indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-
year level. SED = Socioeconomically disadvantaged, and ELL = English Language Learner.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.
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Table C5.

Fuzzy RD effects of 8th-grade algebra on 9th- to 11th-grade ELA CST by student subgroup 

and school policy cutoff.

ELA CST

8th-Grade 9th-Grade 10th-Grade 11th-Grade

c = 
300

c = 
325

c = 350 c = 
300

c = 
325

c = 350 c = 
300

c = 325 c = 350 c = 
300

c = 325 c = 350

Male 0.041 0.002 0.065* 0.054 0.049 0.041 −0.002 0.046 0.064* 0.023 −0.037 0.054

(0.038) (0.036) (0.026) (0.043) (0.039) (0.026) (0.045) (0.046) (0.029) (0.051) (0.069) (0.034)

Female 0.056+ 0.058 −0.006 0.063* 0.050 0.027 0.085* 0.080* 0.005 0.072* 0.095+ 0.017

(0.029) (0.036) (0.025) (0.031) (0.031) (0.025) (0.034) (0.036) (0.027) (0.034) (0.053) (0.034)

Black 0.135+ 0.081 0.105+ 0.115 0.133* 0.147** 0.063 0.154+ 0.124* 0.080 0.080 0.183*

(0.073) (0.080) (0.055) (0.072) (0.062) (0.055) (0.090) (0.088) (0.059) (0.093) (0.099) (0.090)

Flispanic 0.054* 0.039 0.073** 0.067* 0.026 0.062** 0.041 0.077+ 0.079** 0.038 0.005 0.091**

(0.024) (0.029) (0.023) (0.028) (0.033) (0.024) (0.031) (0.040) (0.024) (0.034) (0.053) (0.031)

White 0.111 0.133+ 0.056 −0.05 0.182* 0.075* 0.012 0.258** 0.053 −0.045 0.318** 0.061

(0.071) (0.079) (0.037) (0.074) (0.078) (0.036) (0.080) (0.091) (0.039) (0.100) (0.099) (0.045)

Asian −0.055 −0.022 0.030 −0.124 −0.024 0.064 0.063 0.008 0.041 0.147 0.150 0.068

(0.098) (0.084) (0.059) (0.117) (0.072) (0.053) (0.092) (0.091) (0.059) (0.117) (0.097) (0.062)

SED 0.060* 0.021 0.056* 0.076* 0.029 0.056* 0.055+ 0.048 0.062* 0.052 −0.011 0.075*

(0.028) (0.028) (0.024) (0.030) (0.031) (0.024) (0.032) (0.038) (0.026) (0.037) (0.050) (0.032)

Non-
SED

−0.029 −0.004 0.062* −0.031 0.051 0.067* −0.021 0.065 0.019 −0.024 0.153+ 0.056

(0.054) (0.053) (0.031) (0.058) (0.055) (0.028) (0.063) (0.053) (0.030) (0.065) (0.078) (0.037)

ELL 0.064 0.029 0.058 0.070+ 0.040 0.098* 0.028 0.030 0.168*** 0.005 0.008 0.127*

(0.044) (0.037) (0.040) (0.036) (0.044) (0.047) (0.047) (0.045) (0.048) (0.061) (0.052) (0.055)

Non-
ELL

0.008 −0.006 0.034+ 0.010 0.052+ 0.029 −0.007 0.055 0.011 0.031 0.010 0.025

(0.026) (0.031) (0.021) (0.030) (0.031) (0.019) (0.034) (0.037) (0.020) (0.036) (0.047) (0.027)

Notes: We first partition the data by student subgroup and school policy cutoff. The coefficients are from a two-stage model 
with treatment-by-site instruments, school-year fixed effects, and a random coefficient for the treatment (8th-grade 
algebra). The model also uses a linear spline specification with an indicator for whether students’ 7th-grade CST scores are 
above the school-specific policy threshold, a linear control for students’ 7th-grade CST scores, and an interaction between 
the indicator variable and the linear control for students’ 7th-grade CST scores. Standard errors are clustered at the school-
year level. SED = Socioeconomically disadvantaged, and ELL = English Language Learner.
+

p<0.10
*
p<0.05

**
p<0.01

***
p<0.001.

REFERENCES

Allensworth EM, Gwynne JA, Moore P, & de la Torre M (2014). Looking forward to high school and 
college middle grade indicators of readiness in Chicago public schools. Chicago, IL: University of 
Chicago Consortium on School Research. Available at: https://consortium.uchicago.edu/sites/
default/files/2018-10/Middle%20Grades%20Report.pdf.

McEachin et al. Page 45

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://consortium.uchicago.edu/sites/default/files/2018-10/Middle%20Grades%20Report.pdf
https://consortium.uchicago.edu/sites/default/files/2018-10/Middle%20Grades%20Report.pdf


Allensworth E, Nomi T, Montgomery N, & Lee VE (2009). College preparatory curriculum for all: 
Academic consequences of requiring algebra and English I for ninth graders in Chicago. 
Educational Evaluation and Policy Analysis, 31, 367–391.

Andrews R, Imberman S, & Lovenheim M (2017). Risky business? The effect of majoring in business 
on earnings and educational attainment. NBER Working Paper no. 23575. Cambridge, MA: 
National Bureau of Economic Research.

Angrist JD, Pathak PA, & Walters CR (2013). Explaining charter school effectiveness. American 
Economic Journal: Applied Economics, 5, 1–27. [PubMed: 24707346] 

Attewell P, & Domina T (2008). Raising the bar: Curricular intensity and academic performance. 
Educational Evaluation and Policy Analysis, 30, 51–71.

Ayalon H (2002). Mathematics and science course taking among Arab students in Israel: A case of 
unexpected gender equity. Educational Evaluation and Policy Analysis, 24, 63–80.

Ayalon H, & Livneh I (2013). Educational standardization and gender differences in mathematics 
achievement: A comparative study. Social Science Research, 42, 432–445. [PubMed: 23347486] 

Bertrand M, Hanna R, & Mullainathan S (2010). Affirmative action in education: Evidence from 
engineering college admissions in India. Journal of Public Economics, 94, 16–29.

Bloom HS, Hill CJ, & Riccio JA (2003). Linking program implementation and effectiveness: Lessons 
from a pooled sample of welfare-to-work experiments. Journal of Policy Analysis and Management, 
22, 551–575.

Bloom HS, & Weiland C (2015). Quantifying variation in Head Start effects on young children’s 
cognitive and socio-emotional skills using data from the National Head Start Impact study. New 
York, NY: MDRC.

Calonico S, Cattaneo MD, Farrell MH, & Titiunik R (2017). Rdrobust: Software for regression-
discontinuity designs. Stata Journal, 17, 372–404.

Calonico S, Cattaneo MD, & Titiunik R (2014). Robust nonparametric confidence intervals for 
regression-discontinuity designs. Econometrica, 82, 2295–2326.

Card D, Mas A, & Rothstein J (2008). Tipping and the dynamics of segregation. The Quarterly Journal 
of Economics, 123, 177–218.

Cattaneo MD, Jansson M, & Ma X (2018). Manipulation testing based on density discontinuity. Stata 
Journal, 18, 234–261.

Cattaneo MD, Keele L, Titiunik R, & Vazquez-Bare G (2016). Interpreting regression discontinuity 
designs with multiple cutoffs. Journal of Politics, 78, 1229–1248.

Chay KY, McEwan PJ, & Urquiola M (2005). The central role of noise in evaluating interventions that 
use test scores to rank schools. American Economic Review, 95, 1237–1258.

Clark Tuttle C, Booker K, Gleason P, Chojnacki G, Knechtel V, Coen T, Nichols-Barrer I, & Goble L 
(2015). Understanding the effect of KIPP as it scales: Volume I, Impacts on achievement and other 
outcomes. Washington, DC: Mathematica.

Clotfelter CT, Ladd HF, & Vigdor JL (2015). The aftermath of accelerating algebra: Evidence from 
district policy initiatives. Journal of Human Resources, 50, 159–188.

Cortes KE, Goodman JS, & Nomi T (2015). Intensive math instruction and education attainment: 
Long-run impacts of double-dose algebra. Journal of Human Resources, 50, 108–158.

Domina T (2014). The link between middle school math course placement and achievement. Child 
Development, 85, 1945–1968.

Domina T, Hanselman P, Hwang N, & McEachin A (2016). Detracking and tracking up: Mathematics 
course placements in California middle schools, 2003–2013. American Educational Research 
Journal, 53, 1229–1266.

Domina T, McEachin A, Hanselman P, Agarwal P, Hwang N, & Lewis R (2019). Beyond tracking and 
detracking: The dimensions of organizational differentiation in schools. Sociology of Education, 
92, 293–322.

Domina T, McEachin A, Penner AM, & Penner EK (2015). Aiming high and falling short: California’s 
8th grade algebra-for-all effort. Educational Evaluation and Policy Analysis, 37, 275–295.

McEachin et al. Page 46

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dougherty S, Goodman J, Hill D, Litke E, & Page LC (2015). Middle school math acceleration and 
equitable access to 8th-grade algebra: Evidence from Wake County Public School System. 
Educational Evaluation and Policy Analysis, 37(1S), 80S–101S.

Dougherty S, Goodman J, Hill D, Litke E, & Page LC (2017). Objective course placement and college 
readiness: Evidence from targeted middle school math acceleration. Economics of Education 
Review, 58, 141–161.

Frank KA, Muller C, Schiller KS, Riegle-Crumb C, Mueller AS, Crosnoe R, & Pearson J (2008). The 
social dynamics of mathematics coursetaking in high school. American Journal of Sociology, 113, 
1645–1696.

Gamoran A, & Hannigan EC (2000). Algebra for everyone? Benefits of college-preparatory 
mathematics for students with diverse abilities in early secondary school. Educational Evaluation 
and Policy Analysis, 22, 241–254.

Gamoran A, Porter AC, Smithson J, & White PA (1997). Upgrading high school math instruction: 
Improving learning opportunities for low-achieving, low-income youth. Educational Evaluation 
and Policy Analysis, 19, 325–338.

Gelman A, & Imbens G (2014). Why high-order polynomials should not be used in regression 
discontinuity designs. NBER Working Paper no. 20405. Cambridge, MA: National Bureau of 
Economic Research.

Goodman J (2019). The labor of division: Returns to compulsory high school math coursework. 
Journal of Labor Economics, 37, 1141–1182.

Goodman J, Hurwitz M, & Smith J (2015). College Access, Initial College Choice, and Degree 
Completion. NBER Working Paper no. 20996. Cambridge, MA: National Bureau of Economic 
Research.

Hahn J, Todd P, & Van der Klaauw W (2001). Identification and estimation of treatment effects with a 
regression-discontinuity design. Econometrica, 69, 201–209.

Hansen BE (2000). Sample splitting and threshold estimation. Econometrica, 68, 575–603.

Hemelt SW, Schwartz N, & Dynarski SM (2019). Dual-credit courses and the road to college: 
Experimental evidence from Tennessee. Journal of Policy Analysis and Management. Available at 
10.1002/pam.22180.

Heppen JB, Walters K, Clements M, Faria A, Tobey C, Sorensen N, & Culp K (2012). Access to 
algebra I: The effects of online mathematics for Grade 8 students (NCEE 2012–4021). 
Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center 
for Educational Evaluation and Regional Assistance.

Imbens G, & Lemieux T (2007). Regression discontinuity designs: A guide to practice. Journal of 
Econometrics, 142, 615–635.

Kurlaender M, Reardon S, & Jackson J (2008). Middle school predictors of high school achievement in 
three California school districts (California Dropout Research Project Report No. 14). Santa 
Barbara, CA: University of California.

Lee DS, & Card D (2008). Regression discontinuity inference with specification error. Journal of 
Econometrics, 142, 655–674.

Lee DS, & Lemieux T (2010). Regression discontinuity designs in economics. Journal of Economic 
Literature, 48, 281–355.

Lewis AE, & Diamond JB (2015). Despite the best intentions: How racial inequality thrives in good 
schools. Oxford, UK: Oxford University Press.

Liang J-H, Heckman PE, & Abedi J (2012). What do the California standards tests results reveal about 
the movement toward eighth-grade algebra for all? Educational Evaluation and Policy Analysis, 
34, 328–343.

Long MC, Conger D, & Iatarola P (2012). Effects of high school course-taking on secondary and 
postsecondary success. American Educational Research Journal, 49, 285–322.

Marsh JA, Bush-Mecenas S, & Hough H (2017). Learning from early adopters in the new 
accountability era: Insights from California’s CORE waiver districts. Educational Administration 
Quarterly, 53, 327–364.

McCrary J (2008). Manipulation of the running variable in the regression discontinuity design: A 
density test. Journal of Econometrics, 142, 698–714.

McEachin et al. Page 47

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nomi T, & Allensworth E (2013). Sorting and supporting: Why double-dose algebra led to better test 
scores but more course failures. American Educational Research Journal, 50, 756–788.

Pan J (2015). Gender segregation in occupations: The role of tipping and social interactions. Journal of 
Labor Economics, 33, 365–408.

Papay JP, Murnane RJ, & Willett JB (2016). The impact of test score labels on human-capital 
investment decisions. Journal of Human Resources, 51, 357–388.

Penner AM, Domina T, Penner EK, & Conley AM (2015). Curricular policy as a collective effects 
problem: A distributional approach. Social Science Research, 52, 627–641. [PubMed: 26004485] 

Raudenbush SW, Reardon SF, & Nomi T (2012). Statistical analysis for multisite trials using 
instrumental variables with random coefficients. Journal of Research on Educational Effectiveness, 
5, 303–332.

Reardon SF, Unlu F, Zhu P, & Bloom HS (2014). Bias and bias correction in multisite instrumental 
variables analysis of heterogeneous mediator effects. Journal of Educational and Behavioral 
Statistics, 39, 53–86.

Rickles J (2011). Using interview to understand the assignment mechanism in a nonexperimental 
study: The case of eighth grade algebra. Evaluation Review, 35, 490–522. [PubMed: 22158701] 

Riegle-Crumb C, Farkas G, & Muller C (2006). The role of gender and friendship in advanced course 
taking. Sociology of Education, 79, 206–228. [PubMed: 20333274] 

Rose H, & Betts JR (2004). The effect of high school courses on earnings. The Review of Economics 
and Statistics, 86, 497–513.

Schmidt WH, McKnight CC, Houang RT, Wang HC, Wiley DE, Cogan LS, & Wolfe RG (2001). Why 
schools matter: A cross-national comparison of curriculum and learning. San Francisco, CA: 
Jossey-Bass.

Simzar R, Domina T, & Tran C (2016). Eighth-grade algebra course placement and student motivation 
for mathematics. AERA Open, 2(1), 2332858415625227.

Stein MS, Kaufman JH, Sherman M, & Hillen AF (2011). Algebra: A challenge at the crossroads of 
policy and practice. Review of Educational Researcher, 81, 453–492.

Steinberg M (2014). Does greater autonomy improve school performance? Evidence from a regression 
discontinuity analysis in Chicago. Education Finance and Policy, 9, 1–35.

Taylor DJ (2011). Outcomes of placing low performing eighth grade students in algebra content 
courses (Doctoral dissertation). Available from ProQuest Dissertations and Theses database (UMI 
No. 3474480).

Trochim WMK (1984). Research Design for Program Evaluation. Beverly Hills, CA: Sage.

Weiss MJ, Bloom HS, Verbitsky-Savitz N, Gupta H, Vigil AE, & Cullinan DN (2017). How much do 
the effects of education and training programs vary across sites? Evidence from past multisite 
randomized trials. Journal of Research on Educational Effectiveness, 10, 843–876.

McEachin et al. Page 48

J Policy Anal Manage. Author manuscript; available in PMC 2021 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Scatter Plot of the Pooled First Stages for RD Schools.
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Figure 2. 
Location of Discontinuity Points for RD Schools.
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Figure 3. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 10th-Grade Math 

CAHSEE.
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Figure 4. 
Scatter Plot of the Intent-to-Treat Effect of 8th-Grade Algebra on 11th-Grade Advanced 

Math Course-Taking.
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Figure 5. 
Distribution of the Site-Specific Fuzzy RD Estimates of 8th-Grade Algebra on 10th-Grade 

Math CAHSEE.
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Figure 6. 
Distribution of the Site-Specific Fuzzy RD Estimates of 8th-Grade Algebra on 11th-Grade 

Advanced Math Course-Taking.
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Figure 7. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 10th-Grade Math CAHSEE 

and the Location of the 7th-Grade Math CST Algebra Placement Cutoff.
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Figure 8. 
Scatter Plot of Site-Specific Effects of 8th-Grade Algebra on 11th-Grade Advanced Math 

Course-Taking and the Location of the 7th-Grade Math CST Algebra Placement Cutoff.
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