
Genome analysis

Bedtk: finding interval overlap with implicit interval tree

Heng Li 1,2,*,† and Jiazhen Rong 2,†

1Department of Data Science, Dana-Faber Cancer Institute, Boston, MA 02215, USA and 2Department of Biomedical Informatics,

Harvard Medical School, Boston, MA 02215, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Peter Robinson

Received on July 7, 2020; revised on August 16, 2020; editorial decision on September 7, 2020; accepted on September 9, 2020

Abstract

Summary: We present bedtk, a new toolkit for manipulating genomic intervals in the BED format. It supports sorting,
merging, intersection, subtraction and the calculation of the breadth of coverage. Bedtk uses implicit interval tree, a
data structure for fast interval overlap queries. It is several to tens of times faster than existing tools and tends to use
less memory.

Availability and implementation: The source code is available at https://github.com/lh3/bedtk.

Contact: hli@jimmy.harvard.edu

1 Introduction

Processing genomic intervals is a routine task and has many prac-
tical applications in bioinformatics. Some common uses of genomic
intervals include computing coverage and depth of specific genomic

features and finding intersections of new sequencing results with
known genomic features such as exons or genes. BEDTools

(Quinlan and Hall, 2010) is a popular toolkit to manipulate inter-
vals in the BED format. However, it can be slow given large data-
sets. BEDOPS (Neph et al., 2012) addresses this issue by streaming

sorted BED files. While this strategy improves performance, it is less
convenient to use and is limited to a subset of interval operations.

These observations motivated us to develop bedtk that achieves high
performance without requiring sorting.

2 Materials and methods

Efficiently finding overlapping intervals is a core functionality be-
hind all interval processing tools. Bedtk uses implicit interval tree, a

data structure extending the concept of array layouts of searching
tree (Brodal et al., 2002; Khuong and Morin, 2017), to perform
interval overlap queries against a static list of intervals.

2.1 Implicit binary search trees
A binary search tree (BST) is a binary tree where each node is associ-
ated with a key and this key is no less than all keys in the left subtree

and no greater than all keys in the right subtree. Here, we show that
a BST can be implicitly represented by a sorted array. In this implicit

BST, each node is an element in the array and the tree topology is
inferred from the index of each element.

More specifically, consider a sorted array consisting of 2Kþ1 � 1

elements. This array can implicitly represent a binary tree with Kþ

1 levels, with leaves put at level 0 and the root at level K (Fig. 1).
This implicit BST has the following properties:

1. At level k, the first node is indexed by 2k � 1. As a special case,

the root of the tree is indexed by 2K � 1.

2. For a node indexed by x at level k, its left child is indexed by

x� 2k�1, and its right child indexed by xþ 2k�1.

3. For a node indexed by x at level k, it is a left child if its ðkþ 1Þth
bit is 0 (i.e. x=2kþ1

j k
is an even number), and its parent node is

xþ 2k. Node x is a right child if its ðkþ 1Þth bit is 1 (i.e.

x=2kþ1
j k

is an odd number), and its parent node is x� 2k.

4. For a node indexed by x at level k, there are 2kþ1 � 1 nodes

descending from x (including x). The left-most leaf in this sub-

tree is x� ð2k � 1Þ.

With these properties, we can identify the parent and the chil-
dren of a node in Oð1Þ time. Figure 1 shows an example of implicit

BST for the start positions of a list of intervals which is sorted by the
start positions. When there are fewer than 2Kþ1 � 1 elements in the

array, we still assume a full binary tree with some nodes set to
‘empty’. Notably in this case, an empty node may have a non-empty
child (e.g. in Fig. 1, empty node 11 has a non-empty child node 9).

2.2 Implicit interval trees
An augmented interval tree is a data structure for interval overlap
queries. It is an extension to BST where a node corresponds to an
interval and each node additionally keeps a MaxEnd field which is

the largest end position in the subtree descending from the node.
Because a BST can be implicitly represented with an array, an aug-
mented interval tree can be represented with an array as well

(Fig. 1).

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1315

Bioinformatics, 37(9), 2021, 1315–1316

doi: 10.1093/bioinformatics/btaa827

Advance Access Publication Date: 27 December 2020

Applications Note

http://orcid.org/0000-0003-4874-2874
http://orcid.org/0000-0002-7884-5973
https://github.com/lh3/bedtk
https://academic.oup.com/


Sorting input intervals takes OðNlogNÞ time. Computing
MaxEnd requires a bottom-up tree traversal in OðNÞ time. The time
complexity of searching is OðlogN þmÞ per query, where N is the
number of intervals in the tree and m is the number of overlapping
intervals.

3 Results

We implemented implicit interval tree in bedtk along with few other
common operations such as sorting and interval merging. We com-
pared bedtk to BEDTools v2.29.2 and BEDOPS v2.4.39 on two
BED files: (i) 1 194 285 exons from GenCode annotations and (ii)
9 944 559 alignment intervals of long RNA-seq reads. Both are
available at https://github.com/lh3/cgranges/releases.

As is shown in Table 1, bedtk is consistently faster than
BEDTools and BEDOPS for all the evaluated operations, even when
we discount sorting time for the BEDOPS ‘intersection’ operation.
The performance gap between bedtk and BEDTools is even larger
for unsorted input (‘intersect’ and ‘coverage’). This exemplifies the
advantage of the implicit interval tree. BEDOPS takes the least mem-
ory for sorting potentially because it uses advanced encoding; it uses
even less memory for ‘intersect’ as it streams the input instead of
loading one or both input files into memory. However, requiring
sorted input complicates data processing pipelines and wastes work-
ing disk space. And even with sorted input, BEDOPS is slower than
bedtk.

4 Discussions

An implicit interval tree can be implemented in <100 lines of Cþþ
code. It is a simple yet efficient data structure for fast interval
queries. Daniel Jones alters the memory layout of implicit interval
tree to van Emde Boas for improved cache locality (https://github.
com/dcjones/coitrees). It speeds up query at the cost of more mem-
ory and unsorted query output. Meanwhile, Mike Lin gives up the
standard top-down interval tree query and instead allows to start a
query from any node in the tree (https://github.com/mlin/iitii). This
improves the performance on practical data. In additional to interval

trees, nested containment list (Alekseyenko and Lee, 2007) and aug-
mented interval list (Feng et al., 2019) are alternative data structures
for fast interval overlap queries. However, no standalone user-

oriented tools have implemented these advanced algorithms. Bedtk
is the first toolkit that is designed for end users and outperforms

popular tools for common interval operations.

Acknowledgements

The authors thank Daniel C. Jones and Mike Lin for further improving the

performance of implicit interval trees.

Funding

This work was supported by National Institutes of Health [R01HG010040].

Conflict of Interest: none declared.

References

Alekseyenko,A.V. and Lee,C.J. (2007) Nested Containment List (NCList): a

new algorithm for accelerating interval query of genome alignment and

interval databases. Bioinformatics, 23, 1386–1393.

Brodal,G.S. et al. (2002) Cache oblivious search trees via binary trees of small

height. In SODA ’02: Proceedings of the Thirteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, January. pp. 39–48, San Francisco,

California.

Feng,J. et al. (2019) Augmented Interval List: a novel data structure for effi-

cient genomic interval search. Bioinformatics, 35, 4907–4911.

Khuong,P.V. and Morin,P. (2017) Array layouts for comparison-based search-

ing. ACM Journal of Experimental Algorithmic, 22, 1.3:1-39.

Neph,S. et al. (2012) BEDOPS: high-performance genomic feature operations.

Bioinformatics, 28, 1919–1920.

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Fig. 1. Example of implicit interval tree

Table 1. Performance of interval operations

Operation Bedtk BEDTools BEDOPS

Sort 5.35 s/393 MB 21.14 s/2731 MB 11.25 s/205 MB

Intersect 6.42 s/19 MB 54.87 s/397 MB 8.78 s/3 MB

Coverage 10.91 s/19 MB 257.11 s/678 MB

Note: Each cell gives the CPU time in sections and peak memory in mega-

bases (MB) measured on a Linux server with two AMD EPYC 7301 CPUs at

2.2 GHz. The ‘sort’ operation sorts file 2. ‘intersect’ reports intervals in file 2

that overlaps intervals in file 1. For each interval in file 2, ‘coverage’ computes

the number of bases covered by intervals in file 1. BEDOPS does not support

the ‘coverage’ operation. It also requires sorted input for ‘intersect’; sorting

time is excluded. All operations are CPU bounded, not I/O bounded.

1316 H.Li and J.Rong

https://github.com/lh3/cgranges/releases
https://github.com/dcjones/coitrees
https://github.com/dcjones/coitrees
https://github.com/mlin/iitii

	tblfn1

