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Abstract A decline in mitochondrial quality and activ-
ity has been associated with normal aging and correlated
with the development of a wide range of age-related
diseases. Here, we review the evidence that a decline in
the levels of mitochondrial-derived peptides contributes
to aging and age-related diseases. In particular, we dis-
cuss how mitochondrial-derived peptides, humanin and
MOTS-c, contribute to specific aspects of the aging
process, including cellular senescence, chronic inflam-
mation, and cognitive decline. Genetic variations in the
coding region of humanin and MOTS-c that are associ-
ated with age-related diseases are also reviewed, with
particular emphasis placed on how mitochondrial vari-
ants might, in turn, regulate MDP expression and age-
related phenotypes. Taken together, these observations
suggest that mitochondrial-derived peptides influence or
regulate a number of key aspects of aging and that
strategies directed at increasing mitochondrial-derived
peptide levels might have broad beneficial effects.
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Introduction

Mitochondria are multifaceted organelles. They are the
primary energy-generating system and, additionally,
they participate in intermediary metabolism, calcium
signaling, apoptosis, and retrograde signaling [1–4].
Given these well-established functions, it might be ex-
pected that mitochondrial dysfunction would give rise to
a predictable set of defects in all tissues. Indeed, mito-
chondrial dysfunction has been associated with normal
aging (Fig. 1) and correlated with the development of a
wide range of age-related diseases, such as cardiovas-
cular disease, diabetes, and neurodegeneration [5–8].
Mitochondrial membrane potential is the central bioen-
ergetic parameter that controls respiratory rate, ATP
synthesis, and the generation of reactive oxygen species
[9]. Decreases of mitochondrial membrane potential
have been found in a variety of aging cell types [9].
During ATP synthesis, the tricarboxylic acid (TCA)
cycle and oxidative phosphorylation generate metabolic
intermediates, which play an important role in regulat-
ing the transcriptional and epigenetic states of cells [1].
For example, TCA metabolism in the mitochondria
matrix produces alpha-ketoglutarate, which is important
in maintaining the pluripotency of embryonic stem cells
[10]. The NAD+/NADH ratio is important for lysosome
function and epigenetic modification in the nuclear ge-
nome [1, 11]. Levels of these metabolites decline in
tissues as they age [12]. Mitochondria are crucial for
storing calcium to maintain calcium homeostasis [2].
Calcium transfer to mitochondria is finely regulated,
but excess calcium disturbs oxidative phosphorylation
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and leads to cell death that is observed during aging
[13]. In addition to calcium, mitochondria release ATP,
ROS, Ac-CoA, and NAD+, which serve as retrograde
signals that have a variety of cellular effects [4, 14].

Mitochondrial-derived peptides (MDPs) are new-
ly discovered entities in the retrograde signaling
from the mitochondria [15]. These molecules are
essential components of mitochondria that activate
signaling pathways and modulate nuclear gene ex-
pression [15, 16]. During aging, the levels of these
peptides decline, leading to loss of physiological
function [17–19]. The levels of MDPs are also as-
sociated with age-related diseases [20–22]. Modify-
ing mitochondrial biology, therefore, has been pro-
posed as a therapeutic target for preventing age-
related disease. For example, metformin—a drug
that acts on the mitochondria—is a leading thera-
peutic candidate for aging that is currently being
studied in large-scale clinical trials [23]. However,
despite data showing mitochondria can be modified
to attenuate aging, the precise molecules that medi-
ate these mitochondrial effects remain unclear. In
this review, we discuss how MDPs contribute to
the process of aging and age-related diseases. We
will review the discovery of MDPs, their function,
and their relation to aging and age-related diseases,
with specific emphasis on the two most studied
peptides called humanin and MOTS-c.

Mitochondrial-derived peptides

Traditionally, it has been known that mitochondrial
DNA encodes 13 mRNAs, 22 tRNAs, and 2 rRNAs.
Emerging evidence suggests that small open reading
frames in the mitochondrial DNA encode small peptides
that exert biological function in various tissues and
conditions [24]. The peptides encoded from the mito-
chondrial small open reading frames are called
mitochondrial-derived peptides (MDPs) [25]. Since the
first MDP named humanin was discovered in 2001,
seven more peptides have been identified that play
important roles in both physiology and pathophysiology
[26]. The levels of some MDPs declined with age in
mice and humans, and the administration of some
MDPs exert beneficial effects in in vitro and in vivo
models of age-related disease including Alzheimer’s
disease, cardiovascular disease, and type 2 diabetes
[17–19].

Humanin and age-related diseases

Humanin, which is encoded in the 16S rRNA of the
mitochondrial DNA, is the first discovered MDP.
Humanin has historically been shown to have strong
neuroprotective effects against Alzheimer’s disease
(AD). In its initial discovery, a pool of cDNA was
isolated from the relatively intact brain area called the
occipital lobe from the postmortem brain of an AD
patient to screen for a cDNA that protects against AD-
specific neurotoxicity. A cDNA carrying humanin was
found to have provided protection against AD-specific
neurotoxicity, specifically through its interactions with
the AD-associated protein, amyloid beta (Aβ) [27, 28].

Since the first discovery, studies have shown that
humanin may play an important protective role against
cognitive decline and associated neurological disorders
such as Alzheimer’s disease (AD). The humanin path-
way involved in cognitive function is complex. Briefly,
the functional pathway involves inhibiting the release of
cytochrome c by interacting with the pro-apoptotic pro-
teins Bax, Bid, and Bim [29]. Additionally, humanin
localizes to the lysosomal membrane surface and thus
increases the activation of chaperone-mediated autoph-
agy [30]. Humanin has also been shown to have an
overlapping function with insulin-like growth factor 1
(IGF-1) and its associated binding partners, which may
impact its participation in associated cell survival path-
ways [31]. More specific to AD, humanin also mediates
signaling cascades associated with AD pathology,
which will be discussed later in more detail.

Upon further analysis, many additional studies have
demonstrated the neuroprotective role of humanin in
Aβ-induced toxicity [32–34]. More specifically,
humanin may suppress Aβ-induced toxicity and fibril
formation by activating pro-survival signaling cascades
associated with kinases including extracellular signal-
regulated kinases 1 and 2 (ERK1/2), AKT1 kinase, and
tyrosine kinases associated with STAT3 and caspase-3
activation [35, 36]. Studies using in vivo mouse models
have further confirmed the observed protective associa-
tion between humanin and AD. Previous models studied
this association by first injecting mice with Aβ25–35 to
induce AD behavior, then introducing the potent
humanin derivative S14G-HN to demonstrate its effects
[37]. Currently, through the use of transgenics, more
prominent models have been created. One such model,
the double transgenic mouse APPswe/PS1de9, is com-
monly used for AD research, as it shows the Aβ-

1114 GeroScience (2021) 43:1113–1121



induced neuropathology and many other cognitive char-
acteristics associated with the disease. Treating
APPswe/PS1de9mice with S14G-HN has demonstrated
the direct neuroprotective effects of humanin, through
its reduction of cerebral plaque deposition, neuroinflam-
mation, and levels of insoluble Aβ protein [38]. Other
studies have used S14G-HN treatment in the triple
transgenic mouse model containing the mutations
APPswe/taup310L/PS1de9 and have generated similar
results [39].

While humanin has been directly associated with AD
pathology, the peptide has also recently been shown to
prevent overall cognitive decline associated with aging.
More specifically, in vivo rat models have shown that
humanin release from astrocytes may regulate synaptic
plasticity associated with cognitive function [40]. Addi-
tionally, a recent study has demonstrated that the
humanin derivative S14G-HN inhibits diazepam
(DZP)–induced cognitive impairment in mice. This sug-
gests a modulatory relationship between humanin and
cholinergic neurotransmitters or GABA-associated neu-
rons that are impacted by DZP exposure and linked to
cognitive function [41]. Taken together, humanin plays
an important neuroprotective role that may improve the

treatment of age-related cognitive decline and neurolog-
ical disorders such as AD.

Evidence shows that humanin may also play an im-
portant protective role in cardiovascular disease (CVD),
which represents the leading cause of death worldwide
in both developed and developing countries [42]. Age
represents the largest risk factor for CVD, resulting in
diseases such as cardiac fibrosis, atrial fibrillation, and
heart failure [43]. Circulating levels of humanin have
been shown to decrease in both humans and mice in
aging populations [44]. Interestingly, patients with cor-
onary endothelial dysfunction have been shown to have
significantly lower humanin levels compared with those
with normal coronary endothelial function. Humanin
administration showed protective roles in CVD-related
phenotypes. An analog of humanin (HNG) has been
shown to have protective effects against myocardial
fibrosis in aged C57BL/6N mice [45]. Humanin also
attenuated renal microvascular remodeling, inflamma-
tion, and apoptosis in the early stage of kidney disease in
hypercholesterolemic ApoE(−/−) mice [46]. Treatment
with HNG resulted in the reversal of cardiomyocyte
apoptosis in aged mice, as well as a reduction in colla-
gen deposits and fibroblast proliferation [45]. Similarly,

Fig. 1 Mitochondrial alteration during aging. MPTP, mitochondrial permeability transition pore; MCU, mitochondrial calcium uniporter;
MDPs, mitochondrial-derived peptides
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in rats with myocardial ischemic/reperfusion (I/R) inju-
ry, high doses of HNG resulted in increased humanin
production in damaged myocardium, as well as signif-
icantly decreased cardiac arrhythmia, cardiac mitochon-
drial dysfunction, myocardial infarct size, and left ven-
tricular dysfunction [47]. These effects are largely due to
humanin’s ability to attenuate mitochondrial dysfunc-
tion by protecting against oxidative stress [47–49]. Con-
gruently, another study showed that HNG directly pro-
tects cardiac mitochondrial function against H2O2 by
decreasing complex I activity, offering a mechanism
for how HNG maintains proper cardiac mitochondrial
function in myocardial I/R injury [48, 50]. Collectively,
these results indicate that humanin plays a
cardioprotective role that may be diminished as aging
occurs and endogenous humanin levels are decreased.

Evidence for humanin as an anti-aging peptide

Humanin levels have been associated with many age-
related diseases, and treatment with humanin has been
able to protect against many age-related diseases, such
as AD, cancer, fibrosis, heart disease, and age-related
macular degeneration models [33, 45, 51–54]. Humanin
also affects and is affected by known anti-aging path-
ways such as IGF-I [55]. Over an organism’s lifespan,
humanin levels decrease in many different organisms
including mice, monkeys, and humans [19]. Interesting-
ly, the naked mole rat, a model of negligible senescence
[56], has only a small trend towards a decrease in
humanin levels over its 30-year lifespan, further
supporting the idea that humanin is related to biological
aging [19].

The relationship between aging and humanin has
been further elucidated in two recent papers [57]. In
mice, humanin administration to female mice beginning
in midlife (18 months of age) was able to increase
healthspan as measured by a number of different param-
eters [57]. In these experiments, humanin decreased
functional cognitive decline as measured by Barnes
maze, Y-maze, and rotarod, and decreased overall in-
flammation as measured by IL-6, IBA-1, and IL-10.
This improvement in cognition was not likely due to
an increase in neurogenesis as there was no significant
difference between the groups. Furthermore, humanin
treatment had a positive effect on metabolic aging and
reduced midlife adiposity by decreasing visceral fat and
increasing lean body mass [57]. The levels of IGF-I

were also reduced in these mice. Perhaps due to an
inadequate dose or late start of the injections, there
was no significant change in overall survival, contrary
to what we saw in healthspan.

To further support that humanin is a bona fide anti-
aging peptide, we generated two transgenic models,
mice and the worm model C. elegans. Humanin was
able to induce a small, but significant, increase in
lifespan in transgenic worms that was dependent on
daf-16/FOXO, suggesting that the insulin/IGF signaling
pathway is critical for the increase in lifespan by
humanin. The humanin transgenic mice phenocopied
several of the worms’ phenotypes and aging studies
are currently ongoing in our lab. The phenotype of these
mice is similar to mice with reduced IGF-I, including a
reduction in body size and reduced fecundity [58].

Turning to humans, we looked at humanin levels in
Alzheimer’s disease patients and found a decrease in
CSF levels. We next examined the circulating humanin
levels in children of centenarians, who have a greater
chance of becoming a centenarian themselves [19]. Re-
markably, the offspring of centenarians have a much
higher level of humanin compared with age-matched
controls, further supporting the idea that humanin plays
a role in aging in humans. Although humanin has been
associated with a number of age-related diseases and its
use has been able to prevent many age-related diseases,
until recently, the link between humanin and aging was
only a hypothesis. With these new series of papers, we
have shown that humanin is sufficient to increase
lifespan in worms and is likely to increase lifespan in
mammals as well.

MOTS-c

Another mitochondrial-derived peptide that has been
characterized as an aging modulator is MOTS-c.
MOTS-c is encoded by a small open reading frame
within the mitochondrial 12S rRNA gene [17].
MOTS-c was initially characterized as an “exercise
mimetic,” as it improves blood glucose regulation in
age-dependent insulin-resistant mice models [59]. The
effects of MOTS-c on insulin sensitivity is mostly ob-
served in muscle tissue. In addition to the AMPK-
specific effects of MOTS-c, this peptide has been re-
ported to translocate to the nucleus and interact with
NRF2 during cellular distress [16]. The MOTS-c/NRF2
interaction promotes the upregulation of genes involved
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in mitochondrial protection, andMOTS-c overexpression
potentiates NRF2 signaling. However, during replicative
senescence, MOTS-c levels decrease, suggesting that
one-way aging progresses is through reduced MOTS-c
expression [60]. Indeed, MOTS-c levels decline with age
in mice skeletal muscle and circulation [17].

MOTS-c levels also decrease with age in humans. In
middle-aged (45–55 years) and old-aged (70–81) indi-
viduals, circulating MOTS-c levels were 11% and 21%
lower compared with those in younger individuals (18–
30 years), respectively [61]. Furthermore, MOTS-c
levels were reported to be strongly correlated to the
diabetic Matsuda and Homeostatic Model Assessment
(HOMA) indexes. That is, MOTS-c levels were higher
in lean individuals with less-efficient glucose regulation,
perhaps as a compensatory mechanism that is also
weight-dependent [21]. In addition, levels of MOTS-c
were lower in human subjects with coronary endothelial
dysfunction, and elevating MOTS-c levels in mice
models of endothelial dysfunction attenuated pathology
[20]. However, unlike in reports focused on mice,
MOTS-c was highest in skeletal muscle in aged humans
[61]. This data specifically showed that, in young indi-
viduals, plasmaMOTS-c positively correlates withmus-
cle MOTS-c, but in older individuals, such a correlation
was not observed. That MOTS-c is increased in human
skeletal muscle and decreased in human plasma suggest
human tissue–specific regulation occurring during the
aging process.

The decline of MOTS-c levels during aging and the
correlation between MOTS-c levels and pathological
conditions suggest that higher MOTS-c levels may pro-
tect against age-related diseases. Indeed, MOTS-c ad-
ministration to mice provides beneficial effects in mul-
tiple pathological conditions such as insulin resistance
[17], ovariectomy-induced metabolic dysfunction [62],
and bone loss [63].

Exercise is one of the interventions that prevents age-
related adverse effects in mice and humans. A recent
study demonstrated that acute high-intensity aerobic
exercise upregulated MOTS-c expression in the skeletal
muscle, which increased plasma MOTS-c levels as well
[64]. Though the detailed mechanism has not been
investigated, skeletal muscle contraction may upregu-
late MOTS-c expression similar to humanin expression
in isolated mouse skeletal muscle [61, 65]. Therefore, it
suggests that skeletal muscle is an important organ for
MOTS-c secretion and that exercise increases MOTS-c
expression as well as humanin.

It is now widely accepted that regular aerobic exer-
cise is one of the therapeutic and preventive methods for
metabolic disorders [66–68], and its beneficial effects
are mediated by aerobic exercise-induced signaling,
such as AMPK and SIRT1 [69]. The first report on
MOTS-c by Lee et al. has demonstrated that the
metabolic-protective effect of MOTS-c was achieved
in an AMPK-dependent manner, suggesting that aerobic
exercise and MOTS-c share the same signaling pathway
in the skeletal muscle [17]. Moreover, a recent study
demonstrated that 2 weeks of MOTS-c injection in-
creases running capacity in both young and old mice
[64]. Though the molecular targets of MOTS-c have not
yet been identified, these observations suggest that
MOTS-c has potential aerobic exercise training mimetic
effects.

Mitochondrial single nucleotide polymorphisms
and MDPs

Mitochondrial single nucleotide polymorphisms
(SNPs) have also been associated with various age-
related diseases. Previous studies suggest that mito-
chondrial SNPs could influence various mitochon-
drial functions related to mitochondrial oxidative
phosphorylation, mitochondrial reactive oxygen spe-
cies, and mitochondrial pH [70]. Recent studies
focusing on the mitochondrial SNPs at the region
of humanin and MOTS-c provide new insights re-
garding how mitochondrial SNPs impact the
mitochondrial-derived peptides, which in turn con-
tribute to age-related diseases. A MT-2607 A>G
polymorphism is located in the coding region of
humanin and is associated with lower circulating
levels of humanin and higher cognitive decline in
the African-American population [57]. These results
are well aligned with previous studies that show that
humanin administration improves cognitive func-
tion. Another mitochondrial SNP in the MOTS-c
coding region, the MT-1382 A>C polymorphism,
which causes a K14Q amino acid replacement, was
found in 5–10% of the East-Asian populations [71].
We found that the C allele carriers of this SNP
showed a significantly higher visceral fat area,
which is a risk factor for T2D, than the A allele
carriers in a small Japanese cohort. Additionally, a
meta-analysis of three independent Japanese cohorts
(n = 27,527) demonstrated that male subjects with
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the C allele of MT-1382 A>C polymorphism exhib-
ited a higher prevalence of T2D than those with the
A allele of the same polymorphism [72]. Interesting-
ly, men with the C allele of the MT-1382 A>C
polymorphism exhibited a 65% greater rate of T2D
only in the sedentary group, demonstrating a
kinesio-genomic interaction [72]. Moreover, SNP
carriers exhibited dramatically elevated circulating
MOTS-c levels in Japanese populations, implying
that K14Q MOTS-c acts as a bioinactive form of
MOTS-c, which is similar to bioinactive leptin as-
sociated with obesity and bioinactive insulin leading
to MODY diabetes [73, 74]. To support these human
observations, MOTS-c administration in high-fat-fed
mice resulted in reduced weight and improved glu-
cose tolerance in male mice, but not in K14Q
MOTS-c–treated mice [17, 72]. K14Q MOTS-c also
did not elicit the insulin-sensitization that is ob-
served with wild-type MOTS-c in vitro [72]. This
combination of human, mice, and cell line data
suggests that the MT-1382 A>C polymorphism is
one of the genetic risk factors for T2D in the East-
Asian population as the SNP carriers produce K14Q
MOTS-c, a bioinactive form of MOTS-c.

Conclusions

Recent work aimed at establishing hallmarks of aging
may contribute to building a framework for future stud-
ies on the molecular mechanisms of aging, as well as aid
in designing interventions to improve human healthspan
[75]. Emerging studies related to mitochondrial-derived
peptides indicate that MDPs may be closely related to
mitochondrial dysfunction, deregulated nutrient-

sensing, cellular senescence, and loss of proteostasis
(Fig. 2). MDPs have beneficial effects on these process-
es, and yet they progressively decrease during aging,
which can negatively impact said processes. In vivo
studies with gain- or loss-of-function will be necessary
for moving beyond correlative analyses and for provid-
ing causal evidence in favor of these proposed MDPs
and their role in the aging process and age-related dis-
eases. Technical advances in CRISPR and other gene
editing targeting mitochondria will help develop the
animal models and will eventually resolve many of the
pending issues. Hopefully, combined approaches will
allow for a detailed understanding of the mechanisms
underlying the MDPs in aging and will facilitate future
interventions for improving human healthspan and
longevity.
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