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Introduction
There are many methods being developed to handle and inter-
pret the large amounts of sequence data available for viruses.1-3 
A well-done viral phylogeny is useful for suggesting the evolu-
tionary relationships between viruses, their rates of change,4 
and may also alert one to tipping points where additional 
changes may result in significant phenotypic variation5 or viral 
outbreak.6,7 Determining the interrelatedness of virus sequences 
is perhaps most important for the design of broad spectrum 
vaccines and treatments for viral diseases.8 Rooted trees based 
on such alignments imply a hierarchical, linear evolution and 
become difficult to interpret as the number of sequences 
increases. The limitations of these methods become obvious 
when determining relationships among the thousands of viral 
sequences now available. In practice, authors often resort to 
drawing 2D plots by hand to illustrate the interrelatedness of 
larger virus groups, although 2D-graphic, computational maps 
with BioLayout9 or Cytoscape10,11 are also used.

Here, we present a rapid graphical method for analyzing 
large data sets of related protein sequences that does not 
require prealignment or assumption of a common ancestor. 

DGraph can present conventional pairwise alignment scores, 
such as those from Clustal Omega,12 or simple overall iden-
tity. However, the program’s ability to generate “property dis-
tance” PD-graphs, based on physical-chemical properties 
(PCPs) of the amino acids13 allows it to suggest more mean-
ingful relationships among distantly related sequences. We 
have previously validated the PD method as a way to classify 
allergenic proteins and detect similar IgE epitopes.14,15 We 
have shown that changes in the PCP values of key positions 
within flaviviral protein sequences correlate with significant 
phenotypic changes.16,17 In addition to describing the details 
of the algorithms of the program, we show here its applica-
tion to 3 diverse families of positive strand RNA viruses, fla-
viviruses (FVs),3 enteroviruses (EVs),18 and the 
β-coronaviruses (β-CoVs), which include severe acute res-
piratory syndrome (SARS), Middle East respiratory 
Syndrome (MERS), and the pandemic severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2).19 The results 
illustrate how PD-graphs of the viral sequences correlate 
with phenotype and suggest evolutionary relationships of 
distantly related viruses.
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Material and Methods
The property distance (PD)

The peptide similarity search tool14,15,20 was initially developed 
to find protein sequences in the Structural Database of 
Allergenic Proteins (SDAP)21 containing user-specified pep-
tide sequences. The search tool uses a novel technique to find 
similar sequences in the proteins by comparing the PCPs of the 
amino acids in the query and the target sequence. The differ-
ences in the PCP values in the 2 sequences are then measured 
by a PD. Briefly, 5 quantitative descriptors of PCPs are assigned 
to each of the 20 amino acids. The 5 descriptors E1 to E5 were 
derived by multidimensional scaling of 237 PCPs for the 20 
naturally occurring amino acids, thus the main differences of 
all 237 properties for the 20 amino acids are reflected by the 5 
descriptors E1 to E5.13 These in turn represent groupings of 
PCPs such as hydrophobicity, size, or secondary structure pro-
pensities, charge, aromaticity, and size. The PD of 2 sequences 
A and B is then calculated as the average distance between the 
descriptor vectors E for corresponding amino acids, that is

PD A,B =
N

d E A ,E Bi i
i=

N
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where d computes the standard Euclidean or L2 distance and 
N is the length of sequence B, assumed to be the same as A in 
this equation (section “DGraph converts various sequence 
scoring functions or PD values into 2D maps” discusses the 
nonequal-length case.)

Identical sequences have a PD value of 0. Small PD values 
up to 4 typically indicate few substitutions with smaller values 
for conservative substitutions between the 2 sequences. Thus, 
the lower the PD value, the more closely related the sequences. 
In a database search of over 1500 allergenic protein sequences 
in SDAP, PD values of less than 8 are statistically significant 
for windows up to 12 amino acids and have been shown to cor-
relate with immune recognition.14 Additional statistical meas-
ures (z-scores) can be calculated to indicate the significance of 
a PD value comparing it to the distribution of PD values over 
all random matches using larger data sets.

The DGraph program

DGraph, as discussed below, can generate a 2D map based on 
any input value list. In default mode, if given a list of FASTA 
formatted sequences in a text file as input, it calculates the pair-
wise PD values for the sequences and graphically presents their 
similarities. The resulting “PD-graph” represents the sequences 
as nodes in a 2D map where the distances of the edges between 
nodes, “representative distances” are fitted to the PD values. 
Alternatively, if similarity scores are given as input, “sequence 
distances” are calculated from the similarity scores (see below 
in section “Algorithm to find the optimal configuration of the 
nodes”) and the representative distances between nodes are fit-
ted to these sequence distances. Whether fitting to internally 

calculated PD values, to sequence distances translated from 
similarity scores, or some other user-supplied distances, 
DGraph calculates a metric of the match of the representative 
distances between nodes in the generated graphic to the user-
supplied distances and minimizes this metric.

Calculating PD values with a sliding window

For comparing sequences of amino acids that are not matched 
one-to-one in length, we instead define a metric comparing 
shorter fixed-length subsequences, or “windows.” We define 
the windowed PD between 2 sequences to be the PD between 
the least distant pair of subsequences having some length wSize 
(for the window size). The windowed PD measures the 
sequence similarity of the most conserved portion of the 2 
sequences of length wSize. Note that windowed PD is 0 
between 2 sequences having an identical string of amino acids 
at a conserved region of length wSize. The occurrence of this is 
exponentially less likely as wSize increases; for the results in 
this article, we use a wSize of 22 amino acids. Windowed PD 
can be computed naively by considering each pair of wSize 
subsequences in turn and computing their PD. A more effi-
cient approach exploiting the linearity of PD is to slide a win-
dow of length wSize along and compute PD incrementally, for 
each offset of the shorter sequence along the longer one, and 
keeping track of the smallest PD value found.

Algorithm to f ind the optimal configuration of the 
nodes

Similarity scores from alignment programs, such as Clustal 
OMEGA,12 MUSCLE,22 or T-Coffee23 are translated into dis-
tances as

d =
SS, h

DGraph
max

1
2{ }( )

where SS is a similarity score, and parameter h determines the 
minimum similarity cutoff. Similarity scores below h^0.5 are 
mapped to the maximum distance of 1/h in this equation, while 
larger similarity scores have an inverse square law with dis-
tance. The squaring reduces distances between highly similar 
sequences, which encourages visual clustering of similar 
sequences in the final figure DGraph produces.

Similarity scores SS are translated into sequence distances 
by the equation given above, and then these sequence distances 
are used to compute a measure, U, to fit optimally the repre-
sentative distances between nodes to these distances

U =
d x ,x - d
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where the sum is over the set Omega of pairs of distinct 
sequences i, j, and the terms in the numerator are the 
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representative distances and the sequence distances between 
those 2 sequences, respectively. U is a sum of the squared rela-
tive error of each pair of the sequence’s representation place-
ment versus the sequence distance, where the relative error (ui,j) 
is computed with an adjusted denominator of di,j + 1 to account 
for small distances.

As described, optimizing U results in a figure determined 
primarily by the most distant pairs of sequences. To better rep-
resent relationships between closely related sequences, we opti-
mize a distance-adjusted U*, as follows: Define u*i,j, equal to ui,j, 
but divided by d(xi,xj), represent a distance only when the rep-
resentation distance is at least 0.001% of the figure diameter, 
and U* = sum(u*i,j

2). In addition, we remove from Omega any 
pair (i,j) with a PD or user-defined score-based distance larger 
than a configurable maximum distance comparison cutoff (the 
default value is 14). Sequences with no distance below this cut-
off to the rest of the figure then become “islands” that are 
removed before optimization begins. These steps are both 
intended to make the resulting DGraph figure more faithfully 
represent short distances.

Initially, DGraph creates randomly placed nodes for each 
sequence. DGraph then minimizes U* using a gradient descent 
approach. That is, at each step, each node’s position xi is shifted 
by an amount proportional to −u*i,j along each direction (xj − 
xi). To damp oscillations and promote convergence, we add a 
momentum vector pi to each node, and apply the contribution 
of each u*i,j to the momentum vectors rather than the position 
directly. Thus, at each step, the position of each node xi and its 
associated momentum vector pi are updated as follows
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where small positive coefficients time-step (delta t), mass (m), 
and friction (f) are parameters of the descent.

Use of the program and utility tools

Parameters of the optimization, such as time-step, mass, fric-
tion, and maximum distance comparison cutoff, can be user 
specified with default values of 0.001, 0.01, 0.008, and 14. 
DGraph can be run interactively to fine-tune these parameters 
and to see a live view of the optimization. DGraph can be run 
with a helper script that runs the optimization multiple times, 
potentially resulting in different figures. The script compares 
the runs by optimization score, and normalizes the orientation 
of the final locations of the nodes (by rotation and reflection) 
to produce a consensus graphic (this uses the Kabsch algo-
rithm, for details see24). The user can customize how sequences 
are labeled on the generated graphic, such as including the 
whole of short sequences (when graphing peptides, see25) or 
FASTA names as labels. The user can also apply custom color-
ing to the graphic including a color gradient for the line 

segments between nodes based on PD value or user-defined 
distance, and files of per-node colors useful for annotating 
sequence properties such as phenotype.

Results
DGraph converts various sequence scoring functions 
or PD values into 2D maps

In previous studies, we established and validated the correla-
tion of PD values for peptide segments with IgE binding affin-
ities.14 We therefore expect that PD-graphs would also be 
useful to predict antibody cross-reactivities of different viral 
species. In Supplementary Figure S1, we illustrate this feature 
for the PCP-consensus sequence 7P8 of the domain 3 of the 
E-protein of the 4 DENV viruses. The consensus domain 7P8 
was designed as a potential vaccine candidate against the 4 
major types of DENV and was recognized by antibodies gen-
erated against all 4. In the PD-graph 7P8 is located near the 
middle of all 4 viruses (Supplementary Figure S1).

An alignment of 49 different FV was then used to illustrate 
the flexibility of the program. Figure 1 shows the 2D-maps for 
3 different sets of similarity data for viral sequences based on 
different metrics and lengths of proteins included in the calcu-
lation. The first column shows DGraph output calculated from 
previously calculated Clustal W alignment scores. The other 2 
columns show 2 different ways to use PD values as a metric for 
generating the maps. The middle column shows the result of 
computing the PD value between each pair of sequences after 
a multiple alignment, which causes each sequence to be the 
same length by inserting alignment gaps. The last column 
shows results using instead a “sliding window” of 22 amino 
acids, by sliding every window in the shorter sequence along 
the longer sequence to find a best match, that is, the one with 
the lowest pairwise PD value and computing the average PD 
values of the matches.

The bottom frames of the figure show the results using a 60 
amino acid region of the EV 3B-3C protein interface (see 
Supplemental Table S2), covering the viral protein linked to 
the genome (VPg)26 and an area in 3C that contains a vestigial 
additional VPg-like sequence. For all 3 sets of viral sequences, 
the maps generated by the PD values show more distinct 
groupings than the maps generated by the ClustalW scores. 
They illustrate that the program can be used to rationally clus-
ter even very long sequences (the whole viral genomes of the 
FV) as well as short sequences (the VPg area of the EVs).

The PD-graphs correlate with vector and host 
competence

The map from the top row (middle panel) in Figure 1 is fur-
ther annotated and highlighted in more detail in Figure 2. 
The PD metrics shows a clear division of the tick from the 
mosquito-borne or no-known vector and Rio Bravo group 
viruses. The map also clusters viruses that infect bats, camels 
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(Kadam), and seabirds separately from those infecting 
humans, such as the Greek goat (node 29) and Turkish sheep 
encephalitis viruses (node 30) group. This observation also 
holds when the analysis is based on a smaller section of the 
virus, the 230 amino acid NS2a protein (middle row of Figure 
1). The PD-graph is consistent with the patterns of insertions 
and deletions we previously noted within the E-protein that 
mark the FVs16 according to species and disease specificity, as 
well as other phylogenic methods. With regard to the latter, 
hemorrhagic Yellow Fever (YF) virus (node 26) lies near the 
4 DENV serotypes (nodes 19–22), which can cause 

hemorrhagic disease with fatal consequences in children. 
Interestingly, Zika virus (node 18) falls exactly between the 
mosquito-borne encephalitic and hemorrhagic groups, con-
sistent with its cross-reactivity with DENV.27 An identity 
matrix for the E-protein domain 3 region of Zika compared 
to WNV, DENV strains, and our 7P8 PCP-consensus pro-
tein that binds antibodies to all 4 DENV serotypes28 illus-
trates how Zika indeed lies between the encephalitic and 
hemorrhagic FV, with >50% identity to all (Supplementary 
Figure 1). While Zika infections generally cause mild disease, 
they can also result in Guillain-Barré syndrome and 

Figure 1.  Top row: screen shots of the output of DGraph for the analysis of the 49 polyproteins of flaviviruses (Supplementary Table S1) with the ClustalW 

score (left panel), and the PD values of 22 residue windows with aligned (middle panel) and unaligned sequences (right panel). Middle row: screen shots 

from DGraph for the analysis of 86 sequences of the NS2a protein (all ~234 aa long) of various FV, based on ClustalW scores and their pairwise PD 

values. The sequences were automatically downloaded from a Blast search, identical sequences removed and the resulting FASTA files subjected to 

Clustal W analysis or our PD-based method with minimal involvement (except that the sequence headers were manually shortened and the sequences 

inspected to remove fragments). The resulting maps, which are similar to how protein family (PFAM) B families are generated, illustrate how PD-maps 

show a finer distinction among the viruses than simple Clustal scores using an unsupervised alignment. Bottom row: screen shots from DGraph for the 

clustering of enteroviruses. A 60 amino acid sequence around the VPg protein (22 amino acids) of human and a few animal enteroviruses was used as 

input. The 2D plots clearly separate the simian viruses from the human ones.
FV indicates flavivirus; PD, property distance.
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microcephaly if contacted by a pregnant mother. Zika’s near-
est neighbor in the plot is the encephalitic virus, Rocio.29

The bottom part of Figure 1 and the annotated PD-graph 
(Figure 3) show that even short segments of EV sequences were 
sufficient to separate simian from human isolates. The EV are a 
nonenveloped group of +strand RNA viruses that includes 
poliovirus, coxsackie, and many other human pathogens, do not 
depend on arthropod vectors for transmission. The separation 
by the 2 parameters (Figure 1, bottom row), Clustal or PD, gen-
erated similar clusters of these viruses, whereby the PD-graph 
more clearly separated the 4 simian viruses that were distributed 
throughout the (unaligned) FASTA sequence list. DGraph of 
the Clustal values separated all the sequences into 2 large clus-
ters, while there was more differentiation using PD values. The 
overall separation shown is consistent with genetic classifications 
done with other areas of the sequences30 and references included 
in Supplementary Material). Although classifying EVs accord-
ing to disease type has proved very difficult31 and will not be 
attempted here, the clustering cleanly separates the C-type EV, 
which include polioviruses and many coxsackie A strains, from 
the B-type, which includes the Coxsackie virus-B, and other 
EV (Figure 3 and Supplementary Figure S2). This distinction is 

important, as the B-type strains are associated with many severe 
illnesses and cardiomyopathy. The identification of CVA 22 as 
an outlier that has close association with C-type EV, but also 
linkage to the B-type, is also consistent with reported recombi-
nation events.

PD-graph accurately separate β-CoV according to 
disease type and receptor used

Severe acute respiratory syndrome coronavirus 2 is known to 
be closely related, in its sequence, structure,32 receptor bind-
ing33 and epitopes recognized by neutralizing antibodies iso-
lated from survivors34-36 to the SARS-CoV-1 virus that caused 
many deaths in a brief epidemic that ended in Asia in 2003.37 
It is more distantly related to the lethal MERS.38

As an additional test of the program, 314 sequences of  
the spike protein for diverse β-CoV were downloaded from  
the ViPR database, and a single unaligned FASTA file used  
as input to the program. As Figure 4 shows, the resulting 
PD-graph, using the 22 amino acid window method, separates 
the β-CoV into distinct clusters according to their cellular 
receptor. The SARS virus from the 2002-2003 epidemic forms 

Figure 2.  Annotated PD-graph of flavivirus phylogeny from the polyproteins of 49 viral species. Each number in the plot corresponds to the viruses listed 

in Table S1 with FlaviTrack ID, Genbank, species name, and length of amino acids. Starting from the unaligned FASTA sequences of the polyproteins, the 

program calculated pairwise PD values of all corresponding 22-residue segments for the polyproteins. The average PD values of the windows were used 

as a metric for the similarity of each pair. Lines in the figure indicate the degree of relatedness of the sequences, with a color code from blue to green as 

indicated with the PD values on the left of the figure. Blue thick lines indicate highly related flaviviruses. Divider lines and boxes were drawn by hand to 

emphasize the phenotypic groupings of the viral species.
PD indicates property distance.
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a tight cluster with the SARS-CoV-2 from the current pan-
demic. This cluster has very high PD values to any of the other 
β-CoV clusters, including the MERS viruses of the 2012-2013 
outbreak, which use a different cellular receptor, the DPP4 
protein and groups with many camel isolates. These in turn are 
cleanly separated from the cluster of strains related to the less 
lethal CoV OC43 (which uses MHC-class 1 molecules as a 
fusion receptor39) and bat strains related to HKU4 and HKU5. 
The central nodes of the graph (red arrows) are viruses from 
bats that use the same DPP4 receptor as MERS.40

The viruses closest to SARS-CoV-2 are human SARS 
sequenced in 2003, M15, an isolate from a fatal human SARS 
infection that was passaged in mice and sequenced in 2003 at 
the NIH, and a bat virus isolated in 2007 in China. The low PD 
of these viruses to one another, as well as their very high PD to 
any of the other clusters, suggests that the more recent virus is 
an evolved form of that circulating in 2002-2003. As the anno-
tations show, both use the human ACE2 receptor for cell bind-
ing, in contrast to the receptors identified for other β-CoV.

Discussion
Most phylogenetic analysis of viral sequences starts with mul-
tiple sequence alignments. Aligning very diverse sequences, 
especially those containing multiple repeats or insertions, can 
be quite difficult.41 DGraph, as a flexible sequence analysis tool 
for protein sequences, provides a valuable first step to obtain an 
overview of related viral species without the need for an align-
ment. DGraph is unique in that it implements the PCP 
descriptors and PD calculations which were previously vali-
dated in our work in comparing allergenic proteins and their 

epitopes.42,43 No hypothesis about an ancestral sequence is 
required to follow interstrain differentiation. As Figure 1 illus-
trates, simply starting with a list of unaligned sequences in 
FASTA format, one can rapidly determine the interrelatedness 
of sequence data from 2 different virus families, the FV and 
EV, whereby the PD approach can give more specific clustering 
than simple clustal scores. As Figures 2 to 4 show, automatic 
calculation of the PD values between even large groups of viral 
sequences yields PD-graphs consistent with what is known of 
the their vector, host range, receptor type (particularly for the 
β-CoV, Figure 4) and disease phenotypes.

The approach in DGraph for the placement of the nodes 
in a 2D map follows previously suggested force-directed 
methods.44,45 The computational graph drawing also resem-
bles other commonly used approaches for visualization of 
network connectivity, such as BioLayout,9 or Cytoscape.10,11 
Other approaches such as DIALIGN2 (43) explore the 
importance of local alignments in avoiding the problems of 
global alignments for a diverse set of protein sequences.

Other methods for high-throughput approaches have been 
designed for large-scale analysis of protein sequences from 
genomic data, such as the derivation of clusters of orthologous 
groups (COGs) of protein sequences46 and the Tribe-MCL 
method.47 Both methods base their clustering on exhaustive 
pairwise sequence comparisons and define clusters as consist-
ent sets of connected nodes. The automated Tribe-MCL 
method finds sequence clusters by a Monte Carlo approach 
from pairwise similarity scores and simulates random walks 
between the nodes with transition probabilities derived from 
the scores. Our DGraph approach solves the 2D-embedding 

Figure 3.  Annotated 2D-map for selected enterorviruses based only on a short region encompassing their VPg sequences and part of the 3C protein (See 

Supplementary Table S2 for sequence details and what is known about disease phenotypes). The clustering clearly separates the simian and baboon from 

the human viruses as well as the PV and CVA viruses (“EV type C”).
EV indicates enterovirus.
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Figure 4.  PD-graph groups SARS-CoV-1 and -2 spike proteins and distinguishes them from other circulating β-CoV strains. The 2020 isolates of 

SARS-CoV-2, which like the SARS viruses use the human ACE2 receptor, are closest to human SARS 2003, MA-15, from a human case in 2003 

passaged in mice and a 2007 strain from a bat than they are to other circulating β-CoV strains. Annotations indicate grouping according to receptor type, 

where known. Red arrows show nodes, bat viruses BY140535 (HKU5 related), NL13845, and NL140422 strains that use the MERS receptor, DPP4, all 

sequenced in China in 2013/2014. MERS and MERS-related strains are highly similar, thus the labels of all these sequences overlap in the PD-graph 

which is annotated as MERS-related + camel strains. Blue lines show PD < 7 (low PD = more similar), other lines are PD < 14, whereby the thickness 

indicates the degree of relatedness.
CoV indicates coronavirus; MERS, Middle East respiratory syndrome; PD, property distance.

problem of distances by a force-directed approach. Combining 
different clustering options and visualization in one practical 
software package is a unique feature of DGraph which makes 
DGraph a useful exploratory tool for generating functional and 
evolutionary hypotheses.

The program’s default mode can generate PD-graphs even 
of large numbers of unaligned sequences (such as the >300 
used for Figure 4). While other methods can graphically pre-
sent protein sequences in an alignment-free manner using 
numerical descriptors for the amino acids, and display them 
as connecting vectors in a curve in a 2D space,48,49 they are 
most useful for comparing a few sequences. The DGraph 
program works from a list of unaligned sequences and can 
also use additional data, while allowing the user to adjust the 
program parameters to obtain results even for very distantly 
related sequences.

The major features of the 2D map by DGraph for FVs 
(Figure 2) are consistent with previously published phyloge-
netic relations between FVs. This includes our previous work,50 
where the major FV reference sequences were grouped using 
principal components analysis based on the sum of pairwise 

BLOSUM scores for the eigenvector decomposition (Figure 2 
of Misra & Schein).50 It is also consistent with a phylogenetic 
tree analysis of FVs using a Markov chain Monte Carlo analy-
sis implemented in MrBayes51 (Figure 1). Both studies agree 
on the 4 major group of FVs, the insect-specific, the tick-borne, 
the mosquito-borne, and no known-vector FVs and that there 
is a clear distinction between the encephalitic and hemorrhagic 
FV. These distinct groups are consistent with the results of 
DGraph (Figure 2). However, the 2D map of DGraph also can 
suggest potential evolutionary paths as described below or 
identify a central role for individual viruses as for example for 
YFV, which has connectivities to both the tick-borne and mos-
quito-borne viruses. Those relations are difficult to discern in a 
hierarchical representation of standard phylogenetical trees.

We see similar differentiation in both the EV (Figure 3). 
Here, the strains were separated cleanly into those of simian 
origin from the human strains. These in turn were separated 
into EV-Type-C and Type-B strains, which also carry some 
phenotypic information. For example, 2 of the strains that are 
identified as causing acute flaccid paralysis (Supplementary 
Table S2) are outliers within their type groups. However, the 
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clusters also include strains that had no obvious effect in the 
people from whom they were isolated.

Property distance graphs can suggest evolutionary paths 
between distantly related viruses. PD-graphs emphasize the 
nonlinearity of viral evolution (ie, the seemingly random alter-
ation pathways that lead to the many different strains of a given 
virus that occur over time). These pathways may be missed 
when using phylogenetic trees to model the evolution of viral 
groups, whereby there is no implied directionality in the con-
necting lines, which only represent the mathematical relation-
ship between pairs. However, the PD-graph analysis of the FV 
(Figure 2) has features that correlate with suggested paths for 
the divergence of the mammalian pathogens. The clustering 
emphasizes the central position of YFV, relative to both mos-
quito- and tick-born viruses and the “mosquito only” viruses. 
This implies that the ability to circulate within their arthropod 
vectors may have taken priority during evolution of the mam-
malian pathogens. This may account for the relative stability of 
the YFV genome compared to that of the DENV types, which 
must have evolved under pressure from mammalian immune 
responses.4 Another interesting feature of the PD-graph is the 
grouping according to known host even when isolated from 
geographically very distant places. Entebbe (node 23) and 
Yokose (node 24) viruses, which were isolated from bats in 
Uganda (ENTV)52 and Japan (YOKV) group together, but also 
have strong connectivity to other mosquito-borne viruses. The 
YOKV sequence cross-reacts with antibodies in sera from 
humans infected with DENV or after vaccination with YFV5 
and, depending on the protein area chosen, is similar to many 
different mosquito-borne FV. Some of the early reports were not 
conclusive about the cross-reactivity of ENTV with other 
FV.53,54 Property distance-graphs could provide testable hypoth-
eses on FV cross-recognition, by comparing graphs made using 
inter-strain enzyme-linked immunosorbant assay (ELISA) val-
ues and PD values.

YFV. in turn has connectivity to both the tick- and mos-
quito-borne viruses, which subdivide into well-separated clus-
ters according to their disease phenotype. The close relationship 
of the tick-born viruses to one another suggests that their 
ancestry is relatively recent or that other factors in the tick life 
cycle may constrain their evolution rate.55,56 The distinct prop-
erties of the tick- versus the mosquito-borne viruses57,58 illus-
trated by their neatly defined clusters, reflects these influences.

For β-COVs the evolutionary path is still debated and the 
zoonotic origin of the SARS-CoV-2 pandemic is still being 
investigated. However, most observations indicate that CoVs 
can move from one species to another, as for example from 
camels to man (for MERS) and from human to mink and vice 
versa for SARS-CoV-259, emphasizing the need for antigen 
based testing for animals that may be asymptomatic carriers60 
Our β-CoV PD-Graph (Figure 4) is consistent with those 
observations, separating the diverse strains mainly according 
to their receptor types and not to host types.

Conclusion
The DGraph program can be used to plot the interrelatedness of 
sequences according to PCP similarity and suggest evolutionary 
relationships, without needing an alignment or assuming a com-
mon ancestor. While the figures shown here illustrate the appli-
cation to viral proteins, any group of sequences or numerical 
relationships of objects, including immunological metrics, can in 
principle be used as input to the program. We thus anticipate 
that it will find numerous uses for the increasing numbers of 
virus sequences, as well as those for many other areas and are 
herewith releasing a downloadable version of the program.
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Availability and Implementation
DGraph is written in Java, compatible with the Java 5 runt-
ime or newer. Source code and executable is available from 
the GitHub website (https://github.com/bjmnbraun/
DGraph/releases). Documentation for installation and use of 
the software is available from the Readme.md file at (https://
github.com/bjmnbraun/DGraph).

Supplemental Material
Supplemental material for this article is available online.
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