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A B S T R A C T   

Background and aims: The novel SARS-CoV-2 has been rattling the world since its outbreak in December 2019, 
leading to the COVID-19 pandemic. The learning curve of this new virus has been steep, with a global scientific 
community desperate to learn how the virus is transmitted, how it replicates, why it causes such a wide spectrum of 
disease manifestations, resulting in none or few symptoms in some. Others are burdened by an intense immune 
response that resembles the cytokine storm syndrome (CSS), which leads to severe disease manifestations, often 
complicated by fatal acute respiratory distress syndrome and death. Research efforts have been focusing on finding 
effective cures and vaccinations for this virus. 
The presence of SARS-CoV-2 in the gastrointestinal (GI) tract, represented by several GI manifestations, has led to its 
investigation as a target for the virus and as an indicator of disease severity. The response of the microbiome (which 
is heavily linked to immunity) to the novel SARS-CoV-2 virus, and its role in igniting the exaggerated immune 
response has therefore become a focus of interest. The objective of our study was to gather the data connecting 
between the microbiome, the GI tract and COVID-19 and to investigate whether these reported alterations in the gut 
microbiome bear any resemblance to those seen in lupus, the prototypical autoimmune disease. Confirming such 
changes may become the steppingstone to potential therapies that may prevent transmission, progression and 
immune related manifestations of COVID-19, via manipulation of the gut microbiota. 
Methods: We performed an extensive literature review, utilizing the Pubmed search engine and Google Scholar 
for studies evaluating the microbiome in COVID-19 patients and compared results with studies evaluating the 
microbiome in lupus. We searched for the terms: microbiome, dysbiosis, COVID-19, SARS-CoV-2, gastrointestinal 
as well as lupus and autoimmune. While there were hundreds of articles which referred to gastrointestinal 
manifestations in COVID-19, to date only 4 studies investigated the gastrointestinal microbiome in this setting. 
We compared the similarities between microbiome of COVID-19 patients and lupus patients. 
Results: We found that there are several similar processes of immune dysregulation in patients with COVID-19 
and in those with lupus, with several other alterations seen in other pathological states. Some of these simi
larities include loss of microbiota biodiversity, increased representation of pathobionts, which are microbes 
associated with inflammation and disease (i.e Proteobacteria) and a relative decrease of symbionts, which are 
protective microbes, associated with anti-inflammatory properties (i.e Lactobacillus). Compromise to the in
testinal barrier has also been reported in both. 
Conclusions: We conclude that the gastrointestinal tract contributes to the disease manifestations in COVID-19. 
Whether gastrointestinal dysbiosis is the cause or effect of gastrointestinal manifestations and several severe 
systemic manifestations, which may be the response to an increased pro-inflammatory environment, is still 
debatable and warrants further investigation. Given the resemblance of the microbiome in COVID-19 patients to 
that seen in lupus patients, it becomes clearer why several therapies used in autoimmune conditions are currently 
under investigation for the treatment of COVID-19 patients. Moreover, these findings should promote further 
investigating the utility of manipulation of the microbiome, via nutritional supplementation or even fecal 
transplantations, interventions that may alter the course of the disease, and potentially prevent disease trans
mission at low cost and low risk.  
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1. Introduction 

The outbreak of the novel strain of coronavirus in December 2019, 
originating in Wuhan, China, was the start of a catastrophic pandemic, 
which has since then been rattling the world. This virus, now known as 
SARS-CoV-2 or Covid-19 is characterized by a wide range of pre
sentations, from asymptomatic or flu like illness causing fever, dry 
cough, myalgias and or extreme fatigue, to severe pneumonia with 
sepsis leading to an acute respiratory distress syndrome (ARDS) in up to 
20% of cases, with subsequent respiratory failure requiring mechanical 
ventilation. Multi-organ involvement has also been reported in severe 
cases and includes hematological, gastrointestinal, neurological and 
cardiovascular complications, leading to high death rates, which are 
thought to be the result of a cytokine storm [1–5]. 

To enter the human host cells, SARS-CoV-2 utilizes its spike protein 
(S- protein), which binds to the angiotensin converting enzyme-2 (ACE- 
2) and is then processed by the transmembrane protease serine-2 
(TMPRSS-2), which primes the S-protein [6]. This prompts an immune 
response from the new host, which leads to activation of the immune 
system in an effort to detect, recognize and react to the novel antigens, 
produced by the new virus. The intensity of the immune response is 
thought to affect disease phenotype, and it is an exaggerated immune 
response, which is thought to contribute to severe disease manifesta
tions [5,7], often complicated by fatal acute respiratory distress syn
drome and death. This exaggerated immune response, described in 
COVID-19 patients, resembles that of the cytokine storm syndrome 
(CSS), which has been described in several other diseases including viral 
infections (i.e Influenza A, cytomegalovirus), autoimmune disorders (i.e 
lupus, Still’s disease, juvenile idiopathic arthritis, macrophage activa
tion syndrome), malignancies and complications in medical in
terventions such as immunotherapy and stem cell transplant [8,9]. 
Other serious complications of COVID-19 that are also thought to be the 
result of a hyperactive immune response include hypercoagulable states 
as well as several autoimmune phenomena, which are being frequently 
reported [10,11]. 

The scientific community has been closely studying the SARS-CoV-2 
virus, its infectivity, modes of transmission, mechanisms of action as 
well as the virus’s interaction with its host. As data has been fast accu
mulating, and conclusions rapidly changing, the immune response, 
provoked by SARS-CoV-2, is a leading suspect as the culprit of severe 
disease manifestations. Clinical clues, which support the theory of an 
exaggerated immune response include elevated inflammatory markers 
and pro-inflammatory cytokines such as serum ferritin, erythrocyte 
sedimentation rate (ESR), C-reactive protein (CRP) and interleukin 6 
(IL)-6, all of which have been documented consistently in patients with 
severe disease manifestations [12,13]. Several additional pro- 
inflammatory cytokines have been noted in association with SARS- 
CoV-2 including interferon gamma (INF-γ), IL-8, tumor necrosis fac
tor-α (TNF-α), IL-10, IL-2 and others [14–20]. IL-6 and IL-10 have been 
reliable indicators of disease severity, yet not clinically available, and a 
study of 102 COVID-19 patients, demonstrated a clear association be
tween high levels of pro-inflammatory cytokines and more severe dis
ease [20]. Additionally, the ARDS picture described in COVID-19 
patients, has been thought to be the result of an auto-inflammatory 
cytokine storm, which has been similarly described as macrophage 
activation syndrome observed in patients with SARS-CoV and MERS- 
CoV [7,21,22]. 

2. COVID-19 and autoimmunity 

Viruses have been known to provoke immune responses, which may 
present similarly to those seen in autoimmune diseases, by disrupting 
immunological tolerance via several well-known mechanisms such as 
molecular mimicry, bystander activation, epitope spreading and pre
sentation of cryptic antigens [23–26]. The viral infection, via these 
mechanisms, may lead to activation of antigen presenting cells that may 

in turn activate pre-primed auto reactive T cells, thus leading to the 
production of pro-inflammatory mediators, ultimately causing tissue 
damage [26]. Some examples of viruses, linked to autoimmune condi
tions and auto-inflammatory states, include hepatitis C, associated with 
cryoglobulinemic vasculitis and Sjögren’s-like syndrome [27,28], and 
herpesviruses, Ebstein-Barr virus (EBV), associated with systemic lupus 
erythematosus (SLE), rheumatoid arthritis (RA) and adult-onset Still’s 
disease (AOSD) [29–31]. In addition, enteric viruses are associated with 
type I diabetes [32] and influenza viruses are associated with acute 
disseminated encephalomyelitis [33]. Despite being a novel virus, SARS- 
CoV-2 has already been linked to a long list of auto-inflammatory and 
autoimmune conditions, including Guillain-Barré syndrome (GBS) 
[34–37], autoimmune hemolytic anemia, immune thrombocytopenic 
purpura [38–41], and Kawasaki disease (KD) [42,43]. An additional 
autoimmune phenomenon reported in association with COVID-19, 
which bears a striking resemblance to the inflammatory symptoms in 
KD, but does not completely overlap, has been termed by the World 
Health Organization (WHO) as the Multisystem Inflammatory Syndrome 
(MIS). This syndrome, which had been initially reported in children 
(MIS-C) [44], but later described in the adult population (MIS-A) [45] is 
a devastating complication of COVID-19, associated with a significant 
need for critical care, a high rate of cardiac involvement and a 2% 
overall mortality rate [44]. 

The fact that immune cells and mediators have been early targets for 
disease modification in COVID-19, comes as no surprise given the strong 
influence the SARS-CoV-2 has on the host immune system. Since early 
on in the course of the pandemic, there have been strong associations 
made between COVID-19 and various cells of the immune system, both 
in quality and quantity, some associated with the disease itself and 
others suggested as indicators of disease severity and prognosis. The 
characteristic lymphopenia in patients with COVID-19 (and which is 
commonly seen in other viral illnesses), may lead to failure in the 
maintenance of peripheral tolerance, resulting in activation of effector T 
cells with autoimmune potential. Loss of self-tolerance is a mechanism, 
which highlights the paradoxical association between lymphopenia and 
autoimmunity [46,47] and may explain the link between these two 
features in viral infections [16,48]. Decrease in eosinophils, natural 
killer cells and antigen presenting cells have also been demonstrated 
[19,49]. One study, for example, which analyzed broncho-alveolar 
lavage fluid transcriptome from COVID-19 patients, revealed an in
crease in dendritic cells (DCs) and activated neutrophils [50], while 
another revealed higher percentage of inflammatory monocytes in pa
tients with severe lung pathology [15]. 

3. Interactions between viruses and the human gut 

The human microbiome has come to be known as a key player in the 
modulation of its host’s immunity and thought to take part in the 
pathogenesis of various chronic diseases and autoimmune conditions. 
The virome however, which includes the gastrointestinal presence of 
viruses and their interaction with the host have been less explored and 
only recently data has been emerging regarding intestinal luminal vi
ruses and bacteriophages [51]. The mechanism by which viruses 
interact with the host is via penetration and integration of their genetic 
material into the host genome [52]. Viral invasion into the gastroin
testinal (GI) lumen may induce diarrhea, compromising the mucosal 
barrier, thus increasing gut permeability, disturbing the gastrointestinal 
microbiotal homeostasis and effecting microbiome composition, di
versity and function. Ultimately, disruption of the mucosal barrier may 
lead to immunological alterations that may promote hyper- 
inflammatory responses and autoimmune phenomena, as described 
above [10,11,53]. We believe that several manifestations of COVID-19 
might be related to interactions between the novel SARS-CoV-2 virus 
and its host’s microbiome, ultimately leading to immune dysregulation. 
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4. COVID-19, the gut and the lung-gut axis 

Like other coronaviruses, SARS-CoV-2 utilizes ACE-2, a cell surface 
receptor, for entry into host cells [54,55]. The abundance of ACE-2 in 
the lung tissue can explain the common respiratory manifestation 
associated with the disease; they are also present in several extrap
ulmonary tissues including the heart, liver, kidney and intestines 
[56–58]. In the intestines, where ACE-2 acts as a coreceptor for nutrient 
uptake and amino acid absorption [58], high levels of the receptor are 
found on the luminal surface of differentiated epithelial cells in the small 
intestine, with lower levels found in the crypt cells and in the colon 
[58–61]. It is the presence of ACE-2 along the gastrointestinal tract, 
which enables penetration of SARS-CoV-2 into the GI tract, sometimes 
resulting in the presence of GI manifestations such as diarrhea, nausea, 
vomiting [1,62–66] anorexia, decreased appetite, abdominal pain 
[67,68] or some combination of these. COVID-19 patients who present 
with GI manifestations, have been found to be more likely to excrete 
viral RNA in stool [69–72], and sometimes have prolonged time to viral 
clearance [73], even long after respiratory viral RNA is cleared [74,75]. 
Since the initial cases reported in Wuhan China, which described low 
rates of GI symptoms in COVID-19 patients [1,76], the presence of 
marked digestive symptoms has been described at much higher rates 
(10% to over 50%) in other cohorts, some out of Wuhan itself [6,77,78]. 
One study investigating the clinical characteristics of COVID-19 in 204 
patients, reported vomiting, diarrhea and abdominal pain in 50.5% of 
cases [68]. In some reports, SARS-CoV-2 associated diarrhea occurred 
prior to the onset of respiratory symptoms [65,79]. In others, GI 
symptoms were reported concurrently with respiratory symptoms, most 
commonly cough and surprisingly, some studies reported that up to 25% 
of patients presented with GI symptoms in the absence of significant 
respiratory symptoms, with or without other constitutional symptoms 
(such as fever, reported in one study in >80% of patients with GI 
symptoms) [62]. A positive correlation between GI manifestations and 
overall disease severity was also reported by some [80–82]. Given the 
variable presentation of those with GI symptoms, it is not surprising that 
delayed diagnosis has been reported in this subgroup of patients who 
presented with predominant GI symptoms in the absence of more classic 
disease manifestations [83–85]. 

Despite our understanding of how SARS-CoV-2 may penetrate the GI 
system as a possible cause of gastrointestinal manifestations [6,76,86], 
the question of whether or not these manifestations are the result of 
direct viral infectivity remains unanswered. In fact, several other 
mechanisms are plausible, such as provocation of an inflammatory 
response by the viral particles or medication associated GI manifesta
tions. The understanding of these mechanisms is important because it 
may lead to a potential target for prevention. Understanding which 
factors impact the abundance of the ACE-2 cell receptors is important as 
well, given their role in virus penetration into the cells. Interestingly, 
alterations to the microbiome may contribute to increase in intestinal 
ACE-2 in COVID-19 patients [58,87]. One example is the increased 
presence of Coprobacillus, a microbe that has been shown to upregulate 
colonic ACE-2 in murine models [88]. ACE-2 itself has been found to 
have a role in amino acid transport, a role in modulating the microbiotal 
composition, and furthermore animal models with ACE-2 mutants were 
found to exhibit decreased expression of antimicrobial peptides and 
showed altered gut microbial composition [58,87,88]. 

Aside from the shared presence of ACE-2 in both the intestines and 
the lungs, there are additional links between these two systems, known 
as the gut-lung-axis, which may contribute to some of the phenomena 
seen in patients with COVID-19. This axis is also thought to be modu
lated by the microbiome [89–91] as demonstrated in a murine model, 
which showed that germ free mice that lack intestinal microbes had 
decreased pathogenic clearance in the lungs [92]. Several mechanisms 
involving the interactions of the gut microbiome with other organs, 
including the lungs, and their bidirectional influence on one another, 
have been proposed [91]. This axis is thought to be immune regulated, 

through the gut microbiota and its metabolome, which are phagocy
tosed by antigen presenting cells, ultimately activating the adaptive 
immune system. An additional mechanism may involve translocation of 
bacterial/viral antigens into the lymphatic system or distant organs, via 
the blood stream, as a result of increased gut permeability, leading to an 
immunological response that ultimately leads to tissue damage in the 
target organ [87]. Like the gut microbiota, the lung is host of a distinct 
microbiota [89,93], dominated by similar phyla, including Bacter
oidetes, Firmicutes and Proteobacteria [94] and their metabolites, might 
also affect the composition, integrity and function of the gut micro
biome, in a similar mechanism. The gut-lung-axis has already been 
described in several pulmonary diseases. Several studies have suggested 
that gut dysbiosis plays a key role in the pathogenesis of sepsis and acute 
respiratory distress syndrome (ARDS) [95], by loss of microbial di
versity, leading to dysbiosis that in turn may lead to immune dysregu
lation, causing ARDS, similar to that seen in severe COVID-19 infection 
[96]. One study found that microbial action on dietary fiber is known to 
increase short chain fatty acids (SCFA) in blood, thereby protecting 
against allergic inflammation in the lungs [97], while another demon
strated that various prebiotics were associated with increased butyrate 
levels, thereby reducing inflammation and improving conditions in 
asthma and cystic fibrosis [98]. One murine model even demonstrated 
that depletion of certain gut microbes by antibiotics leads to increased 
susceptibility to influenza pneumonia [99]. These make it reasonable to 
consider [100] that COVID-19 pneumonia and ARDS associated with 
severe COVID-19 [101], may be caused by abnormal interactions in the 
lung-gut-axis as a result of dysbiosis. Only a couple of studies have 
explored the changes that occur in the microbiome of the lung in COVID- 
19 patients, and a few others explored the changes in the gut micro
biome in this cohort of patients. One study, which analyzed post-mortem 
biopsies from 20 deceased COVID-19 patients, showed that the most 
common bacterial genera in the lung microbiome were Acinetobacter, 
Chryseobacterium, Bukholderia, Brevundimonas, Sphingobium and Entero
bacteriaceae. Another study demonstrated similarities in the lung 
microbiome of COVID-19 patients and in those with community- 
acquired bacterial pneumonia, both of which were enriched with 
pathobionts, defined as microbes, which inhabit the gastrointestinal 
tract and are associated with chronic inflammation [102]. The presumed 
bidirectional cross-talk between the gut microbiota and the lungs [103], 
which occurs via microbial metabolites, endotoxins and cytokines, 
allowing one system to impact the other systemically [104], is the 
proposed mechanism by which SARS-CoV-2 impacts the gut microbiota, 
likely contributing not only to the development of GI manifestations, but 
also to the many autoimmune phenomena, associated with COVID-19. 

5. The microbiotal link between COVID-19 and autoimmunity 

The strong association between SARS-CoV-2 and autoimmunity, has 
crowned it “the virus of autoimmunity” [10,11,105], and it is postulated 
that intestinal dysbiosis may be the cause of the exaggerated immune 
response which leads to these phenomena. The Human Functional Ge
nomics Project (HFGP) has, in fact demonstrated that differences in 
composition and function of the microbiome contribute to inter- 
individual variation in cytokine responses to pathogen exposure. This 
is likely the result of microbial-derived mediators, which are products 
metabolic pathways, facilitated by the gut microbiota [106,107]. In 
some cases, the inflammatory response can be overaggressive, causing a 
‘cytokine storm’, which results in widespread tissue damage, septic 
shock and multi organ failure [108–110]. Another proposed player, to 
contribute to dysbiosis and severe systemic manifestations is the 
dysfunctional mitochondria. It is proposed, that like in other hyper- 
inflammatory conditions, which induce hyperferritinemia, as a result 
of iron dysregulation, COVID-19 too is a hyperferritinemic state [13,21], 
which promotes oxidative stress. The dysfunctional mitochondria may 
directly cause several disease manifestations such as hypercoagulability, 
may contribute to microbiota dysbiosis, which in turn may directly 

N. Katz-Agranov and G. Zandman-Goddard                                                                                                                                                                                              



Autoimmunity Reviews 20 (2021) 102865

4

cause severe disease manifestations seen in COVID-19. Additionally, the 
microbiota can further lead to a hyper-inflammatory environment, 
thereby exacerbating oxidative stress and mitochondrial dysfunction, 
causing a devastating vicious cycle [111]. It turns out that there are 
several similar alterations in the microbiome of COVID-19 patients and 
in that of patients with autoimmune conditions, which may be the 
shared culprit to the dysregulated immune system seen in both condi
tions, ultimately leading to increased disease severity and to autoim
mune manifestations [105]. As mentioned above, like other respiratory 
infections, which have been associated with dysbiosis [112], several 
changes have been demonstrated in the microbiome of COVID-19 pa
tients. Some of these changes include decreased richness, which is a 
decrease in the total number of microbial species present in the micro
biome of COVID-19 patients, as well as decreased diversity, which refers 
to the relative amount of each microbial species. These changes, how
ever, may have been the result of confounding factors, such as medi
cation use, age and comorbid conditions. As results have been variable 
and in fact, one study that controlled for use of antibiotics, did not 
demonstrate significant differences in richness and diversity between 
COVID-19 patients and healthy controls [110]. In fact, some of the most 
widely used medications during the COVID-19 pandemic independently 
affect diversity and richness of the microbiome, most notorious is azi
thromycin, which rapidly reduces bacterial richness and diversity [113]. 

Other compositional changes that have been noted in the gut 
microbiome of COVID-19 group patients included the domination of 
Streptococcus, Rothia, Veillonella, Erysipelatoclostridium, and Actinomyces, 
whereas the microbiome of healthy controls was dominated by the 
genera Romboutsia, Faecalibacterium, Fusicatenibacter, and Eubacterium 
hallii group. Ultimately, the five species that were selected to distinguish 
between COVID-19 patients and healthy controls included in one study, 
Fusicatenibacter, Romboutsia, Intestinibacter, Actinomyces, Erysipelato
clostridium. These microbiotal changes were demonstrated not only in 
those with prolonged GI symptoms, but also those with severe respira
tory disease [114]. The association between the microbiome and auto
immunity has been well studied and therefore we were not surprised to 
find that several features of dysbiosis, which were demonstrated in 
COVID-19 patients, are similar to those seen in lupus, which the pro
totypical autoimmune disease in humans. Diversity and richness are 
affected, one case-control study found that compared to healthy con
trols, COVID-19 patients had significantly reduced bacterial diversity, a 
significantly higher relative abundance of opportunistic pathogens (i.e 
Streptococcus, Actinomyces) and a lower relative abundance of beneficial 
symbionts, all findings which have been demonstrated in lupus and 
other autoimmune conditions [105,115]. Another small study from 
China demonstrated dysbiosis in COVID-19 patients characterized by 
decreased abundance of Lactobacillus and Bifidobacterium [116]. Both 
microbes are usually associated with anti-inflammation and both have 
been found decreased in a large number of lupus studies, in both murine 
and human models [105,117]. An additional study from Wuhan, China, 
described a link between the composition of the gut microbiome and the 
predisposition of healthy individuals to COVID-19 [80]. Increased levels 
of Lactobacillus species correlated to higher levels of the anti- 
inflammatory interlukin IL-10 and improved disease prognosis, while 
increased levels of proinflammatory microbes, such as Klebsiella, Strep
tococcus, and Ruminococcus gnavus, correlated with elevated levels of 
proinflammatory cytokines and increased disease severity. These species 
have all been described in association with several autoimmune condi
tions and Ruminococcus gnavus specifically, has been associated with 
active lupus [118–120]. Additionally, increased abundance of Cop
robacillus, Clostridium ramosum and Clostridium hathewayi, has been 
found to positively correlate with overall disease severity in COVID-19 
patients [121–125], the latter being reported in association with kid
ney disease in lupus [122]. On the other hand, Faecalibacterium praus
nitzii was found to be inversely correlated with disease severity in both 
lupus patients and COVID-19 patients [105,121,126–130]. Alistipes 
onderdonkii is another beneficial bacterial species, which showed a 

negative correlation with COVID-19 severity and has been reported to be 
decreased in lupus patients as well [131,132]. The effect of the fecal 
SARS-CoV-2 load on the composition and function of the microbiome 
was also studied and it seems that the microbiome of those with a high 
fecal SARS CoV-2 load also had abundance of opportunistic pathogens 
such as Collinsella aerofaciens, Collinsella tanakaei, Streptococcus infantis, 
Morganella morganii. 

It is well known that an altered Firmicutes/Bacteroidetes (F/B) ratio 
effects the mucosal barrier, which leads to intestinal permeability by 
promoting functional changes on the molecular level in the gut, ulti
mately promoting inflammation [132,133], as is found in lupus and 
several other auto-inflammatory conditions. An interesting finding 
revealed that an abundance of bacteria from the Firmicutes phyla 
positively correlated with disease severity, including the genus Cop
robacillus, the species Clostridium ramosum and Clostridium hathewayi, 
data that might be explained by the diverse role of the Firmicutes bac
teria in regulation of ACE-2 expression in the murine gut [88,134]. The 
abundance of Bacteroidetes species, A. onderdonkii and B. ovatus and 4 
species from the genus Bacteroides: B. thetaiotaomicron, B. massiliensis, 
B. ovatus and B. dorei, negatively correlated with COVID-19 severity. 
These microbes, which are reported to take part in host immune regu
lation [135,136] and reported to suppress colonic ACE-2 expression 
[88], showed inverse correlation with fecal viral load of SARS-CoV-2. In 
lupus patients, on the other hand, most studies have found that the 
abundance of Firmicutes (F) was decreased, whereas the abundance of 
Bacteroidetes (B) increases, and most commonly note that the ratio F/B 
is decreased [137], a ratio that has not been specifically discussed in 
regards to COVID-19 patients. One study did demonstrate that at the 
phylum level, members of the Bacteroidetes were more relatively 
abundant in patients with COVID-19 when compared to healthy con
trols, whereas Actinobacteria were more relatively abundant in healthy 
controls [110]. Some studies investigating the microbiome in this pop
ulation, reported a lower abundance of Bacteroides species than healthy 
individuals [138–141]. It is worth noting that an altered composition of 
the gut microbiome has also been shown to be a potential risk factor for 
COVID-19 infection in healthy individuals, thus stressing the potential 
benefit of treatments that will modulate the composition of the micro
biome as a preventive measure for disease contraction [142]. 

Some functional similarities are described in the microbiome of 
COVID-19 patients and in those with lupus. Compromise to the mucosal 
barrier is thought to be one of the key features promoting immunolog
ical alterations in COVID-19, a theory that is well-established in several 
autoimmune conditions, including lupus as well as in several chronic 
medical condition [105,117,143]. Additionally, one study found that 
COVID-19 patients with a high SARS-CoV-2 fecal viral load was asso
ciated with higher functional capacity for nucleotide de novo biosyn
thesis, amino acid biosynthesis and glycolysis, whereas decreased or 
absence of virus in the feces was associated with more short-chain fatty 
acid producing bacteria, such as Parabacteroides merdae, Bacteroides 
stercoris, Alistipes onderdonkii and Lachnospiraceae bacterium [132]. 
These metabolic pathways have a significant effect on the integrity of 
the mucosal barrier in the gut, affect the dynamics between enteric 
pathogens and the microbiome and influence immune responses. (see 
Table 1) 

6. The microbial link between COVID-19 and aging 

Whether the altered microbiome is a cause or consequence in disease 
pathogenesis or severity of COVID-19, altogether, data suggests a po
tential role for the microbiome in determining response to SARS-CoV-2 
infection and disease intensity [133,144]. These interesting findings also 
make sense of the fact that those individuals who are at highest risk for 
severe disease, complications and death from COVID-19 are the elderly 
and frail [145], a risk that is multifactorial, but likely impacted by the 
altered microbiome. In fact, also this population shares several features 
of dysbiosis with lupus patients (Fig. 1) [117]. The vulnerability of the 
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elderly and frail, is thought to result from immunosenescence; a con
dition which refers to the decline in immune regulation brought on by 
aging, affecting both the innate and adaptive immune system. Immu
nosenescence leads to decreased capacity of the host to respond to 
infection, resulting in an increased risk for severe disease manifestations 
and a decreased tolerance to auto- antigens, ultimately leading to 
autoimmunity. One of the proposed mechanisms leading to immune 
aging is thought to be related to the microbiotal changes, which include 
loss of diversity, and decreased prevalence of beneficial microbes, that 
have anti-inflammatory properties, all changes that are described in 
lupus and COVID-19 patients as well, as described above [117,146]. 

7. The microbiome and COVID-19 therapy 

While prevention remains the cornerstone of treatment for the 
COVID-19 pandemic, several therapeutic measures have been investi
gated, some targeting the virus itself, while others attempt to modulate 
the inflammatory response associated with severe disease [147]. 
Remdesivir - a nucleoside analogue that targets the virus, inhibits SARS- 
CoV-2 RNA dependent RNA polymerase activity and viral replication, 
has some benefit in hospitalized patients [148]. Other early therapies 
included intravenous immunoglobulin (IVIG), and more commonly 
convalescent plasma (specific IVIG), extracted from patients who 
recovered from COVID-19, which have been used for severely ill pa
tients. The rationale for the former is that it contains an array of anti- 
viral antibodies while the latter contains specific COVID-19 anti
bodies, both of which may benefit patients with severe COVID-19 [149]. 
In addition, hyperimmune globulin, which is extraction of the anti- 
COVID-19 antibodies from convalescent plasma, hence specific and 
concentrated IVIG may also be beneficial for COVID-19 disease. Inter
estingly, IVIG has also been shown to attenuate immune responses in 
several autoimmune conditions and COVID-19 patients, and therefore, 
could contribute to halting an unwelcomed, immune hyperactivity in 
this setting [150–155]. 

Additional therapies targeted at the exaggerated immune response, 
which commonly accompanies SARS-CoV-2 in severely ill patients 
include dexamethasone and targeted immune inhibitors, like sarilumab, 
an anti-interleukin 6 (IL-6) receptor antibody. Type 1 interferons 
(especially interferon-alpha), which have broad antiviral activity have 
been successful treatments in in-vitro studies against of SARS-CoV-2 
[156] and have since then been evaluated in clinical trials to treat 

Table 1 
Microbiotal similarities between COVID-19 and lupus.  

Microbiotal changes COVID-19 LUPUS 

Dysbiosis + +

Microbial diversity ↓ ↓ 
Altered F/B ratio + +

Gut Premeability ↑ ↑  

Opportunistic pathogens ↑ ↑ 
Ruminoccocus ganvus ↑ ↑ 
Clostridium ssp ↑ ↑  

Symbionts ↓ ↓ 
Lactobacillus ↓ ↑↓ 
Bifidobacterium ↓ ↓ 
Faecalibacterium prausnitzii ↓ ↓ 
Alistipes onderdonkii ↓ ↓  

Fig. 1. Illustrates the effect of SARS-CoV-2 on the lungs and the gastrointestinal (GI) tract and demonstrates the dynamic interplay between the lungs and the GI tract 
in response to SARS-CoV-2. 
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SARS-CoV-2 [14,157]. 
A therapeutic approach targeting the microbiome is worth investi

gating, as it may prove effective on all three fronts: prevention, 
decreasing viral penetration and progression through the gastrointes
tinal tract as well as blunting an exaggerated immune response. 
Modulating the microbiome towards a more anti-inflammatory envi
ronment, may allow an appropriate immune response towards the virus, 
both within the gut and systemically without the consequences of im
mune dysregulation and autoimmunity. Although the microbiotal 
changes discussed above can only be interpreted associatively at this 
time [115], in theory, adjuvant therapy, which targets the reshaping of 
the gut microbiome may prove beneficial for patients suffering from 
severe COVID-19 symptoms, whether manifested inside the GI tract, the 
respiratory tract or systemically in the form of autoimmunity [83]. 
Several nutrients have already been associated with disease severity. 
Vitamin D levels have been strongly linked to the immune response in 
SARS-CoV-2, affecting severity of COVID-19 infection and mortality 
[158–162]. These data, however, are not without limitations and the 
role of vitamin D deficiency in COVID-19 remains controversial [163]. 
Vitamin C has also been a nutrient of interest in patients with critical 
illness and has been suggested to be protective in patients with severe 
COVID-19, although data is insufficient [164]. The essential trace min
eral Zinc (Zn), which is known for its antioxidant, anti-inflammatory, 
immunomodulatory, and antiviral activities has been contemplated as 
an adjunct treatment for COVID-19 patients [165]. Special interest in 
this trace mineral has risen because increasing intracellular levels of Zn, 
have been shown to inhibit the replication of several RNA viruses 
including that of SARS-Co-V, in vitro, suggesting a similar effect on 
SARS-CoV-2 [166]. Selenium too has similar contribution to the immune 
system and several observational studies have found an association be
tween selenium deficiency and patients with COVID-19 [167,168]. The 
microbiome may be the common pathway leading to the contribution of 
these nutrients, as all alter the gut microbiome towards a reduced in
flammatory environment. As an example, in chicken models, Zn defi
ciency has been associated with significant alterations in the gut 
microbiome and decreased overall species richness and diversity, lead
ing to dysbiosis, similar to that seen in several diseases [169]. In addi
tion, Zn supplementation has been associated with a reduction of 
pathobionts and a rise of symbionts [170]. Safe use of any such sup
plementation still requires further investigation. In fact, a protective 
effect may even be dose dependent, for example excess in dietary Zn has 
been shown to negatively alter the gut microbiome by decreasing mi
crobial diversity and promoting dysbiosis, which was associated with 
increase in susceptibility to C. difficile infection [171]. These nutrients 
along with several other nutritional dietary components with known 
anti-inflammatory and antioxidant properties have been proposed as 
supplementations for protection against COVID-19 infection and against 
severe disease manifestations [172]. The mechanism by which they offer 
this protection is thought to be via interaction with the gut microbiome 
[173]. Other proposed interventions include prebiotics and probiotics, 
both of which may shift the balance of the microbiotal composition 
towards protective microbes, which harbor anti-inflammatory proper
ties [174,175]. Some prebiotics have demonstrated ability to regulate 
cytokine levels [100], such as whole grains, which demonstrated ability 
to decrease IL-6 levels [176] and butylated high amylose maize starch, 
which has shown ability to increase levels of IL-10 in human cohorts 
[177]. Even fecal transplantation is contemplated from healthy donors 
to critically ill COVID-19 patients, as a way to promote a healthier im
mune response in these patients, although the presence of SARS-CoV-2 
in the feces must first be ruled out [178]. It is worth noting that 
several of the above proposed treatments have also been discussed as 
potential treatments in many autoimmune diseases, lupus included 
[105,128]. 

Nutritional strategies or other interventions targeting the micro
biome may be beneficial to regulate the balance of intestinal microbiota 
and reduce immune dysregulation, altering the course of COVID-19 in 

high risk patients, and may even prove effective in preventing the dis
ease. However, it is important to note that while attempting to modulate 
the microbiome towards a more anti-inflammatory environment is very 
appealing, treatment options, have not been extensively studied in 
COVID-19 and this warrants further investigation [179]. 

8. Conclusion 

Our study emphasized the significance of the interactions between 
SARS-CoV-2 and the gastrointestinal tract. Presence of the SARS-CoV-2 
virus not only leads to GI manifestations in some patients but may also 
alter the body’s immune response to COVID-19. Additionally, given the 
resemblance of the microbiome in COVID-19 patients to that seen in 
lupus patients, it becomes clearer why several therapies used in auto
immune conditions are also currently under investigation for the treat
ment of COVID-19 patients. Manipulation of the microbiome for 
prevention and disease alteration is yet to be established. 
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