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N E U R O S C I E N C E

Computational modeling of tau pathology spread 
reveals patterns of regional vulnerability 
and the impact of a genetic risk factor
Eli J. Cornblath1,2, Howard L. Li3, Lakshmi Changolkar3, Bin Zhang3, Hannah J. Brown3,  
Ronald J. Gathagan3, Modupe F. Olufemi3, John Q. Trojanowski3, Danielle S. Bassett1,4,5,6,7,8, 
Virginia M. Y. Lee3, Michael X. Henderson9*

Neuropathological staging studies have suggested that tau pathology spreads through the brain in Alzheimer’s 
disease (AD) and other tauopathies, but it is unclear how neuroanatomical connections, spatial proximity, and 
regional vulnerability contribute. In this study, we seed tau pathology in the brains of nontransgenic mice with AD 
tau and quantify pathology development over 9 months in 134 brain regions. Network modeling of pathology 
progression shows that diffusion through the connectome is the best predictor of tau pathology patterns. Fur-
ther, deviations from pure neuroanatomical spread are used to estimate regional vulnerability to tau pathology 
and identify related gene expression patterns. Last, we show that pathology spread is altered in mice harboring a 
mutation in leucine-rich repeat kinase 2. While tau pathology spread is still constrained by anatomical connectiv-
ity in these mice, it spreads preferentially in a retrograde direction. This study provides a framework for under-
standing neuropathological progression in tauopathies.

INTRODUCTION
Neurodegenerative diseases, including Alzheimer’s disease (AD) 
and Parkinson’s disease (PD), are estimated to affect over 60 million 
people worldwide (1, 2). Neurological symptoms and the presence 
of pathological protein inclusions are used to categorize the two dis-
eases. However, there exists substantial overlap in both symptoms 
and pathologies, especially as these diseases progress (3, 4). Tau 
pathology, while diagnostic of AD and other primary tauopathies, 
appears prominently in PD, PD dementia (PDD), and dementia 
with Lewy bodies, where it correlates with -synuclein pathological 
burden and cognitive decline (5, 6). These data suggest that multiple 
pathologies may act additively to influence disease progression and 
that underlying risk factors for one pathology may confer risk for 
additional pathologies.

Postmortem neuropathology studies have demonstrated that 
patients with more severe clinical AD and PDD have elevated levels 
of pathological tau in an increasing number of regions of the brain 
(5–8). The stages of observed tau pathology (beginning in the locus 
coeruleus, then transentorhinal and entorhinal cortex, and moving 
through the hippocampus and cortical regions) are suggestive of 
pathology “spreading” (7, 8). Pathological tau from human brains 
injected into nontransgenic (NTG) mice can be internalized into 

nearby neurons, initiating misfolding and hyperphosphorylation of 
endogenous mouse tau in a prion-like manner into intraneuronal 
inclusions resembling those from human disease tissue (9–11). Over 
time, tau pathology can be found in more regions of the mouse brain 
connected to the injection site (9–11), suggesting that tau is spread-
ing. How tau pathology spreads has been a matter of debate because 
it has not been possible to disambiguate the contribution of neuro-
anatomical connectivity, spatial proximity of regions, and intrinsic 
neuronal vulnerability. Recent studies based on mathematical mod-
eling of human brain suggest that anatomical connectivity serves as 
a strong predictor of brain atrophy or general pathology patterns in 
neurodegenerative diseases (12–17).

In the current study, we investigated processes underlying the 
development and spread of tau pathology. We developed a method-
ology for reproducibly quantifying tau pathology in 134 regions of 
the mouse brain following an intracranial injection of pathogenic 
tau. Tau pathology in this model begins slowly, first affecting the 
injection site and highly connected regions. As time progresses, 
more regions are affected. Once affected, regions show a nearly lin-
ear increase in tau pathology over time. While this atlas of patholo-
gy is informative, it is still not possible to discern mechanisms of 
pathology spread without considering the brain as a network of in-
terconnected regions. We therefore used computational analysis of 
spatiotemporal tau pathology patterns. We found that tau pathol-
ogy spread is best explained by diffusion along neuroanatomical 
connections in a bidirectional manner. Residual variance in the data 
that was not well explained by connectivity was used to generate 
estimates of differential vulnerability to tau in measured regions. 
Comparison of regional vulnerability to regional gene expression 
identified several previously unidentified candidate genes that may 
control susceptibility to tau pathology. To further assess the utility of 
quantitative pathology and network modeling, we analyzed a mouse ex-
pressing the LRRK2G2019S mutation. This mutation is a risk factor for 
PD, but many of these patients exhibit tau pathology. LRRK2G2019S mice 
exhibit a bias toward retrograde spread of tau pathology, providing 
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insight into the network-level impact of cell biology events. This 
work provides a framework for understanding the spread of patho-
logical tau throughout the brain and investigating the impact of ge-
netic risk factors on pathology progression.

RESULTS
Quantitative immunohistochemistry to evaluate 
pathological tau spread
To investigate mechanisms underlying the spread of tau pathology, 
we used a recently developed seed-based model of tauopathy in 
which injection of AD brain–derived tau into NTG mice can induce 
the misfolding of endogenous tau into hyperphosphorylated tau 
inclusions in a time- and region-dependent manner (9). Previous 
studies have suggested that this spatiotemporal pattern of tau pa-
thology induction is consistent with spread along neuroanatomical 
connections (9, 10), although these patterns were not quantitatively 
evaluated. Biochemical sequential detergent extraction of gray matter 
from AD patient brains was used to obtain an enriched fraction of 
paired helical filament (PHF) AD tau (Fig. 1A) (9). This extraction 
method yielded a final purity of 22.6 to 35.7% tau, with 0.01% or less 
-synuclein and amyloid  (table S1). The purified tau fraction re-
tains the pathogenic conformation present in human disease and 
induces the misfolding of tau in mice without the overexpression of 

tau (9). To investigate how tau pathology spreads through the brain, 
we injected NTG mice with PHF tau from individual extractions in 
the hippocampus and overlaying cortex (Fig. 1B). Mice were allowed 
to age 1, 3, 6, or 9 months post-injection (MPI) to capture the tem-
poral dynamics of tau pathology spread (Fig. 1C). Brains were then 
sectioned, and representative sections (Fig. 1D) were selected and 
stained for phosphorylated tau pathology throughout the brain. We 
manually annotated 194 areas from 134 anatomical regions on the 
selected sections (Fig. 1E and fig. S1) so that pathology could be 
quantified as the percentage of each area occupied by pathology 
(Fig. 1, F and G). Brain region annotations were based on the Allen 
Brain Atlas (ABA) Common Coordinate Framework (CCF v3, 
2017, brain-map.org), although smaller subregions with minimal 
pathology were grouped to minimize error and annotation time. To 
mitigate overinterpretation of individual sections, we similarly 
annotated and quantified a second set of nearby sections (16,684 
annotations in total), and the average for each region was used for 
subsequent analyses.

Quantitative pathology mapping reveals dynamic patterns 
of tau pathology spread over time
Because imaging of tau pathology in these mice can only be done after 
death, data are pseudo-longitudinal. That is, different time points 
are represented by separate groups of mice. Despite this fact, tau 

Fig. 1. Quantitative immunohistochemistry to evaluate pathological tau spread. (A) AD brain with a high burden of tau pathology was chosen for extraction of 
pathological tau. Brains went through sequential extraction of tau PHFs as noted in the schematic. Final tau PHF preparations were used for all subsequent steps. PBS, 
phosphate-buffered saline. HS, high salt. (B) NTG mice were injected unilaterally with AD PHF tau in the hippocampus and overlaying cortex as shown at 3 to 4 months of 
age. (C) Mice were euthanized 1 (n = 4), 3 (n = 8), 6 (n = 6), or 9 (n = 6) months following injection. (D) Mouse brain was sectioned, and the sections representing the regions 
shown were stained for pathological tau. (E) Representative sections were selected, and 194 regions were annotated for each brain. A second set of nearby sections was simi-
larly annotated to reduce selection bias. Scale bar, 1 mm. Annotation colors are arbitrary. (F) An enlarged image of the annotated supramammillary nucleus (SUM) is 
shown with the inclusions stained for pS202/T205 tau. (G) Annotations allow automated quantification of percentage of area occupied with pathology in specific re-
gions of the brain. An analysis mask is overlaid on the image in (F) to demonstrate this quantification of pathology. Scale bar, 100 m.

http://brain-map.org
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pathology patterns were highly reproducible across cohorts and time 
points (Fig. 2). One remarkable finding from this analysis was that 
once pathology seeds a region, it continues in an almost linear fashion 
over time in most regions (Fig. 2), suggesting that the process of 
pathology formation is similar across the brain. The lack of a pla-
teau in most regions also suggests that this model is recapitulating 
the early disease process, before the saturation of pathology and 
profound neuron death. While the process of pathology formation 
was similar across regions, the delay between injection and pathol-
ogy formation varied widely. Regions at the injection sites or with 
high connectivity to the injection sites developed pathology by 3 MPI 
(Fig. 2, A and B). Other regions showed a further delay, with only 
minimal pathology before 6 MPI (Fig. 2, C and D). Last, some regions 

did not develop pathology until 9 MPI (Fig. 2, E and F), and some 
regions did not develop substantial pathology during the course of 
the study (fig. S10).

While patterns of pathology in individual regions are informa-
tive, overall patterns throughout the brain are best observed as a 
heatmap overlaid on the mouse brain (Fig. 3) or as a region-by-time 
matrix (fig. S2). Several whole-brain patterns were apparent. At 1 MPI, 
there was minimal tau pathology outside of the injection sites. At 3 MPI, 
more pathology accumulated ipsilateral to the injection site includ-
ing hippocampal and entorhinal regions. By 6 MPI, pathology 
spread to the contralateral hippocampus and associated cortical areas. 
By 9 MPI, pathology continued to spread, affecting more rostral re-
gions, although certain rostral cortical and contralateral thalamic 

Fig. 2. Brain regions show progressive accumulation of tau pathology. The percentage of area occupied with tau pathology is plotted as a function of time demon-
strating three distinct onsets of pathological tau accumulation: 3 MPI (A and B), 6 MPI (C and D), and 9 MPI (E and F). Most of the other regions also fall into one of these 
patterns. Green arrows denote the time point with initial substantial pathology accumulation. (A) The ipsilateral supramammillary nucleus accumulates pathology by 
3 MPI as demonstrated by the quantitative pathology plot and images at right. (B) Additional regions that show a similar onset of pathology at 3 MPI (iCA1, field CA1 of 
the hippocampus; iCA3, field CA3 of the hippocampus; iENTl, entorhinal area, lateral; cDG, dentate gyrus; cVTA, ventral tegmental area). (C) The ipsilateral perirhinal area 
(iPERI) accumulates pathology by 6 MPI as demonstrated by the quantitative pathology plot and images at right. (D) Additional regions that show a similar onset of pa-
thology at 6 MPI (iMS, medial septal nucleus; iPAR, parasubiculum; cCA1, field CA1 of the hippocampus; cECT, ectorhinal area; iPRN, pontine reticular nucleus). (E) The 
ipsilateral accessory olfactory bulb (iAOB) accumulates pathology by 9 MPI as demonstrated by the quantitative pathology plot and images at right. (F) Additional regions 
that show a similar onset of pathology at 9 MPI (cPAR, parasubiculum; cPRE, presubiculum; cVISC, visceral area; cCA2, field CA2 of the hippocampus). Data are represent-
ed as means ± SEM. Scale bars, 50 m.
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regions show minimal pathology. Representative images of all regions 
are available in the Supplementary Materials (fig. S10). Together, 
these patterns are highly suggestive of tau pathology spread through-
out the brain, which may involve transmission along neuroanatomi-
cal connections or other regional factors.

Tau pathology spread is predicted by diffusion through 
the neuroanatomical connectome
There is substantial evidence that tau can be released from neurons 
(18–20) in an activity-dependent manner (21, 22) and internalized by 
other neurons (23–26), likely leading to the spread of tau pathology 
throughout the brain. However, it is still unclear precisely how spread 
occurs. The main hypotheses are that tau pathology spreads between 
anatomically connected regions of the brain, between physically 
contiguous regions, or to selectively vulnerable populations of 
neurons. Of course, these mechanisms of spread are not mutually 
exclusive; thus, we sought to assess how each of these putative 
routes contributes to the observed pathology spread in mice.

We evaluated the ability of a network diffusion model with neuro-
anatomical connectivity (brain-map.org) (27) as a scaffold to predict 
the empirical measures of tau pathology over time. ABA regions at 
the injection sites (iDG, iCA1, iCA3, iRSPagl, and iVISam) were used 
as seed regions for initiation of the model. Direct connectivity of these 
regions was highest in hippocampal, septal, and entorhinal regions 
of the brain (fig. S3A), and direct connectivity to the injection site 
was highly correlated with tau pathology measures in those regions 
(fig. S3, B and C). Our model posits that tau spreads from the in-
jection site along anatomical connections both in retrograde and 
anterograde directions, with the final amount of regional pathology 
determined by a weighted sum of these two independent processes. 
This bidirectional anatomical connectivity model weakly predicted 

tau pathology at 1 MPI, likely due to minimal spread at this time 
point, and strongly predicted tau pathology at 3, 6, and 9 MPI 
(Fig. 4A). In addition, this bidirectional anatomical connectivity 
model outperformed a model in which tau spread was proportional 
to the Euclidean distance between regions (Fig. 4B). In the Euclidean 
distance plots, the five outlying regions in the upper right were the 
injection sites, as noted (Fig. 4B); however, inclusion or exclusion of 
these sites during model optimization did not measurably affect the 
fit of the Euclidean distance model (fig. S4, A and B). Excluding 
the injection sites from the bidirectional model did not impair its 
predictivity over the Euclidean distance model (fig. S4C). Rewiring 
the network to disrupt the connectome but preserve basic network 
properties such as in-degree (fig. S5A) or out-degree connectivity 
(fig. S5B) also reduced model performance. To further validate the 
anatomical connectivity model, we ensured that the model’s perfor-
mance was specific to the choice of the experimental injection site, 
compared with 500 randomly chosen sets of five regions with mean 
spatial proximity similar to that of the experimental injection sites 
(Fig. 4C). Models using the experimental seed regions were among the 
best performing models at all time points (Fig. 4C), confirming the 
specificity of our model to the experimental injection site. The per-
formance of models using random sites could be partially explained 
by a generalized additive model relying on three variables: in-projection 
similarity between actual and alternate seeds, out-projection simi-
larity between actual and alternate seeds, and Euclidean distance 
between actual injection sites and alternate seed sites (fig. S5C).

Last, we rigorously evaluated the out-of-sample performance of 
the bidirectional anatomical connectivity model compared to three 
other models in which spread was based on either Euclidean dis-
tance, anterograde spread alone, or retrograde spread alone. To 
compare the distributions of out-of-sample fits between each of the 
four models, we generated 500 train-test splits of the mice used 
in the study. Next, we obtained model parameters (diffusion rate 
constants and regression weights for anterograde and retrograde 
spread) in the training set and evaluated model performance in the 
test set at each time point. Our measure of performance was the 
spatial Pearson correlation coefficient between the observed pathology 
in the test set and the predicted pathology estimated by each model. 
This analysis revealed that the bidirectional model was superior 
to both the anterograde and retrograde models and that all three 
connectivity-based models were superior to the Euclidean distance 
model by 6 and 9 MPI (Fig. 4D). To understand whether the inclusion 
of Euclidean distance could improve predictivity of the bidirectional 
model, we evaluated a combined model that integrated bidirectional 
connectivity and Euclidian distance. We found that the bidirectional-alone 
model performed at least as well as the combined model at all time 
points (fig. S5D). To understand the contribution of anterograde and 
retrograde connections to the bidirectional model, we estimated the 
diffusion rate constant (fig. S5F) and standardized b (fig. S5G) 
from the model. We found a stronger contribution of retrograde 
connectivity to the spread model in both measures. In summary, 
these findings provide strong support for the notion that both antero-
grade and retrograde spread along anatomical connections inde-
pendently contribute to the propagation of tau pathology, with 
retrograde spread being predominant.

Model residuals as an estimate of regional vulnerability
A third possible mediator of tau pathology spread is intrinsic neu-
ronal vulnerability. While this concept is less easily parsed for 

Fig. 3. Quantitative pathology mapping reveals dynamic patterns of tau pa-
thology spread over time. Regional pathology measures plotted on anatomical 
maps as a heatmap, with blue representing minimal pathology, white representing 
moderate pathology, and red representing substantial pathology. Note that tau 
pathology was not quantified in white matter regions, and these regions are gray. 
Representative images for all regions can be found in the Supplementary Materi-
als. n = NTG-1 M: 4, NTG-3 M: 8, NTG-6 M: 6, and NTG-9 M: 6.

http://brain-map.org
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tauopathies than for -synucleinopathies where dopaminergic neu-
rons appear particularly vulnerable, our network model of tau pa-
thology spread can be used to infer regional vulnerability. We have 
previously validated this approach by showing that residuals from 
network model predictions of -synuclein pathology correlated with 
-synuclein gene expression, which was expected to contribute to 
regional vulnerability (28). Here, we estimated regional vulnerability 
to tau pathology spread by taking the residuals from the bidirectional 
anatomical connectivity model and averaging them over 3, 6, and 9 MPI 
(Fig. 5A). We excluded 1 MPI because of the low model predictivity 
and dissimilarity to residuals from other time points (fig. S6A). This 
estimate of regional vulnerability revealed that amygdalar, thalamic, 
and rostral cortical nuclei were resilient, while septal, mesencephalic, 
and caudal cortical regions were more vulnerable (Fig. 5A). We then 
tested whether tau gene (Mapt) expression from ABA in situ hybrid-
ization data was associated with vulnerability. Mapt is expressed quite 
broadly in the brain, including most gray matter and white matter 
regions, and showed no association with regional vulnerability esti-
mates (fig. S6B), suggesting that tau expression is not a major limiting 
factor in the spread of tau pathology.

We sought to further investigate gene expression patterns asso-
ciated with regional vulnerability by performing a genome-wide search 
for genes whose expression patterns measured by the ABA were spatial-
ly similar to our regional vulnerability measure. Many gene expression 
patterns correlated with regional vulnerability. After adjusting false 
discovery rate (FDR) to q < 0.05 (29), we found that 20 genes had 
expression patterns with a statistically significant spatial correlation with 
relative regional vulnerability to tau pathology (Fig. 5B). Twelve of 
these genes showed expression patterns that were negatively associated 
with regional vulnerability, and 8 of these genes showed expression 
patterns that were positively associated with vulnerability. Plotting 
the gene expression versus vulnerability of individual genes (Fig. 5, C 
and D, and fig. S6C) demonstrates that this association is not driven by 
outliers. In the future, gene expression patterns may be useful pa-
rameters of regional vulnerability in computational models of pa-
thology spread.

In silico seeding from alternate sites
In addition to inferring mechanisms of spread through network 
modeling, we can also extend the value of our validated network 

Fig. 4. Tau pathology spread is predicted by diffusion through neuroanatomical connectivity. (A and B) Predictions of log tau pathology (x axis) from spread mod-
els based on (A) retrograde and anterograde anatomical connections or (B) Euclidean distance, plotted against log actual regional tau pathology values (y axis) at 1, 3, 6, 
and 9 MPI. The solid lines represent the lines of best fit, and the shaded ribbons represent the 95% prediction intervals. The r and P values for the Pearson correlation 
between model-fitted values and observed pathology are noted on the plots. In (B), the injection site regions are noted but did not affect model fit (fig. S4). (C) To evaluate 
the specificity of the seed sites to predict the pathology spread pattern, 500 alternate combinations of five seed sites (purple dots) were evaluated for their ability to 
predict pathology spread at 1, 3, 6, and 9 MPI. Using the actual five injection regions (black diamonds) produced among the best fits at all time points (1 MPI, P = 0.042; 3 MPI, 
P < 0.002; 6 MPI, P < 0.002; and 9 MPI, P < 0.002. (D) Distributions of model fits in 500 held-out samples using Euclidean, anterograde, retrograde, and bidirectional models. 
Fit differences were analyzed by pairwise two-tailed nonparametric tests for different models. All connectivity models outperform Euclidean distance after 3 MPI, and a 
bidirectional model outperforms either a retrograde or anterograde model alone (*P < 0.05 and ***P < 0.002). In box plots, box edges represent the 25th and 75th percentiles, 
the middle line shows the median, and whiskers extend from the box edges to the most extreme data point value that is at most 1.5× interquartile range (IQR). Data beyond 
the end of the whiskers are plotted individually as dots.
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models by generating predictions of tau spread patterns from al-
ternate injection sites, assuming that the rates of spread and con-
tributions of anterograde versus retrograde spread are the same 
for those injection sites. For example, one of the earliest sites with 
tau pathology outside of the brainstem in humans is the entorhinal 
cortex (7). However, this site is difficult to inject reproducibly in 
mice because of its lateral location. In silico modeling of tau pathology 
spread from this injection site shows a more lateralized spreading 
pattern that largely affects hippocampal and parahippocampal 

regions, with spread to contralateral regions occurring relatively 
late (Fig. 6A). We chose to also model a caudoputamen injection 
site (Fig. 6B) to compare tau pathology spread to previously pub-
lished data modeling -synuclein pathology spread. While tau 
pathology is predicted to spread to some conserved regions, includ-
ing the substantia nigra and frontal cortical regions, there is also 
more engagement of thalamic and mesencephalic regions and less 
engagement of contralateral regions by tau than with -synuclein 
pathology.

Fig. 5. Model residuals as a predictor of regional vulnerability. (A) Residuals between actual tau pathology levels and pathology levels predicted by the bidirectional 
model were averaged for each region over time and across hemispheres to give an average regional vulnerability to tau pathology. Here, those values are plotted as an 
anatomical heatmap. (B) Gene expression patterns that were statistically significantly associated with regional vulnerability (FDR-corrected P < 0.05 cutoff for inclusion) are 
plotted here with heatmap values indicating the similarity of these gene expression patterns to each other. The genes cluster into two groups, one associated with vulnera-
bility and one associated with resilience, as noted by brackets at the bottom of the plot. (C) Normalized relative regional vulnerability is plotted as a function of normalized 
Elovl5 expression. (D) Normalized relative regional vulnerability is plotted as a function of normalized Inpp1 expression. For (C) and (D), the solid line represents the line of 
best fit, and the shaded ribbons represent the 95% prediction intervals. The r and P values for the Pearson correlation between vulnerability and gene expression are noted 
on the plots.

Fig. 6. In silico seeding from alternate sites. Using the diffusion rate constant estimated by model fitting to empirical tau pathology spread, we estimated the distinct 
spreading patterns that arise after injection into alternate sites in the entorhinal area (A) and caudoputamen (B). Estimated spread is plotted as a heatmap in anatomical 
space with blue indicating regions with minimal estimated pathology and red indicating regions with elevated pathology. *Sites of injections.
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LRRK2G2019S mice have altered tau pathology patterns
The quantitative pathology-network modeling approach established 
in NTG mice allows the assessment of dynamics of tau pathology 
spread. To further investigate the utility of this approach, we per-
formed similar analysis in mice expressing the G2019S mutation in 
LRRK2. This mutation is the most common cause of familial PD 
and a common risk factor for idiopathic PD (30). Although these 
patients show similar symptoms to idiopathic PD, neuropathologi-
cally, 21 to 54% of patients lack the hallmark -synuclein Lewy 
bodies exhibited by patients with idiopathic PD (31–33). Notably, 
most of the LRRK2 mutation carriers exhibit tau pathology (33, 34). 
To assess alterations in tau pathology distribution and spread related 
to LRRK2, we performed quantitative analysis of pathology in 

LRRK2G2019S mice [B6.Cg-Tg(Lrrk2*G2019S)2Yue/J]. We first estab-
lished that in the absence of pathological tau injection, LRRK2G2019S 
mice do not accumulate detectable tau pathology up to 12 months 
of age (fig. S7). Following pathological tau injection, LRRK2G2019S 
mice accumulate tau pathology in similar regions as NTG mice 
(Fig. 7A), suggesting that overall spreading is constrained by ana-
tomical connectivity. However, there are clear differences in the 
regional distribution of tau pathology in LRRK2G2019S mice (Fig. 7B 
and figs. S8 and S9). In some regions, like the injected iDG and 
highly connected iSUM, tau pathology is almost identical in NTG 
and LRRK2G2019S mice (Fig. 7, C and D). In contrast, other regions, 
especially those that require extended periods of time to exhibit pathol-
ogy, show elevated pathology in LRRK2G2019S mice (Fig. 7, C and D). 

Fig. 7. LRRK2G2019S mice have altered tau pathology patterns. (A) Regional pathology measures for LRRK2G2019S mice plotted on anatomical scaffolds as a heatmap, 
with blue representing minimal pathology, white representing moderate pathology, and red representing substantial pathology. (B) The fold change between NTG and 
LRRK2G2019S mice is plotted on anatomical maps as a heatmap, with blue representing regions with higher pathology in NTG mice and red representing regions with 
higher pathology in LRRK2G2019S mice. (C) The percentage of area occupied with tau pathology is plotted as a function of time for four different regions (iSUM, cCA1, iAOB, 
and iDG) demonstrating four distinct patterns of pathology propagation in NTG and LRRK2G2019S mice. Some regions, like the iSUM and iDG, show similar tau pathology 
progression in NTG and LRRK2G2019S mice. In contrast, the cCA1 and iAOB, although similar at 1 and 3 MPI, show enhanced pathology in LRRK2G2019S mice, especially at 
9 MPI. (D) Representative images of the regions plotted in (C) stained for p-tau and directly adjacent to the plots demonstrating the pathology patterns. Representative 
images for all regions can be found in the Supplementary Materials. n = NTG-1 M: 4, G2019S-1 M: 3, NTG-3 M: 8, G2019S-3 M: 7, NTG-6 M: 6, G2019S-6 M: 5, NTG-9 M: 6, and 
G2019S-9 M: 4. Scale bar, 50 m.
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These results suggest that LRRK2G2019S alters some aspect of tau 
pathology spread.

The LRRK2G2019S genetic risk factor alters network dynamics 
of tau pathology spread
To gain a deeper understanding into what parameters of tau pathol-
ogy spread may be altered, we assessed spread in LRRK2G2019S mice 
using network modeling. As suggested by the overall quantitative 
pathology pattern (Fig. 7A), tau spread can be well explained in 
LRRK2G2019S mice by anatomical connectivity (Fig. 8A). Similar 
to NTG mice, tau pathology spread in LRRK2G2019S mice is only 
moderately well fit at 1 MPI but shows improved fit at 3, 6, and 9 MPI, 
suggesting that anatomical connectivity is also a major factor driving 
tau pathology spread in LRRK2G2019S mice. We next sought to ex-
plain the regional differences in pathology in LRRK2G2019S mice. 
We first assessed the relationship of estimated regional vulnerabili-
ty in NTG mice to the difference in pathology in LRRK2G2019S mice 
(Fig. 8B). There is a negative correlation between NTG vulnerability 

and the difference in pathology at 1 and 3 MPI, suggesting that at 
those time points, there is a shift in pathology in LRRK2G2019S mice 
from vulnerable regions to more resilient regions. At 6 and 9 MPI, 
the relationship between NTG vulnerability and pathology differ-
ence is diminished. Given the low levels of pathology in NTG and 
LRRK2G2019S mice at 1 and 3 MPI, the inverse relationship between 
the difference in pathology in LRRK2G2019S mice and NTG vulnera-
bility may reflect not a shift in vulnerability of regions but early 
changes in the directionality of pathology movement in the brain.

We next sought to determine whether the difference in regional 
pathology distribution in LRRK2G2019S mice is related to a difference 
in spread in anterograde or retrograde directions. To infer the mecha-
nisms of network spread affected by the LRRK2G2019S mutation, we 
fit the bidirectional model on bootstrapped samples of NTG and 
LRRK2G2019S mice to obtain distributions of model parameters, 
namely, the diffusion rate constants and regression weights that 
measure the relative importance of anterograde and retrograde 
spread. We observed no statistically significant difference in the overall 

Fig. 8. The LRRK2G2019S genetic risk factor alters network dynamics of tau pathology spread. (A) Predictions of regional log tau pathology (x axis) in LRRK2G2019S mice 
from spread models based on retrograde and anterograde anatomical connections, plotted against log actual regional tau pathology values (y axis) at 1, 3, 6, and 9 MPI. 
(B) Plots of the NTG vulnerability measure versus log G2019S/NTG pathology, showing a negative correlation between the two measures especially at early time points 
(1 and 3 MPI) that levels off at later time points (6 and 9 MPI). Solid lines represent the lines of best fit, and the shaded ribbons represent the 95% prediction intervals. 
The r and P values for the Pearson correlation between G2019S/NTG pathology ratio and NTG vulnerability are noted on the plots. (C) Distributions of model fit (Pearson r) 
for fitting data to bootstrap samples of mice. NTG and G20 do not differ in model fit (nonparametric, two-tailed test). (D) Distributions of diffusion rate constants reveal 
greater intersample variability in retrograde constants compared to anterograde. LRRK2G2019S and NTG do not differ in diffusion rate constants. (E) Anterograde and 
retrograde betas differ between NTG and LRRK2G2019S mice, with LRRK2G2019S preferentially spreading in the retrograde direction. In box plots, box edges represent the 
25th and 75th percentiles, the middle line shows the median, and whiskers extend from the box edges to the most extreme data point value that is at most 1.5× IQR. Data 
beyond the end of the whiskers are plotted individually as dots.
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fit of NTG and LRRK2G2019S mice over time (Fig. 8C), suggesting that 
our network model adequately captures tau spread in LRRK2G2019S 
mice. In addition, the overall diffusion rate constant along antero-
grade connections was no different than that along retrograde con-
nections (Fig.  8D), suggesting that the rates of anterograde and 
retrograde spread are similar. The contribution of anterograde and 
retrograde connections over time did show differences (Fig. 8E), such 
that anterograde spread was less important and retrograde spread 
more important for explaining tau spread patterns in LRRK2G2019S 
mice. These findings suggest that the LRRK2G2019S mutation may 
lead to increased shunting of misfolded tau into the already pre-
dominant retrograde pathways, which partially explains the differ-
ences in pathology patterns observed in these mice.

DISCUSSION
Neurodegenerative diseases progress symptomatically as pathologies 
appear in previously unaffected regions of the brain. Identification 
of the neuropathological proteins aggregated in these diseases and 
subsequent staging studies demonstrated that symptom progression 
is associated with the presence of aggregated proteins in more and 
more regions (7). The stages of disease suggest that either there is a 
fine gradient of regional vulnerability such that regions become 
sequentially affected or pathology can spread through the brain by 
transcellular means. The latter hypothesis is more parsimonious, 
and mounting evidence has supported this explanation in recent 
years. The current study demonstrates using an interdisciplinary 
approach bridging quantitative pathology and network analysis 
that tau pathology patterns can be predicted by linear diffusion 
through the anatomical connectome with modulations of that spread 
by regional vulnerability.

Our study is congruous with previous work using computational 
modeling to understand the distribution of tau pathology and related 
regional atrophy in tauopathies. These studies assessed the utility 
of computational models to predict semiquantitative regional tau 
pathology scores in transgenic mice (35), global atrophy magnetic 
resonance imaging in AD and frontotemporal dementia (12, 13), 
tau positron emission tomography signal in AD (14, 15), or general 
histopathological patterns of AD (16, 17). While each of these studies 
used different modeling parameters, each found that a model incor-
porating spread along anatomical connections was the most efficient 
and accurate predictor of tau pathology or related atrophy patterns. 
Our study has now extended these previous efforts in three important 
ways. First, the current study used tau seeding in an NTG mouse, 
giving our model a precise spatiotemporal starting point, as defined 
by the site and time of pathogenic tau injection. Second, we used 
quantitative measures of mouse tau pathology in 134 regions of the 
mouse brain, providing several log-fold depth of data throughout 
the brain. Third, mice were euthanized at four time points, follow-
ing injection of pathogenic tau, providing pseudo-longitudinal data 
for model fitting. Our modeling of this data is consistent with pre-
vious studies, finding that tau pathology spreads in a pattern that is 
well described by anatomical connectivity. Further, we were able to 
delineate the contribution of anterograde and retrograde connec-
tions to this spread through a rigorous model comparison approach, 
assess the kinetics of spread, understand regional vulnerability to 
pathology, compare regional vulnerability to regional gene expres-
sion, and assess the impact of a genetic risk factor on the spread of 
tau pathology. Future studies could test in silico whether deleting 

connections would impact spread, which could be validated in vivo 
with lesioning experiments.

This study has several limitations. One is the resolution of tau 
pathology data and the reliance on mesoscale connectivity measures 
to model tau pathology spread. Tau pathology was assessed at a meso-
scale to match the mesoscale connectivity atlas generated by the 
Allen Institute (27). However, this scale obscures more granular in-
formation, such as the cortical laminar distribution of pathology. 
The use of the connectivity atlas also imposes technical limitations of 
connectivity tracing, including a potential bias in cell types infected 
by tracer viruses, difficulty in distinguishing passing axons from 
terminals, and possible underestimation of connectivity due to the 
use of projection volume instead of fluorescence intensity (27). 
Higher-resolution connectivity maps are currently being optimized, 
and future studies would benefit from higher-resolution pathol-
ogy maps to match the higher-resolution connectivity maps. A sec-
ond limitation is the use of a transgenic mouse overexpressing 
LRRK2. When this study began, this model was desirable because 
LRRK2 is expressed on the endogenous mouse promoter, ensuring 
that its regional expression matched that of endogenous LRRK2. 
However, next-generation models with a knock-in of the LRRK2 
mutation are now available (36–38), and future work should vali-
date the effects of LRRK2 on tau spread in these models.

Despite recent efforts, the neuropathological substrate of LRRK2 
PD has been elusive. While LRRK2 mutation carriers all have de-
generation of substantia nigra neurons, many of them do not accu-
mulate -synuclein Lewy bodies in the brain (31, 32). This fact has 
left some question as to the neuropathological substrate of degener-
ation in these patients. In the search for an alternate pathology, it 
has now been recognized that most LRRK2 mutation carriers have 
tau pathology to varying degrees (31, 33, 34). Although it is not clear 
that tau pathology is responsible for dopaminergic neuron death in 
LRRK2 mutation carriers, it does raise the possibility that mutations 
in LRRK2 can predispose patients to developing tau pathology.

Hyperphosphorylated tau is a well-cataloged feature present in 
LRRK2 mutant mice (39, 40), flies (41), and induced pluripotent 
stem cell–derived neurons (42). It has also been demonstrated that 
LRRK2 mutations can lead to phosphorylation of tau (43–46). 
Although it is not clear that this hyperphosphorylated tau is patho-
logical, it is possible that it represents a pool of tau that is more 
rapidly recruited upon the introduction of a pathogenic tau seed. 
The current study was conducted in mice up to 12 months of age, 
and the LRRK2G2019S mice in this study showed no evidence of 
phosphorylated tau accumulation without pathogenic tau injection. 
This observation suggests that the changes in tau pathology spread 
are likely due not to elevated phosphorylation but rather to alter-
ations in cellular mechanisms such as protein release, internalization, 
transport, or degradation. This hypothesis is supported by another 
recent study showing enhanced neuronal transmission of virally ex-
pressed tau (47). Other studies found that overall tau pathology was 
not affected in transgenic mice that exhibit broad tau pathology 
controlled by the transgene promoter (47, 48).

One possible cellular mechanism regulating the change in tau 
pathology spread in LRRK2G2019S mice is elevated presynaptic vesicle 
release, a phenomenon that has been observed in LRRK2G2019S mice 
(38). Enhanced synaptic vesicle release is accompanied by enhanced 
membrane internalization, which could provide an increased oppor-
tunity for extracellular tau to be internalized into presynaptic bou-
tons and thereby enhance retrograde transmission of pathology. 
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Previous research has demonstrated that tau is readily released by 
neurons (18–20) in proportion to neuronal activity (21, 22). Future 
research incorporating functional connectivity strength and tau re-
ceptor distribution as regulators of tau spread may help clarify how 
tau pathology spread is regulated.

In conclusion, the current study demonstrates that tau patholo-
gy spreads from an initial injection site through the brain via neu-
roanatomical connectivity. This spread can be modulated by a 
genetic risk factor for PD. Future work should substantiate that this 
alteration is related to LRRK2 kinase activity and explore whether 
LRRK2 inhibitors would be a viable therapeutic treatment for 
tauopathies.

MATERIALS AND METHODS
Mice
All housing, breeding, and procedures were performed according to 
the National Institutes of Health (NIH) Guide for the Care and Use of 
Experimental Animals and approved by the University of Pennsylvania 
Institutional Animal Care and Use Committee. C57BL/6 J (NTG, the 
Jackson laboratory 000664, Research Resource Identifier (RRID): 
IMSR_JAX:000664) and B6.Cg-Tg(Lrrk2*G2019S)2Yue/J (G2019S, 
the Jackson laboratory 012467, RRID: IMSR_JAX:012467) mice have 
been previously described (49). The current G2019S bacterial artifi-
cial chromosome line was backcrossed to C57BL/6 J mice for >10 
generations and bred to homozygosity at loci as determined by quan-
titative polymerase chain reaction and outbreeding. The expression 
level of LRRK2G2019S was thereby stabilized in this line of mice. All 
experiments shown use homozygous LRRK2G2019S mice. Both male 
(n = 24) and female (n = 19) mice were used and were 3 to 4 months 
old at the time of injection. No influence of sex was identified in the 
measures reported in this study.

Human tissue
All procedures were done in accordance with local institutional re-
view board guidelines of the University of Pennsylvania. Written 
informed consent for autopsy and analysis of tissue sample data was 
obtained from either patients themselves or their next of kin. All 
cases used for extraction (table S1) of PHF tau were Braak stage VI 
and were selected on the basis of a high burden of tau pathology by 
immunohistochemical staining. Cases used for extraction were bal-
anced by sex (female = 2; male = 2) and were frozen an average of 
5 hours postmortem. Differences in sex were not assessed because 
these cases were only used for protein extraction.

Human brain sequential detergent fractionation
Frozen postmortem human frontal or temporal cortex brain tissue 
containing abundant tau-positive inclusions was selected for sequen-
tial extraction on the basis of immunohistochemistry examination 
of these samples as described (50) using previously established 
methods. These brains were sequentially extracted with increas-
ing detergent strength as previously described (9). After thawing, 
meninges were removed, and gray matter was carefully separated from 
white matter. The gray matter was weighed and suspended in nine 
volumes (w/v) high-salt buffer [10 mM tris-HCl (pH 7.4), 800 mM 
NaCl, 1 mM EDTA, 2 mM dithiothreitol, 1:1000 protease and 1:100 
phosphatase inhibitors, and 1 mM phenylmethylsulfonyl fluoride] 
with 0.1% sarkosyl and 10% sucrose, followed by homogenization 
with a dounce homogenizer and centrifugation at 10,000g for 10 min 

at 4°C. The resulting pellet was re-extracted with the same buffer 
conditions, and the supernatants from all extractions were filtered 
and pooled.

Additional sarkosyl was added to the pooled supernatant to reach 
a final concentration of 1%, and the supernatant was nutated for 1 hour 
at room temperature. The samples were then centrifuged at 300,000g 
for 60 min at 4°C. The pellet, which contains pathological tau, was 
washed once with phosphate-buffered saline (PBS) and resuspended 
in 100 l of PBS per gram of gray matter by passing through a 
27-gauge/0.5-inch needle. The pellets were further suspended by brief 
sonication (QSonica Microson XL-2000; 20 pulses; setting 2; 0.5 s 
per pulse). The suspension was centrifuged at 100,000g for 30 min 
at 4°C. The pellet was suspended in one-fifth to one-half the pre-
centrifugation volume, sonicated briefly (60 to 120 pulses; setting 2; 
0.5 s per pulse), and centrifuged at 10,000g for 30 min at 4°C. The 
final supernatant was used for all studies and is referred to as AD 
PHF tau. All extractions were characterized by Western blotting for 
tau, sandwich enzyme-linked immunosorbent assay (ELISA) for tau, 
-synuclein and A 1–40, A 1–42, and validated by immunocyto-
chemistry in primary neurons from NTG mice. For the extractions 
used in this study, tau constituted 22.6 to 35.7% of the total protein, 
while -synuclein and A constituted 0.011% or less of total protein.

Sandwich ELISA
Characterization of tau, -synuclein and A 1–40, A 1–42 from AD 
PHF preparations by sandwich ELISA has been previously described 
(9). Assays were performed on 384-well MaxiSorp clear plates (Thermo 
Fisher Scientific). Plates were coated with well-characterized cap-
ture antibodies (tau: Tau5; -synuclein: Syn9027; A 1–40/A 1–42: 
Ban50) at 4°C overnight, washed, and blocked with Block Ace (AbD 
Serotec) overnight at 4°C. AD PHF preparations were diluted at 
1:100 and added to plates alongside serial dilutions of recombinant 
-synuclein, recombinant T40, or peptides for A 1–40 and A 
1–42 monomeric standards. Plates were incubated overnight at 4°C and 
then washed and incubated with reporter antibodies (tau: BT2 + BT7; 
-synuclein: MJF-R1; A 1–40: BA27; A 1–42: BC05) overnight at 
4°C. Plates were washed and incubated with horseradish peroxidase 
(HRP)–conjugated secondary antibodies for 1 hour at 37°C. Plates 
were developed with 1-Step Ultra TMB-ELISA Substrate Solution 
(Thermo Fisher Scientific) for 10 to 15  min. The reaction was 
quenched with 10% phosphoric acid and read at 450 nm on a plate 
reader (M5, SpectraMax).

AD PHF stereotaxic injection
All surgery experiments were performed in accordance with protocols 
approved by the Institutional Animal Care and Use Committee of the 
University of Pennsylvania. AD PHF tau from individual extractions 
was vortexed and diluted with Dulbecco’s Phosphate Buffered Saline to 
0.4 mg/ml. Tau was sonicated (QSonica Microson XL-2000; 60 pulses; 
setting 1.5; 1 s per pulse). Mice were injected at 3 to 4 months old. 
Mice were deeply anesthetized with ketamine/xylazine/acepromazine 
and injected unilaterally by insertion of a single needle into the right 
forebrain (coordinates: −2.5 mm relative to bregma and +2.0 mm from 
midline) targeting the hippocampus (2.4 mm beneath the skull) with 
1 g of tau (2.5 l). The needle was then retracted to 1.4 mm beneath 
the skull, targeting the overlaying cortex, and another 1 g of tau 
(2.5 l) was injected. The needle was left in place for 2 min following 
the injection. Injections were performed using a 25-l syringe 
(Hamilton, NV) at a rate of 0.4 l/min.
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Immunohistochemistry
After 1 to 9 months, mice were perfused transcardially with PBS; 
brains were removed and underwent overnight fixation in 70% ethanol 
in 150 mM NaCl (pH 7.4). After perfusion and fixation, brains were 
processed into paraffin via sequential dehydration and perfusion with 
paraffin under vacuum (70% ethanol for 2 hours, 80% ethanol for 1 hour, 
95% ethanol for 1 hour, 95% ethanol for 2 hours, three times 100% 
ethanol for 2 hours, xylene for 30 min, xylene for 1 hour, xylene for 
1.5 hours, and three times paraffin for 1 hour at 60°C). Brains were 
then embedded in paraffin blocks, cut into 6-m sections, and mounted 
on glass slides. Slides were then stained using standard immunohis-
tochemistry as described below. Slides were deparaffinized with two 
sequential 5-min washes in xylenes, followed by 1-min washes in a 
descending series of ethanols: 100, 100, 95, 80, and 70%. Slides were 
then incubated in deionized water for 1 min before microwave anti-
gen retrieval in the BioGenex EZ-Retriever System. Slides were in-
cubated in antigen unmasking solution (Vector Laboratories, catalog 
no. H-3300) and microwaved for 15 min at 95°C. Slides were allowed 
to cool for 20 min at room temperature and washed in running tap 
water for 10 min. Slides were incubated in 7.5% hydrogen peroxide 
in water to quench endogenous peroxidase activity. Slides were washed 
for 10 min in running tap water, 5 min in 0.1 M tris (diluted from 
0.5 M tris made from tris base and concentrated hydrochloric acid 
to pH 7.6), and then blocked in 0.1 M tris/2% fetal bovine serum 
(FBS) for 15 min or more. Slides were incubated in primary anti-
body in 0.1 M tris/2% FBS in a humidified chamber overnight at 
4°C. For pathologically phosphorylated tau, pS202/T205 tau (AT8, 
Thermo Fisher Scientific, catalog no. MN1020) was used at 1:10,000.

Primary antibody was rinsed off with 0.1 M tris, and slides were 
incubated in 0.1 M tris for 5 min. Primary antibody was detected 
using a BioGenex Polymer detection kit (catalog no. QD440-XAK) 
per the manufacturer’s protocol as outlined below. Slides were incu-
bated in 50% enhancer solution in 0.1 M tris/2% FBS for 20 min. 
Enhancer was rinsed off with 0.1 M tris, incubated in 0.1 M tris for 
5 min, and incubated in 0.1 M tris/2% FBS for 5 min. Slides were 
then incubated in 50% poly-HRP in 0.1 M tris/2% FBS for 30 min. 
Poly-HRP was rinsed off with 0.1 M tris; slides were then incubated 
for 5 min with 0.1 M tris and then developed with ImmPACT diami-
nobenzidine (DAB) peroxidase substrate (Vector SK-4105) for 10 min. 
DAB was rinsed off with 0.1 M tris and incubated in distilled water for 
5 min. Slides were then counterstained briefly with Harris hematoxy-
lin (Thermo Fisher Scientific, catalog no. 6765001). Slides were washed 
in running tap water for 5 min, dehydrated in ascending ethanol for 
1 min each (70, 80, 95, 100, and 100%), then washed twice in xylenes 
for 5 min, and coverslipped in Cytoseal Mounting Media (Thermo 
Fisher Scientific, catalog no. 23-244-256). Slides were scanned into 
digital format on a Lamina scanner (PerkinElmer) using a 20× ob-
jective (0.8 numerical aperture) into .mrxs files. Digitized slides were 
then used for quantitative pathology.

Quantitative pathology
All section selection, annotation, and quantification were done blinded 
to treatment. For quantification of tau pathology, coronal sections 
were selected to closely match the following coordinates, relative to 
bregma: 3.20, 0.98, −1.22, −2.92, −3.52, and − 4.48 mm. The digitized 
images were imported into HALO software to allow annotation and 
quantification of the percentage area occupied by tau pathology. 
Standardized annotations were drawn to allow independent quanti-
fication of 194 gray matter regions throughout the brain. Brain 

region annotations were largely based on the ABA (CCF v3, 2017; 
brain-map.org), although smaller subregions that are difficult to 
annotate by eye and have minimal pathology were grouped to minimize 
error and annotation time. For example, thalamic and midbrain nuclei, 
which accumulate minimal pathology, were grouped into larger re-
gions (fig. S1). Each set of annotations was imported onto the desired 
section and modified by hand to match the designated brain regions. 
After annotation, the analysis scripts were applied to the brain to 
make sure that no nonpathology signal was detected. After annotation 
of all brains, analysis algorithms were applied to all stained sections, 
and data analysis measures for each region were recorded.

The total pathology analysis detects total signal above a minimum 
threshold. Specifically, the analysis included all DAB signal that was 
above a 0.099 optical density threshold, which was empirically de-
termined to not include any background signal. This signal was then 
normalized to the total tissue area. A minimal tissue optical density 
of 0.02 was used to exclude any areas where tissue was split, and a 
tissue-edge thickness of 25.2 m was applied to exclude any edge 
effect staining. Quantitative pathology measures for the 48 regions 
with substantial pathology were analyzed to determine whether there 
was any overall genotype effect or a time-dependent effect of geno-
type on pathology, using a cumulative logistic model. For each region, 
an interaction between genotype and months was initially investi-
gated via a likelihood ratio test (LRT); this interaction was dropped 
for models with P > 0.15 based on the LRT. LRTs were again per-
formed to determine whether there existed statistically significant 
genotype difference either across all time points or whether geno-
type differences changed over time. P values from these LRTs were 
adjusted using the Benjamini-Hochberg FDR to account for multi-
ple testing of 48 regions. Post hoc tests were then performed via the 
emmeans package in R with, again, an FDR adjustment for multiple 
testing. Second-generation P values were generated, as described in 
(51), with a null interval of odds ratio within 0.9 to 1.1, were also 
calculated. In general, second-generation P values control the fami-
lywise error rate and FDR but can often identify additional differ-
ences when the number of comparisons is greater than 10. The null 
interval of 0.9 to 1.1 (i.e., within 10% difference), was chosen as a 
conservative range.

Computational models of pathological protein spread
Models of linear diffusion along white matter fibers have been used 
to predict the spread of misfolded -synuclein in mice (28), as well 
as patterns of atrophy observed in various neurodegenerative dis-
eases (12, 52). In the present work, we extended these models to the 
spread of tau between anatomically connected brain regions from 
an injection site in the right hippocampus.

We model pathological spread of tau as a diffusion process on a 
directed structural brain network G = {V, E} whose nodes V are 
Na = 426 cortical and subcortical gray matter regions and whose edges 
eij ∈ E represent an axonal projection initiating in Vi and terminating 
in Vj, where eij ≥ 0 for all E. Edge strength was quantified by the 
Allen Brain Institute using measures of fluorescence intensity from 
anterograde viral tract tracing (27). We define the weighted adjacen-
cy matrix of G as A = [Aij], such that row i contains the strengths of 
axonal projections from region i to all other Na − 1 regions. We define 
the current levels of simulated tau pathology of all Na nodes at time t 
as the vector x(t). We make empirical measurements of tau pathology 
at t = 1, 3, 6, and 9 MPI in an Nc = 134 region vector y(t), which is a 
spatially coarse-grained version of x(t). Note that y(t) = f(x(t)), where f is 

http://brain-map.org
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a linear transformation that sets each element (region) of y(t) equal 
to the arithmetic mean of the elements (regions) of x(t) that lie within 
the regions of y(t). This transformation is needed to avoid quantifying 
pathology in many of the smaller regions in the Na-dimensional space 
used by the Allen Brain Institute (27), which are difficult to identify 
reliably across mice in practice.

In the simplest case of our models of pathological network 
spread, we simulated the spread of tau pathology throughout the Na 
anatomically connected brain regions in A to compute the predicted 
pathology ​​ ̂  y ​(t)​ in Nc empirically assessed brain regions as a function 
of a set of seed regions s ∈ V using the form

	​​  ̂  y ​(t ) = f(​e​​ −​c​ r​​​L​ r​​t​ ​x​ o​​)​	

where the retrograde, out-degree graph Laplacian

	​​​ L​ ​r​ ij​​​​  = ​ {​​​ 
− ​A​ ij​​ for i  ≠  j

​  
​​j=1​ N  ​ ​A​ ij​​ for i  =  j

​​​	

	​​​ x​ ​o​ s​​​​  = ​ {​​​0 for i  ∉  s​ 
1 for i  ∈  s

​​​	

cr is a diffusion rate constant representing the global speed of ret-
rograde spread, f is the linear transformation described above that 
converts the Na region space to the Nc region space, and t is in units 
of months. In this manuscript, s contains the ABA regions DG, 
CA1, CA3, VISam, and RSPagl, to account for experimental vari-
ability in targeting a hippocampal injection site. Note that cr tunes 
the time scale of the system, which is necessary because of the fact 
that the units of connection strength are arbitrary relative to the 
units of pathology. To fit this model, we swept through values of cr 
from 10−5 to 0.2 and chose the value of cr that maximized the aver-
age Pearson correlation coefficient between log10 y(t) and ​​log​ 10​​ ​ ̂  y ​(t)​ 
over t = [1 3 6 9]. Empirically, the value of this correlation plateaued 
for values of cr larger than 0.2, justifying this upper bound on cr. Note 
that L is the out-degree Laplacian, a version of the well-characterized 
graph Laplacian designed for directed graphs (53). Intuitively, this 
model posits that pathology spreads retrogradely from region i 
to other regions at a rate proportional to the number of synapses 
projecting onto i from those regions, while pathology at region i 
decays as a function of the sum of the strength of projections 
into region i.

Recent studies by this group (28) and others (54) have suggested 
that both anterograde and retrograde spread of pathology contrib-
ute to neurodegenerative disease progression. Thus, we expanded 
the retrograde model described above to a bidirectional model includ-
ing anterograde spread, using the form

	​​​    y ​(t ) = ​b​ o​​ + ​b​ a​​ ​log​ 10​​​(​​f(​e​​ −​c​ a​​​L​ a​​t​ ​x​ o​​ ) ​)​​ + ​b​ r​​ ​log​ 10​​(f(​e​​ −​c​ r​​​L​ r​​t​ ​x​ o​​ ) ) + (t)​​	

where the anterograde, out-degree graph Laplacian

	​​​ L​ ​a​ ij​​​​  = ​ {​​​ 
− A​′​ ij​​ for i  ≠  j 

​  
​​j=1​ N  ​ A​′​ ij​​ for i  =  j

​​​	

ca is a diffusion rate constant representing the global speed of an-
terograde spread, bo is an intercept, ba is a weight for the importance 

of anterograde spread, br is a weight for the importance of retro-
grade spread, t is time, and  is an error term. We used the “optim” 
function in R to solve for the combination of cr and ca that maxi-
mizes the average Pearson correlation coefficient between log10 
y(t) and ​​ ̂  y ​(t)​ over t = [1 3 6 9], with a linear regression inside of the 
objective function to solve for bo, ba, and br aggregating across all 
time points for each cr and ca. The linear regression coefficients ba, 
and br, when standardized, capture the relative importance of an-
terograde and retrograde spread at time t, respectively, while con-
trolling for the potentially ambiguous overlapping contributions of 
the two modes of transmission.

We also defined intrinsic regional vulnerability based on (t), 
the error term in the model above. Intuitively, if i(t) is large, then 
this model underpredicted pathology at region i such that region i is 
more vulnerable to pathology than expected on the basis of bidirec-
tional linear diffusion and vice versa for regions with small values of 
(t). We hypothesized that both static, intrinsic regional vulnerabil-
ity and possible time-dependent vulnerability are captured by (t). 
Therefore, we averaged (t) over hemispheres and over t = [3 6 9] to 
capture static, intrinsic regional vulnerability as an ​​​N​ c​​ _ 2 ​ × 1​ vector vs 
and average out the effects of both time-dependent vulnerability and 
unexplainable measurement error. We excluded 1 MPI because 
pathology at this time point was poorly captured by the spread 
model, and (1) exhibited a distinct spatial pattern of vulnerability 
from the patterns observed in (t) at t = [3 6 9] (fig. S6).
Quantification of model specificity
In a previous study (28), we found that the substantial variance ex-
plained in misfolded -synuclein spread by connectome-based linear 
diffusion models was specific to the use of ipsilateral caudoputamen 
as the seed site s, which defines the vector xo, over nearly every 
other region in the connectome. Here, we sought to replicate this 
finding in the study of tau spread. However, because of the use of 
multiple seed sites in the present study, additional considerations 
applied in ensuring a rigorous test of the model’s specificity to the 
experimentally motivated group of seed sites. The five chosen seed 
sites in s (DG, CA1, CA3, VISam, and RSPagl) were relatively 
close together (average distance of 1.96 mm), so we wanted to rule 
out the possibility that (i) choosing multiple random sites would 
trivially improve model performance and (ii) selecting multiple spa-
tially clustered random seed sites would trivially improve model 
performance. Thus, we choose 500 random sets of five seed sites 
snull ∈ V, all of which had an average distance from one another with-
in 1.96 ± 0.196 mm, and fit the bidirectional model detailed above 
using each set of distance-constrained random points snull to define 
the initial vector xo. We computed a one-tailed, nonparametric P 
value for the specificity of s by computing the percentage of times 
snull yielded a better fit to the observed pathology data than s.
Model comparison
The data presented in the body of the paper use values for the diffu-
sion rate constants, cr and ca, and time-dependent weights on retro-
grade and anterograde spread, bo, ba, and br, obtained using data 
from all mice at every time point (yfull(t)). To ensure that this ap-
proach did not result in overfitting and to rigorously test whether 
including both anterograde and retrograde connections improved 
model performance, we randomly sampled without replacement the 
available mice at each time point to generate ytrain(t) and ytest(t) for 
each time point. These parameters were determined by applying the 
model fitting procedure described above on ytrain(t), and the model 
was evaluated on the basis of its fit with ytest(t). This process was 
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repeated 500 times for models based on Euclidean distance, antero-
grade connections alone, retrograde connections alone, or both an-
terograde and retrograde connections, generating a distribution of 
out-of-sample fits for each time point for each model, allowing us to 
statistically compare the out-of-sample performance between each 
of the candidate models. Using a similar approach, we generated 
distributions of model parameters for the bidirectional model using 
bootstrapped samples of NTG and LRRK2 G2019S mice.
Network null models
To ensure that our results were specific to the retrograde spread of 
misfolded synuclein along neuronal processes, we repeated our anal-
yses using several network null models. To demonstrate a general 
specificity of the model for the topology of the anatomic connectome 
represented by A, we carried out a procedure that rewires the edges 
of G while exactly preserving either the out-degree or the in-degree 
sequence, i.e.,

	​​​ ∑ j=1​ N  ​​ ​B​ ij​​ and ​∑ i=1​ N  ​​ ​B​ ij​​, where ​B​ ij​​  = ​ {​​​1 for ​A​ ij​​  >  0​ 
 0 otherwise

 ​​​ 	

This rewiring approach tests whether the model fit is due to a rela-
tively basic structural property of the graph, i.e., degree, as opposed 
to unique, higher-order topological features of the synaptic connec-
tome. Last, we tested the null model that spread of misfolded protein 
occurs simply because of diffusion through tissue based on closeness 
in Euclidean space. To test this model, we reconstructed A = [Aij] 
such that the edges represented the inverse Euclidean distance be-
tween region i and region j. We used the initial procedure for retro-
grade model fitting to test this model, because Euclidean distance is 
symmetric and thus the bidirectional model cannot be applied.

Assessment of regional gene expression patterns
To assess the cellular and molecular characteristics of intrinsically 
vulnerable or resilient regions, we compared the spatial alignment 
between our ​​​N​ c​​ _ 2 ​ × 1​ vector of regional vulnerability measurements, 
vs, with microarray gene expression levels obtained from the Allen 
Mouse Brain Atlas (brain-map.org). After applying a previously 
validated quality control approach to hone in on genes with the 
most reliable expression measurements (55), we obtained G, an 
​​​N​ c​​ _ 2 ​ × 4277​ matrix of gene expression values across each brain region. 
Because of the non-normality of both vs and gene expression in G, 
we applied a rank inverse normalization transform (56) to each column 
of G to control type I error and maximize statistical power. Next, we 
computed 4277 spatial Pearson correlations between vs and each 
column of G. We performed multiple comparisons correction by 
controlling the FDR at q < 0.05.

Quantification and statistical analysis
The number of animals analyzed in each experiment, the statistical 
analysis performed, and the P values for all results <0.05 are reported 
in the figure legends. In vivo pathological spread data were analyzed, 
and all computations were performed in R (www.R-project.org/) 
(57) as described.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/24/eabg6677/DC1

View/request a protocol for this paper from Bio-protocol.
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