Skip to main content
. 2021 Jun 9;16(6):e0253231. doi: 10.1371/journal.pone.0253231

Table 3. Overall model: Prediction of change in purchasing behavior (frequency/quantity).

Change in Purchasing Frequency Change in Purchasing Quantity
Predictors b 95% CIboot p-value b 95% CIboot p-value
    Sex .21 .05 – .39 .019 -.09 -.25 – .10 .332
    Age -.04 -.12 – .03 .262 -.10 -.17 – -.02 .014
    Educational Level -.12 -.19 – -.05 .001 .10 .02 – .16 .008
    Household Size -.01 -.08 – .07 .833 .02 -.04 – .11 .609
    Social Desirability Bias .00 -.07 – .07 .964 -.02 -.09 – .06 .612
    Perceived Threat of COVID-19 -.24 -.33 – -.15 < .001 .22 .13 – .30 < .001
    Intolerance of Uncertainty .05 -.05 – .14 .308 -.01 -.10 – .09 .877
    Trait-Anxiety -.04 -.13 – .05 .401 .02 -.08 – .11 .744
    Media Exposure -.11 -.19 – -.03 .006 .12 .05 – .20 .002
    Risk Perception -.10 -.18 – -.02 .009 .11 .03 – .20 .004
    R2 / R2 adjusted .142 / .129 .136 / .123

Multiple linear regression on the restricted sample (N = 678). In this analysis all predictors adding significant variance beyond the baseline model were entered in one step. Significant regression weights (p < .05) of the multiple regression analysis are printed in bold. All continuous variables were included as z-standardized variables. Coding for sex: female = 0, male = 1.