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Abstract Phenotype-specific omic expression pat-
terns in people with frailty could provide invaluable
insight into the underlying multi-systemic pathologi-
cal processes and targets for intervention. Classical
approaches to frailty have not considered the potential
for different frailty phenotypes. We characterized as-
sociations between frailty (with/without disability)
and sets of omic factors (genomic, proteomic, and
metabolomic) plus markers measured in routine geri-
atric care. This study was a prevalent case control
using stored biospecimens (urine, whole blood, cells,
plasma, and serum) from 1522 individuals (identified
as robust (R), pre-frail (P), or frail (F)] from the Tole-
do Study of Healthy Aging (R=178/P=184/F=109), 3
City Bordeaux (111/269/100), Aging Multidisciplin-
ary Investigation (157/79/54) and InCHIANTI (106/
98/77) cohorts. The analysis included over 35,000
omic and routine laboratory variables from robust

and frail or pre-frail (with/without disability) individ-
uals using a machine learning framework. We identi-
fied three protective biomarkers, vitamin D3 (OR:
0.81 [95% CI: 0.68–0.98]), lutein zeaxanthin (OR:
0.82 [95% CI: 0.70–0.97]), and miRNA125b-5p
(OR: 0.73, [95% CI: 0.56–0.97]) and one risk bio-
marker, cardiac troponin T (OR: 1.25 [95% CI:
1.23–1.27]). Excluding individuals with a disability,
one protective biomarker was identified, miR125b-5p
(OR: 0.85, [95%CI: 0.81–0.88]). Three risks of frailty
biomarkers were detected: pro-BNP (OR: 1.47 [95%
CI: 1.27–1.7]), cardiac troponin T (OR: 1.29 [95% CI:
1.21–1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01–
1.57]). Three key frailty biomarkers demonstrated a
statistical association with frailty (oxidative stress,
vitamin D, and cardiovascular system) with relation-
ship patterns differing depending on the presence or
absence of a disability.
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Introduction

As a heterogeneous condition [1, 2], frailty relies almost
exclusively on expert assessment of clinical and func-
tional parameters for diagnosis [3, 5]. Whereas frailty
has been described as a dynamic general impairment of
physiological reserves involving multiple organ sys-
tems, frailty manifests as progressive vulnerability, im-
paired ability to address intrinsic and environmental
stressors, and impeded the capacity to maintain physio-
logical and psychosocial homeostasis [6–8]. It is asso-
ciated with an increased risk of geriatric syndromes,
dependency, disability, hospitalization, institutional
placement, and mortality. Frailty represents a growing
burden on societies as populations age [9]. Depending
on circumstances, an estimated 11–17% of community-
dwelling older persons are frail [10, 11] and 42–49%
pre-frail [11, 12].

The underlying pathophysiology of frailty remains
largely unknown despite our increasing understanding
of the molecular aging processes [13]. Moreover, the
usual approach has assessed the relationship between
isolated systems, taken one-by-one, in relation to frailty,
for example, hormonal dysregulation, vascular function,
immune-aging, oxidative stress, pro-coagulation, and
pro-inflammatory status [14–17], including several pub-
lications from FRAILOMIC initiative [18–20]. Few
studies have investigated the complex interrelationships
among the different systems underlying frailty [21],
which suggest possible multi-system pathogenesis in-
volving several co-existing factors. More than ever, it
seems relevant to understand the pathophysiology of
frailty since, as recent observations show, these process-
es are not one directional. There is convincing evidence
that they may improve spontaneously [22] or on inter-
vention [23, 24]. Focus is turning to identify factors that
influence both negative and positive transitions and how
insight could lead to diagnostic biomarkers. To this end,
it is required to implement a statistical approach that is
able to discriminate the role of several clusters of bio-
markers, taking into account their frequent interactions
[25, 26]. Our use of a robust machine learning frame-
work to identify biomarkers for frailty and their discrim-
inatory potential is highly appropriate considering the
number of pathogenic routes leading to frailty and its

consequences. These include metabolic and hormonal
factors, inflammation, regulation of cell proliferation,
regulation of gene expression, muscle dysfunction,
insulin/IGF-1 pathway, stress responses, and cardiovas-
cular homeostasis [27, 28].

Although the classical approach to frailty relies on a
single phenotype, emerging evidence suggests different
pathways to frailty [2, 29] and different outcomes that
patients may experience under various clinical condi-
tions. This suggests several subtypes of frailty [2, 29,
30], such as subtypes with mobility problems [29].
Besides, it is largely understood that frailty and disabil-
ity are two frequently converging [31–33], but distinct
entities need to be dissociated [34]. The expression of
different biomarkers is a potential tool to achieve such
distinction. Recent studies report biomarker fingerprints
in older people with clinical subtypes, such as frailty and
sarcopenia [35].

Our aims were, first to identify omic and other lab
features, among more than 35,000 potential biomarkers
tested, that provide additional information (and possibly
mechanistic characterization) on frailty beyond that cap-
tured within clinical marker data; second, to identify
specific characteristics that are risk or protective factors;
and finally, to investigate whether such biomarkers dif-
fer according to individual disability status. To this end,
the FRAILOMIC initiative assessed both frailty and
disability in four large, exploratory, European cohorts
by implementing a machine learning framework inter-
rogating clinical and laboratory (genomic, proteomic,
and metabolomic (omic)) data where both frailty and
disability were assessed.

Methods

Figure 1 provides an overview of the logistical design
for integrating and harmonizing laboratory and clinical
data derived from four European cohorts.

Study population

This nested case-control study was conducted in the
FRAILOMIC Initiative cohorts; data was generated
from four population-based European cohorts of older
adults: Bordeaux sample data from the Three-City
Study (3-C, France) [4], Aging Multidisciplinary Inves-
tigation cohort (AMI, Gironde, France) [36], Toledo
Study for Healthy Aging (TSHA, Toledo, Spain) [31],
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and Invecchiare in Chianti Study (InCHIANTI, Chianti
geographical area, Tuscany, Italy) [37]. These cohorts
and their data harmonization have been described in the
online supplement (eMethods, 1.1 to 1.3). An ethical
committee approved the original study protocols ac-
cording to the principles of the Declaration of Helsinki,
and all participants signed a written consent.

Clinical and biological data were harmonized using
methods described in the online supplement (eMethods
1.2 Harmonization). Harmonized data included gender,
age (years), weight (kg), height (cm), body mass index
(BMI; kg/m2), and smoking status (current smoker).
During the assessment of frailty, information was col-
lected on depressive symptoms, Mini-mental State Ex-
amination (MMSE) score corrected by educational sta-
tus, limitations in basic Activities of Daily Living-
BADL (Katz ADL, as a binary variable), Instrumental
Activities of Daily Living-IADL (Lawton IADL, as a
binary variable), and comorbidity variables (see Supple-
mentary Information (Section A1.1: Cohort Details) for
a detailed description of the assessment of covariates
and eMethods eTable1).

Frailty classification and participant selection

Frailty was as defined by Fried et al. [38]; subjects were
considered to be robust if no criteria of frailty were
present, pre-frail when one or two characteristics were
present, and frail when three or more items were

observed. Participants were drawn from the cohorts to
achieve an approximate ‘frail versus pre-frail and ro-
bust’ ratio of 1 : 3. Eligibility for study inclusion re-
quired data on all five items used to establish frailty
status and phenotype.

Biomarker analysis

The study relied on the analysis of stored biospecimens
(whole blood, cells, serum/plasma, and urine). Biologi-
cal samples were identified for specific analyses and
shipped to the various laboratories performing the dif-
ferent analyses; laboratories remained blinded to subject
phenotype. Candidate biomarkers selected for analysis
included muscle function, insulin/type-1 insulin-like
growth factors (IGF-1) signaling, stress response, car-
diovascular homeostasis, inflammation, cellular senes-
cence, regulation of cell proliferation, and regulation of
gene expression. A detailed description of the candidate
biomarkers and methods of assessment are provided in
the supplementary information (Section B Experimental
profiling) [39, 40].

Subpopulations

The analysis was conducted for two overlapping popu-
lations. In the first population (F1), we considered all
individuals. In the second population (F2), we consid-
ered non-disabled individuals (defined by the absence of
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Fig. 1 Graphical description of the data analysis pipeline. The
figure depicts the flow initiated at the cohorts to the generation of
the FRAILOMIC database. From the cohorts, samples are sent
(single-blind) to the experimental labs. A raw database was

generated by combining the laboratory and the clinical data for
all patients from all cohorts. Harmonization is conducted in order
to have the values of all individuals on the same scale for all
variables (see eMethods: 1.2 Harmonization)
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any restriction in IADL or ADL). The analysis was
conducted separately for each population.

Statistics and the machine learning framework

Figure 2a depicts the analytical design of this study
aimed to identify frailty omic features providing addi-
tional information to that of clinical markers. In brief,
following data harmonization (Step 0), a first filtering
criteria (Step 1) was applied by defining a frailty classi-
fication task using classical clinical biomarkers and one
omic feature at a time. Following this, a framework was
established to uncover all omic variables that could be
combined to provide additional information on the frail-
ty classification problem (Step 2). Finally, all possible
combinations of 2 to 10 variables were considered and
evaluated (Step 3) while also comparing classification
models with only clinical variables or those including
also omic features.

In the analysis, frailty classification models were
used to identify omic features that provided information
additional to that provided by classical clinical markers.
The details for each step are provided below and de-
scribed in the supplemental at eMethods.

Harmonization (Step 0): variables from all cohorts
underwent unified codification, termed harmonization
(Fig. 1: described in eMethods: 1.2).

Omic-relevant variables per omic type (Step 1): to
limit the number of candidates among the more than
35,000 features (see eTable 2), we aimed to robustly
pre-select omic features associated with frailty whose
classification power were not influenced by known clin-
ical markers in the first step: age, gender, depression,
MMSE corrected by education, disability (as binary),
and comorbidity variables. To this end, we implemented
a strategy that combined a permutation-based analysis
and meta-analysis (see eMethods 1.3: Step 1). We de-
fined the following selection criteria in order to (a)
include candidate variables with frailty relevance be-
yond clinical markers, but also (b) to cover the different
data types available:

& All variables pertaining to data types (eTable 2) with
less than five variables were selected for Step 2.

& A variable pertaining to data type with less than 100
variables was selected for the next step (Step 2,
eTable 3) if permuted p-value < 0.01 for any cohort
or meta-analysis (if possible) derived p-value <
0.001.

& A variable pertaining to data type with 100 andmore
variables was selected for the next step (Step 2,
eTable 3) if false discovery rate (FDR) < 0.10 for
any cohort or meta-analysis (when possible) derived
p-value < 0.0001.

Any variables selected using F1 or F2 populations
were included in the Step 2 analysis for both models.

Selection of variables to be considered for the mini-
mal models prediction frailty subtypes (Step 2): to limit
the effect of missing data, we first excluded variables
with more than 20% of missing values. A thousand
imputations were generated for each cohort [41]; to
reduce any bias associated with the imputation of miss-
ing data, the following analysis (Step 2 and Step 3) was
conducted for each imputation.

To select the best combinations of clinical and omic
markers for frailty classification for each imputation and
each cohort, subsets of variables with maximal or close-
to-maximal predictability of frailty [42] were computed;
these were denoted as statistically significant signature
variables (SESv). The maximum number of indepen-
dent variables was set to 10 to address over-fitting. The
analysis of pairs of variables being co-selected or not in
SESv was conducted using network analysis (Fig. 2b
and c). Variables that were present in SESvs in more
than 50% of the permutations were selected for Step 3
(Fig. 2D).

Using classification models of frailty subtypes for
feature selection (Step 3): after selecting the variables
derived from SESv analysis (using Fig. 2d), all combi-
nations of variables from two up to 10 were studied as
classifiers, and the most accurate combinations as frailty
classifiers in each cohort were stored (eTable 4,
eTable 5). For each number of variables, and for all
possible combinations, we estimated three quality mea-
sures for each imputation: the classification error rate
using random forests [43], the cross-validation-derived
classification error rate of random forests, and the area
under the curve (AUC) derived from support vector
machine-derived classifiers [44]. We analyzed each
frailty subgroup (F1, F2) for each cohort and consider-
ing either only clinical variables (clinical, eTable 4, and
eTable 5) or all variables (both). A summary of the best
classification models is depicted in eFig. 1A and eFig.
1B for F1 and F2, respectively.

We identified clinical markers required to be used as
co-variates in any classification model for frailty (ClinS,
see detailed in eMethods 3.3) and those omic features
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Fig. 2 Robust selection of frailty relevant omic features. a Sum-
mary description of the machine learning selection framework (see
“Statistics and the machine learning framework”): after harmoni-
zation (Step 0), a non-parametric and meta-analysis study selects
individual features to be selected (Step 1). Then, a framework is
established to uncover all variables that can be combined to
provide additional information on frailty using statistically signif-
icant signature variables (SESv) (Step 2). Finally, all possible
combinations of two to six variables are considered and evaluated
(Step 3) while also comparing models with only clinical variables
or those, including also omic features. b, c Graphical representa-
tion of SESv-derived network. Node size represents the number of

times (imputations) a node has been selected in a SESv subset.
Edges identify whether nodes have been co-selected in a SESv,
where darker shades depict larger number of times the two nodes
were connected. F1 and F2 are depicted, respectively, in b and c.
In c, gray nodes denote variables associated with disability and
excluded in the analysis. d Each feature is shown in one of the x-
axis windows depending on the percentage of imputations it was
selected in a SESv from the total of 1000 imputations; the y-axis
denotes how many features are in each window. Numbers are
provided separately per cohort. 3-C 3-City Study; AMI: aging
multidisciplinary investigation; TSHA Toledo Study for Healthy
Aging; InCHIANTI Invecchiare in Chianti Study
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with added value in the frailty classification problem as
a final outcome from Step 3 (Table 2).

Characterization of omic selected features

To characterize further the added value of selected omic
features, we computed proportional odd ratios (OR) for
frailty for each selected feature in F1 and F2 separately.
As co-variates in the model, we used ClinS variables.
We computed an ordinal logistic regressionmodel using
bootstrapping (n=1000) and reporting the median and
the 0.025 and 0.975 quantiles to estimate the 95%
confidence intervals for each selected feature. In addi-
tion, and for those features available in more than one
cohort, we computed a meta-analysis-derived OR.

Results

Subject disposition

After excluding subjects with missing values for frailty
status (n=114) according to the Frailty Phenotype
criteria (see “Frailty classification and participant selec-
tion”), we interrogated data from 1522 out of 1636
participants included in the FRAILOMIC database:
TSHA (n=471, robust=178/pre-frail=184/frail=109),
InCHIANTI (n=281, 106/98/77), 3C-Bordeaux
(n=480, 111/269/100), and AMI (n=290, 157/79/54)
(see Supplementary Information eMethods 1.1: Cohort
Details). Clinical characteristics of study participants by
cohort are summarized in Table 1. Mean participant age
was 75.3–82.1 years, and, with the exception of the 3-C
cohort (where the MMSE score was higher), the general
level of education was low. Slowness and low physical
activity were the most frequent frailty criteria met by the
participants, whereas weight loss and exhaustion were
reported least. Available samples per laboratory of anal-
ysis, cohort, number of laboratory (including omics)
biomarkers per data type, and the features selected from
each laboratory in Step 1 are summarized in Supple-
mentary eTable 2.

Assessment of statistically significant signature
variables (SESv)

Networks were derived from identified SESv computed
for each cohort and each imputation. A network edge
characterizes co-occurrence of variables within SESv,

whereas a network node characterizes the prevalence of
variables within SESvs per imputation. The associations
across networks are summarized in Fig. 2b and c for F1
and F2, respectively. As a positive control, age was
recognized as being at the core of all SESv for all
cohorts. A highly connected set of clinical features
common for all cohorts and both frailty subgroups (F1
and F2) was subsequently identified: depression and
waist circumference. As expected, IADL and ADL
disability-associated features were also at the core for
F1-derived networks, where few variables apart from
those related to physical functioning were included.

Assessment of biomarkers

Table 2 shows the associated proportional odds ratio
(OR) for all identified omic features derived from Step 3
analysis (eTable 4, eTable 5) in relation to the frailty
status, differentiating for whether or not disabled indi-
viduals were included in the multinomial logistic regres-
sion, F1 and F2, respectively, and considering in the
models all clinical markers identified in Step 3: ClinS
(see eMethods 3.3) and including (F1) or excluding (F2)
disability markers. Following meta-analysis in popula-
tions including disability (F1), vitamin D3 (OR: 0.81
[95%CI: 0.68, 0.98]), lutein zeaxanthin (OR: 0.82 [95%
CI: 0.70, 0.97]), and miRNA125b-5p (OR: 0.73, [95%
CI: 0.56, 0.97]) demonstrated significant associations
with reduced odds ratios, whereas only one biomarker,
cardiac troponin T (OR: 1.25 [95%CI: 1.23, 1.27]), was
associated with increased odds of being pre-frail and
frail when compared with participants identified as ro-
bust. Only miRNA125b-5p (OR: 0.85 [95% CI: 0.81,
0.88]) was associated with reduced odds ratio scores of
pre-frailty and frailty in models that excluded disabled
individuals (F2), whereas cardiac troponin T (OR: 1.29
[95% CI: 1.21, 1.38]), pro-BNP (OR: 1.47 [95% CI:
1.27, 1.70]), and sRAGE (OR: 1.26 [95% CI: 1.01,
1.57]) were associated with increased odds of pre-
frailty and frailty. Four other biomarkers showed an
association with frailty in some of the cohorts where
they were measured but failed to do in the meta-analy-
sis: retinol (OR: 0.7 [95% CI: 0.52, 0.91]) in the
InChianti and miR454-3 (OR: 0.61 [95% CI: 0.44,
0.84]) in the TSHA cohort showed to be protective in
older people in the model F1, while retinol (OR: 0.62
[95% CI: 0.45, 0.82]) and miR194-5 (OR: 1.39 [95%
CI: 1.02, 1.99]) in the InChianti cohort and
malondialdehyde (MDA: OR: 1.38 [95% CI: 1.09,
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1.78]) in the TSHA cohort showed an association with
frailty in people without disability. Finally, when con-
sidering features only available in one cohort, urine
peptide 56884 was significantly associated in the
InChianti cohort in both F1 (OR: 0.69 [95% CI: 0.48–
0.91]) and F2 (OR: 0.65 [95%CI: 0.47–0.85]); citrate in
F1 (OR: 1.49 [95% CI: 1.07–2.09]) and -CHCH2CH-
moiety in F2 (OR: 0.71 [95% CI: 0.51–0.95]) were
associated with frailty in the TSHA cohort.

Discussion

Our study describes the use of a robust machine learning
framework to identify biomarkers for frailty and their
discriminatory potential in alternative frailty phenotypes
(with and without disability). Underlying causes of
frailty, as assessed by the frailty phenotype, embrace
several potential biological mediators, ranging from
hormones to endothelial function [27, 28], whereas

other theoretical approaches to frailty do not offer such
a wide selection of biological factors possibly associated
with the syndrome. The analysis included among
35,312 omic markers selected based on their relevance
to aging and included metabolism, inflammation, regu-
lation of cell proliferation, regulation of gene expres-
sion, muscle dysfunction, insulin/IGF-1 pathway, stress
responses, and cardiovascular homeostasis. We used a
frailty classification-oriented analysis to identify omic
and non-omic lab features providing added value to that
of clinical markers. Thirteen candidate features emerged
as having associations with frailty beyond that of clas-
sical clinical factors measured in geriatric care, although
only six in ten showed to be associated after a meta-
analysis, and the other three biomarkers were deter-
mined in only one of the cohorts.

It is noteworthy that although some of the features
seemed to be involved in deleterious processes, mainly
related with cardiovascular biomarkers (Troponin-T,
sRAGE, and pro-BNP), others, mainly related to

Table 1 Sociodemographic and health indicators of the selected participants from each cohort.

TSHA AMI InCHIANTI 3C

n 471 290 281 480

Age, years (mean, (SD)) 75.28 (5.77) 75.47 (6.44) 75.53 (6.91) 82.13 (4.27)

Gender, (n, % female) 280 (59.4) 110 (37.9) 163 (58.0) 300 (62.5)

Education (n, % )

Low 442 (94.4) 229 (79.0) 267 (96.0) 123 (25.6)

Intermediate 13 (2.8) 55 (19.0) 11 (4.0) 242 (50.4)

High 13 (2.8) 6 (2.1) 0 (0.0) 115 (24.0)

MMSE, (mean, (SD)) 23.11 (5.15) 25.59 (3.51) 24.93 (3.38) 27.86 (2.11)

MMSE corrected, (n, (%)) 45 (11.4) 9 (3.3) 10 (3.6) 12 (2.6)

Body mass index, kg/m2 (mean, (SD)) 29.13 (5.24) 27.79 (4.46) 27.91 (4.42) 25.77 (4.13)

Smoking

Past smoker (n, (%)) 150 (31.8) 100 (34.6) 106 (37.7) 174 (36.2)

Current smoker (n, (%)) 38 (8.1) 15 (5.2) 0 (0.0) 22 (4.6)

Frailty items

Sedentarity (n, (%)) 139 (29.5) 70 (24.1) 81 (28.8) 278 (57.9)

Weakness (n, (%)) 134 (28.5) 67 (23.1) 90 (32.0) 117 (24.4)

Shrinking (n, (%)) 77 (16.3) 28 (9.7) 26 (9.3) 72 (15.0)

Slowness (n, (%)) 160 (34.0) 67 (23.1) 104 (37.0) 149 (31.0)

Fatigue (n, (%)) 90 (19.1) 42 (14.5) 78 (27.8) 74 (15.4)

Frailty status

Robust 178 (37.8) 157 (54.1) 106 (37.7) 111 (23.1)

Pre-frail 184 (39.1) 79 (27.2) 98 (34.9) 269 (56.0)

Frail 109 (23.1) 54 (18.6) 77 (27.4) 100 (20.8)
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vitamin D and antioxidant systems, seemed to relate to
protective roles (miRNA125-5p, vitamin D3, and lutein
zeaxanthin). This finding reinforces and expands previ-
ous findings [18], obtained in FRAILOMIC using an-
other methodological approach, and provides patho-
physiological support to the observation about the dy-
namic condition of frailty [22–24]. These findings serve
as a starting point for identifying both risk and protec-
tive factors of frailty in future longitudinal studies. Once

again, their inclusion in the classification models is
modulated by the presence or absence of a disability.

In terms of gene expression, miRNA 125b-5p dem-
onstrated a robust association with frailty after meta-
analysis. The 125b-5p miRNA has previously been
linked with several cancers [45] and to the expression
of vitamin D receptors [46]. Here, we also confirm a
possible role of lower vitamin D3 levels with develop-
ment of frailty [47]. Vitamin D has been linked to

Table 2 Odds ratios of candidate omics

TSHA AMI InChianti 3C Meta–odd Meta-pvalue

F1 25-Hydroxyvitamin D3 0.88 (0.67–1.18) 0.63 (0.45–0.85) 0.79 (0.56–1.02) 0.99 (0.73–1.32) 0.81 (0.68–0.98) 0.03

-CHCH2CH- moiety 0.77 (0.56–1.03)

citrate 1.49 (1.07–2.09)

Troponin_T 1.25 (0.92–1.94) 1.25 (0.86–1.89) 1.25 (1.23–1.27) <0.001

Lutein/zeaxanthin 1 (0.76–1.32) 0.84 (0.62–1.1) 0.67 (0.51–0.85) 0.81 (0.55–1.13) 0.82 (0.7–0.97) 0.02

pro-BNP 1.06 (0.77-1.59) 1.58 (0.87–4.49) 1.29 (0.88–1.91) 0.2

Retinol 1.05 (0.79–1.4) 1.14 (0.81–1.51) 0.7 (0.52–0.91) 1.23 (0.92–1.65) 1.01 (0.79–1.29) 0.97

miR194-5p 0.96 (0.7–1.34) 1.24 (0.9–1.73) 1.09 (0.85–1.39) 0.5

miR125b-5p 0.64 (0.47–0.86) 0.85 (0.61–1.13) 0.73 (0.56–0.97) 0.03

miR454-3p 0.61 (0.44–0.84) 1.01 (0.76–1.32) 0.79 (0.48–1.28) 0.33

MDA 1.13 (0.81–1.54) 0.85 (0.64–1.13) 0.98 (0.74–1.3) 0.89

sRAGE 0.98 (0.69–1.35) 1.3 (0.93–1.7) 1.25 (0.93–1.71) 1.17 (0.98–1.39) 0.08

Urine peptide 56884 0.69 (0.48–0.91)

F2 25-Hydroxyvitamin D3 0.97 (0.7–1.33) 0.52 (0.37–0.70) 0.74 (0.54–0.98) 1.04 (0.78–1.40) 0.79 (0.58–1.08) 0.14

-CHCH2CH- moiety 0.71 (0.51–0.95)

citrate 1.19 (0.85–1.68)

Troponin_T 1.25 (0.97–1.88) 1.33 (1.01–1.91) 1.29 (1.21–1.38) <0.001

Lutein/zeaxanthin 1.22 (0.88–1.67) 0.87 (0.65–1.16) 0.61 (0.42–0.82) 0.92 (0.64–1.23) 0.88 (0.66–1.16) 0.36

pro-BNP 1.37 (1.02–2.64) 1.58 (1.20–3.08) 1.47 (1.27–1.7) <0.001

Retinol 1.14 (0.85–1.58) 1.26 (0.94–1.62) 0.62 (0.45–0.82) 1.22 (0.91–1.60) 1.02 (0.74–1.42) 0.9

miR194-5p 0.87 (0.66–1.17) 1.39 (1.02–1.99) 1.1 (0.7–1.74) 0.67

miR125b-5p 0.87 (0.64–1.15) 0.83 (0.6–1.1) 0.85 (0.81–0.88) <0.001

miR454-3p 0.71 (0.49–1.01) 1.07 (0.82–1.4) 0.87 (0.58–1.3) 0.49

MDA 1.38 (1.09–1.78) 0.85 (0.63–1.16) 1.08 (0.67–1.75) 0.74

sRAGE 1.01 (0.70–1.37) 1.35 (1.02–1.76) 1.46 (1.08–2.01) 1.26 (1.01–1.57) 0.04

Urine peptide 56884 0.65 (0.47–0.85)

3C 3-City Study; AMI: Aging Multidisciplinary Investigation; TSHA: Toledo Study for Healthy Aging; InCHIANTI: Invecchiare in Chianti
Study; MDA: malondialdehyde; pro-BNP: pro B-type natriuretic peptide; sRAGE: serum soluble receptor for advanced glycation end
products
a Boot strapping-based median and 95% confidence interval of the odds ratios derived from the ordinal regression analysis. The columns
protective and risk enumerate the number of cohorts where the omic variable was found significant with an odds ratio below 1 and over 1,
respectively. In each model, the controlling factors were the clinical variables, including age, gender, and depression as omnipresent
variables plus summary measures of ADL and IADL for F1
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several components involved in the development of
frailty and/or its consequences, including sarcopenia
and low bone density [48]. The role of bone in frailty
is also highlighted by the relationship with citrate in the
only cohort where it was determined [49].

Our findings suggest a relevant role for vitamin
D3, oxidative stress, and cardiovascular system in
older people with pre-frailty and frailty, with poten-
tial relationships among them. Inclusion of MDA (an
indicator of oxidative stress) along with retinol and
lutein zeaxanthin (two well-known antioxidants) un-
derscores the important role of oxidative balance.
This fits with our recent demonstration of a decreased
expression of genes implicated in the cellular re-
sponse to stress [20], suggesting that a low defense
to oxidative insult, more than increased oxidative
stress, is a core aspect of development. The observa-
tion that increased levels of sRAGE were also asso-
ciated with the presence of frailty appears to further
support the role of oxidative stress.

Advanced glycation end products (AGE) and the
cell-bound receptor called receptor for AGE (RAGE)
are implicated in the pathogenesis of numerous diseases.
Soluble receptor for AGE (sRAGE) counteracts the
adverse effects of AGE-RAGE interaction by compet-
ing with RAGE for binding with AGE. Low levels of
serum sRAGE are proposed as a biomarker for comor-
bidities associated with aging and related to increased
oxidative stress [50], particularly in people with cardio-
vascular risk [51–53]. Current research supports the
validity of the high ratio AGE/sRAGE as a universal
biomarker for such diseases [54]. Interestingly, cardiac
troponin T, a regulatory protein integral to muscle con-
traction, and the propeptide of the brain natriuretic pep-
tide (pro-BNP), both associated with cardiac pathology
[55, 56], were increased in participants who expressed
the frailty phenotype. Cardiac troponin T is also in-
volved in muscle contraction [57] and pro-BNP in blood
pressure regulation [58]. The increase in this highly
specific cardiac biomarker fits with the biological and
functional impairment of cardiac muscle often associat-
ed with frailty.

Our study provides a first large-scale attempt to
test these assumptions in the context of aging and
frailty. Despite assessing more than 35,000 omic
variables in a controlled statistical manner, using
carefully harmonized cohorts, it is clear that any
emergent predictive power is undermined by partici-
pant heterogeneity. Only three of 13 biomarkers (pro-

BNP, sRAGE, and vitamin D3) were observed with
significant OR in more than one cohort (Table 2).
This observation appears to stress the need for further
subject stratification as shown from a less clinical
point-of-view in a recent study [59], as it is also the
case in other clinical syndromes.

Our study has limitations. The observed heterogene-
ity of our study results is most likely explained by the
different characteristics of the populations included in
the participant cohorts. The heterogeneity reflects not
only differences in cultural and socioeconomic back-
ground, but also potentially different frailty subtypes.
In addition, while for an omic study our sample size is
adequate, it was only powered to identify an odds ratio
of 1.7, meaning that only those omic factors with a
substantial association with frailty could be identified.
Major strengths of this study are the breadth of omic
markers—representing (a) inflammation, (b) regulation
of cell proliferation, (c) regulation of gene expression,
(d) metabolism/muscle dysfunction, insulin—IGF1 sig-
naling pathway/stress response, and cardiovascular ho-
meostasis, measured in highly specialized laboratories,
coupled with careful harmonization across well
phenotyped, independent European cohorts and the rig-
orous statistical analysis to minimize the occurrence of
false-positive biomarkers. The study’s main contribu-
tion is the building of sets of biomarkers (clinical and
laboratory), reflecting the alteration in several physio-
logical systems, providing a comprehensive consider-
ation of the multi-systemic nature of frailty. Moreover,
our results suggest that the contribution of those bio-
markers to the diagnosis of frailty might differ depend-
ing upon the presence of a disability.

Concluding this discussion, using a robust methodo-
logical approach, we identified six omic and lab bio-
markers related to three main pathophysiological path-
ways (vitamin D, oxidative stress, and cardiovascular
system) which are strongly linked to frailty. In addition,
we provide evidence about the potential involvement of
other seven biomarkers. These biomarkers change ac-
cording to the disability status and have the potential to
provide additional information of frailty and, in the
future, may allow improving diagnostic accuracy for
frailty and modeling beyond clinical parameters usually
assessed in medical practice [60]. Validation of these
biomarkers in independent cohorts and in different clin-
ical phenotypes is of paramount importance as well as
the evaluation of their biological role in the onset of
frailty and its prognosis.
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