Skip to main content
. 2021 Jun 10;119:108109. doi: 10.1016/j.patcog.2021.108109

Table 2.

Quantitative evaluation of different networks for lung opacification segmentation. The BCE-Dice loss was used for training.

Methods DSC (%) SEN (%) PPV (%) VA (%) RLP (%) RLR (%) 95% HD(mm)
PSPNet [23] 80.86 75.67 88.87 84.42 89.12 76.24 59.93
ESPNetv2 [46] 83.19 79.77 88.61 89.03 67.84 78.31 63.96
DenseASPP [47] 86.87 85.76 88.98 94.83 88.62 78.71 51.96
DeepLabV3+ [24] 85.26 83.97 88.33 93.75 89.16 78.57 53.61
U-Net [10] 83.61 82.96 85.57 92.57 86.18 76.48 73.50
COPLE-Net [17] 83.70 84.27 83.42 93.45 77.46 74.60 59.21
CE-Net [48] 85.78 84.46 87.88 94.70 82.79 79.45 55.85
Attention U-Net [25] 82.66 79.95 86.58 90.43 88.20 75.22 60.97
UNet+ [26] 81.83 80.29 84.03 91.87 80.30 76.72 74.32
Proposed 88.99 87.85 90.28 96.25 90.87 84.83 29.16