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Brain network dynamics during working memory
are modulated by dopamine and diminished in
schizophrenia
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Dynamical brain state transitions are critical for flexible working memory but the network
mechanisms are incompletely understood. Here, we show that working memory performance
entails brain-wide switching between activity states using a combination of functional
magnetic resonance imaging in healthy controls and individuals with schizophrenia, phar-
macological fMRI, genetic analyses and network control theory. The stability of states relates
to dopamine D1 receptor gene expression while state transitions are influenced by D2
receptor expression and pharmacological modulation. Individuals with schizophrenia show
altered network control properties, including a more diverse energy landscape and decreased
stability of working memory representations. Our results demonstrate the relevance of
dopamine signaling for the steering of whole-brain network dynamics during working
memory and link these processes to schizophrenia pathophysiology.
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orking memory is an essential part of executive cog-

nition depending on prefrontal neurons functionally

modulated through dopamine D1 and D2 receptor
activation!-3. The dual-state theory of prefrontal dopamine
function links the differential activation of dopamine receptors to
two discrete dynamical regimes: a D1-dominated state with a high
energy barrier favoring robust maintenance of cognitive repre-
sentations and a D2-dominated state with a flattened energy
landscape enabling flexible switching between states*. Recent
accounts extend the idea of dopamine’s impact on working
memory from a local prefrontal to a brain-wide network
perspective®~7, emphasizing the dual role of dopamine in reg-
ulating the complex interplay between striatal and prefrontal
circuits critical for balancing the stability-flexibility tradeoff.
Indeed, several lines of research support the notion that dopa-
mine actions in frontal-parietal regions contribute to both
maintaining cortical representations®-10, and the flexible switch-
ing between different representations>!1-12. Notably, a large body
of evidence further demonstrates that the latter process addi-
tionally involves striatal-cortical interactions®?, suggesting a
gating function of the striatum for cortical memory
representations’. These accounts highlight the contribution of
widespread neural circuits and their regulation by dopamine to
working memory.

Several lines of work support the idea that proper working
memory execution requires the ordered transition through global
brain states and the flexible reconfiguration of brain-wide
interactions!3-1>. Notably, multiple studies have demonstrated
that these temporal reconfigurations are altered in
schizophrenia!316. The complex dynamics of state transitions
unfold upon the underlying structural scaffold whose architecture
shapes the structure-function relationshipl7-18 and constrains the
dynamic repertoire enabling executive functioning!®-2!. How-
ever, it remains unclear how the brain controls, steers, and guides
transitions between these different states and which brain com-
ponents underlie the coordinated adaptation of brain-wide
activity patterns.

A promising tool to study these questions and concepts derived
from the dual-state theory is network control theory (NCT). NCT
has been recently introduced to neuroscience???3 and can be used
to model brain network dynamics as a function of inter-
connecting white matter tracts and regional control energy?3.
Such dynamics are framed upon brain states, which are defined as
a whole-brain pattern of activity at a given moment in time.
Based on the structural connectome, NCT can be used to examine
the landscape of brain activity states: That is, which states would
the system have difficulty accessing, and more importantly, which
regions need to be influenced and to what extent to make those
states accessible or to maintain those states?4.

Here, using NCT, we study transitions between (and the sta-
bility of) whole-brain neural states measured by fMRI during a
well-established working memory task (Fig. 1). Building on a
brain parcellation spanning both cortical and subcortical areas
(see “Methods”), we define brain states as individual brain activity
patterns related to a working memory condition (2-back) and to
an attention control condition requiring motor response (0-back)
in a sample of 178 healthy individuals undergoing fMRI. Sepa-
rately, we obtain structural connectomes from fiber tracking
along white matter tracts measured by diffusion tensor imaging
(DTI) data acquired in the same participants. We approximate
brain dynamics locally by a simple linear dynamical system and
compute the local and global control energy necessary to drive or
maintain certain activity patterns.

Within this statistical framework, we test the following pre-
dictions of the dual-state theory of brain network function and
evaluate their implications for schizophrenia. Specifically, (I) we

posit that brain states related to high cognitive effort are harder to
maintain, e.g., exhibit decreased stability and require more con-
trol energy to be accessed, than states related to low cognitive
effort. (II) Using individual predicted gene co-expression indices
for dopamine receptors, we test the hypothesis that the stability of
brain states should be related to D1 receptor function, while D2
receptor function should be associated with decreased efforts to
flexibly switch between global activity patterns. (III) We further
validate these hypotheses and provide mechanistic support by
pharmacologically blocking D2-receptor function in vivo, which
should drive the system into a state where the switching between
activity patterns requires more effort, e.g., demand more control
energy. Finally, (IV) by considering the known cognitive deficits
and structural network alterations in schizophrenia, we test our
prediction that patients experience a reduced ability to control
global reconfigurations of brain states.

Results

Brain state stability and control over brain state transitions in
health. We begin by asking how the brain transitions between
different cognitive states during the performance of a well-
established N-back working memory task. We define individual
brain states as spatial patterns of P estimates associated with
activity across brain regions of interest during a working memory
condition (2-back) and during an attention control condition
requiring motor response (0-back). It is important to note that
our definition of brain states relates to the statistical spatial pat-
tern of P estimates from a general linear model and does not
reflect neuronal activity occurring en masse as, for example, in
neurophysiological animal experiments. To quantify the energy
efforts associated with a specific transition from an initial state x,
to a target state xt, we approximate brain dynamics locally by a
simple linear dynamical system,

x(t) = Ax(¢) + Bu(?) €Y

where x(f) is the brain state of the system, A is a structural
connectome inferred from DTI data, u(¢) is the control input, and
B is a matrix describing which regions are control nodes. After
finding the optimal control input u that enables a transition, the
control energy of each node is calculated as the squared integral
over time of u; intuitively, this quantity measures the control
input that the node has to exhibit to facilitate the transitions from
the initial state to the target state. Similarly, the stability of a brain
state can be defined as the inverse control energy needed to
maintain a specific state. In this framework, control energy can be
interpreted as the effort of a brain region needed to steer the
activity pattern of itself and its connected brain regions into the
desired final activation state; relatedly, stability can be interpreted
as the effort of a brain region needed to maintain a given activity
pattern of itself and its connected brain regions. For a more
detailed mathematical description of the network control fra-
mework, please see the “Methods” section and Supplemental
Information.

Following the control theory framework, we started by
computing the stability of both cognitive states as well as the
control energy of the transitions between them in a sample of
healthy individuals (Table 1). As expected, the cognitively more
demanding 2-back brain state was less stable (i.e., required higher
energy for maintenance) than the motor control state (Fig. 2a;
repeated-measures ANOVA: main effect of 0- vs. 2-back stability:
F(1,173) = 66.80, p<0.001, age, sex and brain activity as
covariates of non-interest). Further, the stability of the 2-back
state was significantly associated with working memory accuracy
(Fig. 2b; b=0.274, p=0.006, age, sex, and brain activity as
covariates of non-interest). These findings suggest that more
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Fig. 1 Theory and methods. A summary of the methods to assess brain dynamics using network control theory. We use a multimodal atlas and apply it to
both diffusion tensor imaging to obtain a structural connectome, and to functional magnetic resonance imaging to obtain activation patterns during O-back
and 2-back working memory tasks. Finally, we use network control theory to explain transitions between 0-back and 2-back states based on the underlying
structural connectome. Here, xo denotes the initial state of the system, x; denotes the desired final state, x(t) is the state of the system at time t, A is the
wiring diagram of the underlying network, B denotes an input matrix defining the control nodes, and u(t) is the time-dependent control signal. For further

mathematical details, please see the “Methods” section.

Table 1 Characteristics for the healthy control and schizophrenia samples.
Healthy controls Matched controls Individuals with schizophrenia t or y* value P value
(n =178) (n =80) (n =24)
Demographic information
Age (year) 33.05+10.98 35.49 £10.55 32.25+10.33 132 0.188
Sex (male/female) 93/85 46/34 18/6 2.39 0.122
Years of education 13.66 +2.41 13.65+2.73 1.68£1.45 2.72 0.008
Psychological assessments
MWTB 30.74£3.84 30.32+4.83 29.13+£3.27 m 0.272
PANSS positive n.a n.a. 1250+6.76 - -
PANSS negative n.a n.a 1517 +6.76 - -
BDI n.a n.a. 12.42+7.71 - -
Years of illness n.a. n.a. 10.22+9.32 - -
fMRI task performances
Accuracy (%) 80.10 £18.35 68.75+19.33 65.54+£19.79 0.70 0.479
Reaction time (ms) 496.15 £ 279.50 589.21+286.80 627.06 £306.99 -0.6 0.578
Head motion parameters
fMRI: Mean frame-wise displacement (mm) 0.15+0.06 0.20+£0.09 0.19+0.08 —1m 0.270
DTI: Mean absolute root-mean-square 1.27+0.74 1.37+0.89 1.34+0.59 0.18 0.860
displacement (mm)
DTI: tSNR 5.63+0.45 5.52+0.49 526+0.49 2.21 0.028
Source data are provided with this paper.
MWTB Mehrfach Wortschatz Intelligenztest B, a German multiple-choice vocabulary intelligence test as a measure of premorbid IQ, PANSS positive and negative symptom scale, BDI Beck's depression
inventory, DTI diffusion tensor imaging, tSNR temporal signal-to-noise.

stable 2-back network representations in the form of whole-brain
activity patterns?> support better working memory performance.

We next studied how the brain flexibly changes its activity pattern
between states. Transitioning into the cognitively more demanding 2-
back state required more control energy than the opposite transition
(Fig. 2¢; repeated-measures ANOVA: F(1174) =27.98, p=0.001,
age, sex and difference in brain activity as covariates of non-interest).
To investigate which brain regions are the most important controllers
in these transitions, we sought to quantify the influence that a single
brain region has on the entire system’s dynamics during state
trajectories. To that purpose, we computed the control impact of each
node by iteratively removing one brain region from the network and
re-computing the change in control energy. Exploratory visualization
of the 20% of brain regions that exhibited the highest control impact
in both transitions suggested that prefrontal and parietal cortices steer
both types of transitions, while default-mode areas are preferentially

important for switching to the more cognitively demanding state
(Fig. 2d; see SI for illustration of alternative thresholds).

Brain state stability and control energy relate to predicted
frontal dopamine D1 and D2-receptor expression. Following
from the dual-state theory of network function, the stability of
task-related brain states should be related to prefrontal D1
receptor status. To estimate individual prefrontal D1 receptor
expression in each participant, we utilized methods relating
prefrontal cortex D1 and D2 receptor expression to genetic var-
iation in their co-expression partner, thereby enabling us to
predict individual dopamine receptor expression levels from
genotype data across the whole genome?%%7. Specifically, previous
work using weighted Gene Co-expression Network Analysis?®
applied on the Braincloud dataset of post-mortem DLPFC gene
expression?® had identified 67 non-overlapping sets of genes
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Fig. 2 Controllability and stability of brain dynamics during working memory. a The stability of the 2-back state reflecting working memory activity is
lower than that of the 0-back state reflecting motor and basic attention control activity (F(1173) = 66.80, p < 0.001). Red lines indicate mean values and
boxes indicate one standard deviation of the mean. b Associations of 2-back stability with working memory performance (accuracy: b =0.274, p = 0.006;
covarying for age, sex, and mean activity). ¢ Steering brain dynamics from the control condition to the working memory condition (0-2) requires more
control energy than vice versa (F(1174) = 27.98, p < 0.001). d Unique and common sets of brain regions contributing to the transition from 0-back to 2-
back and the transition from 2-back to O-back, respectively. For illustrative and exploratory purposes, we projected the computed control impact of each
brain region for the respective transitions on a 3D structural template, displaying the regions with the 20% highest control impact for each transition (see
Sl for the illustration of alternative thresholds). Black lines indicate mean, dark boxes indicate 1 standard deviation, light boxes indicate 1.96 SEM and
asterixis denote significance at p < 0.05. Source data are provided with this paper.

based on their expression pattern. The co-expression gene sets
including DRD1 and DRD2 were summarized into Polygenic Co-
expression Indices (PCls) based on weighted SNPs that predicted
co-expression of these genes. Based on these weighted sums of
SNPs, we calculated individual PCI scores related to D1 and D2
receptor expression for a subset of 64 individuals for which
human GWAS data were available (for more details see “Meth-
ods” and SI). In these individuals, we found that the D1 (but not
D2) expression-related gene score predicted stability of both
states (Fig. 3a; 0-back: b=0.184, p=0.034; 2-back: b=0.242,
p=0.007, age, sex, brain activity, and first 5 genetic PCA com-
ponents as covariates of non-interest), in line with the assumed
role of dopamine Dl-related signaling in maintaining stable
activity patterns during task performance®S.

Following predictions from the dual-state theory, switching
between different activity representations should relate to
dopamine D2 receptor function, independent of stability. Indeed,
when controlling for stability as a nuisance covariate in the
regression model, the control energy of both state transitions
could be predicted by the D2 (but not the D1) receptor expression
gene score (Fig. 3b; 0- to 2-back: b= —0.076, p=0.037; and
trending for 2- to 0-back: b= —0.134, p =0.068, age, sex, the
difference in brain activity, and first 5 genetic PCA components

as covariates of non-interest), in line with the assumed role of
dopamine D2 receptor function in lowering energy barriers
between states* and thus enabling flexible switching between

neural representationsg.

Brain state transitions can be modulated by D2 receptor
antagonism. Our results thus far support the notion that the
brain is a dynamical system in which the stability of a state is
substantially defined by cognitive effort and modulated by D1
receptor expression, while transitions between states depend
primarily on D2 receptor expression. If true, such a system should
be sensitive to dopaminergic manipulation, and interference with
D2-related signaling should reduce the brain’s ability to control
its optimal trajectories, i.e., increase the control energy needed
when switching between states. To test these hypotheses, we
investigated an independent sample of healthy controls (n = 16,
Table 2) receiving 400 mg Amisulpride, a selective D2 receptor
antagonist, in a randomized, placebo-controlled, double-blind
pharmacological fMRI study. Importantly, because no DTI data
were acquired in this study, we used a link-wise averaged con-
nectivity matrix from all healthy subjects in study 1, following
previous work30:31,
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Fig. 3 Dopamine receptor expression and pharmacological modulation impact whole-brain dynamics. a Genetic scores predicting DRD1 expression in
prefrontal regions positively predict stability of both brain states (0-back: b =0.184, p = 0.034; 2-back: b =0.242 p=0.007; age, sex, mean brain state
activity, and first 5 genetic PCA components as covariates of non-interest). b Genetic scores predicting DRD2 expression in prefrontal regions negatively
predict control energy for both brain state transitions (0-back to 2-back: b= —0.076, p=0.037; and trend wise for 2-back to O-back: b= —0.134, p=
0.068; age, sex, mean brain activity difference, and first 5 genetic PCA components, stability of O-back and 2-back as covariates of non-interest). ¢
Amisulpride (AMI) increases control energy for transitions in comparison to placebo (PLA) (main effect of drug: F(1,10) = 7.27, p = 0.022; interaction drug
by condition: F(1,10) = 0.42, p = 0.665, activity difference, drug order, and sex as covariates of non-interest). Black lines indicate mean values and boxes
indicate one standard deviation of the mean. d Individuals with schizophrenia (SZ) need more control energy when transitioning into the working memory
condition than matched healthy controls (HC) (F(1,98) = 5.238, p= 0.024, age, sex, tSNR and mean activity as covariates of non-interest), but not vice
versa. Black lines indicate mean, dark boxes indicate 1 standard deviation, light boxes indicate 1.96 SEM. Source data are provided with this paper.

Consistent with our expectations, we observed that greater
control energy was needed for transitions under D2 receptor
blockade (Fig. 3c; repeated-measures ANOVA with drug and
transition as within-subject factors; main effect of the drug: F
(1,10)=7.27, p=0.022; drug-by-condition interaction: F
(1,10) =042, p=0.665, sex, the difference in brain activity,
and drug order as covariates of non-interest). In contrast, we
observed no effect on the stability of states; that is, the inverse
control energy required to stabilize a current state was not
impacted by the pharmacological manipulation (main effect of
drug: F(1,8) = 0.715, p = 0.422, sex, brain activity, and drug order
as covariates of non-interest). Importantly, we were able to trend-
wise replicate the results of the pharmacological intervention with
risperidone, a substance showing lower D2-receptor selectivity
(repeated-measures ANOVA with drug and transition as within-

subject factors, the main effect of the drug: F(1,10) = 3.490, sex,
the difference in brain activity, and drug order as covariates of
non-interest, p=0.091; repeated-measures ANOVA with drug
and stability as within-subject factors, the main effect of the drug:
F(1,8) = 1.057, p=10.334, sex, brain activity, and drug order as
covariates of non-interest, see Supplementary Table 1).

Reduced brain state stability and control over brain state
transitions in schizophrenia. Dopamine dysfunction, working
memory deficits, and alterations in brain network organization
are hallmarks of schizophrenial®32-34, We therefore tested for
differences in the state stability and in the ability to control state
transitions between 24 individuals with schizophrenia and a
healthy control sample balanced for age, sex, performance, head
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Table 2 Sample characteristics for the pharmacological
intervention study.

Healthy control (n = 16) t value P value
Placebo Amisulpride
Demographic information
Age (year) 26.63+534
Sex (male/female) 8/8
fMRI task performances
Accuracy (%) 89.32£10.00 85.68 £11.66 1.27 0.223
Reaction time (ms) 347.42+£104.26 365.40+14254 —-0.582 0.569
Head motion parameters
fMRI: Mean frame- 0.124£0.03 0.126 £ 0.04 —0.301 0.767

wise
displacement (mm)

Source data are provided with this paper.

motion, and premorbid IQ, but different in signal-noise-ratio
(tSNR) (Table 1). Stability in individuals with schizophrenia was
reduced for the cognitively demanding working memory state (F
(1,98) =6.43, p=0.013, age, sex, brain activity, and tSNR as
covariates of non-interest), but not for the control condition (F
(1,98) =0.052, p=0.840, same covariates; Supplementary
Table 1). The control energy needed for the 0- to 2-back transi-
tion was significantly higher in schizophrenia than in controls
(Fig. 3d; F(1,98) =5.238, p=0.024, age, sex, the difference in
brain activity, and tSNR as covariates of non-interest), while the
opposite transition (2-back to 0-back) showed no significant
group difference (ANOVA: F(1,98) =0.620, p=0.433, same
covariates; Supplementary Table 1). These results suggest that the
brain energy landscape is more diverse in schizophrenia than in
controls, making the system more difficult to steer appropriately.

To further strengthen this notion, we estimated the variability
in suboptimal (higher energy) trajectories connecting different
cognitive states by enacting subtle random perturbations to the
minimum energy trajectories over 200 iterations (see “Methods”).
In a diversified energy landscape, we expected that the variation
of trajectories around the minimum-energy trajectory should be
larger than in the less diversified energy landscape of healthy
controls, implying that small perturbations may have a more
substantial impact in schizophrenia. In line with our hypothesis,
we found that the variability in such perturbed trajectories was
indeed increased in schizophrenia compared to controls (rm-
ANOVA: main effect of group: F(1,98) =4.789, p =0.031, age,
sex, tSNR as covariates of non-interest). Together, these findings
suggest that working memory brain states are less stable in
schizophrenia, harder to control, and more susceptible to
disturbance compared to healthy controls.

Discussion

Working memory is a core cognitive function that encompasses
the ability to maintain but also update and manipulate cognitive
representations to successfully perform ongoing tasks. The
underlying neural substrate of these processes critically depends
on the coordinated reconfiguration and persistence of distinct
global neural activity patterns that are modulated by the differ-
ential actions of dopamine signaling. In the present study, we
provide evidence that the stability of and switching between
global brain activation patterns during working memory can be
meaningfully assessed by NCT, providing a putative mechanism
for the brain’s capacity to control the unfolding of activity pat-
terns on top of the underlying structural connectome. We further
demonstrate that these processes are modulated by dopamine
signaling in accordance with the dual-state theory of dopamine,
and that they are altered in schizophrenia as expected by current
pathophysiological network hypotheses3>~37 in this disorder.

Our study extends the current knowledge in the field in several
notable ways. Firstly, our results demonstrate that the cognitively
more demanding state exhibits lower stability, i.e., requires more
control energy to be maintained. Indeed, tasks requiring addi-
tional working memory demands have been shown to be asso-
ciated with increased metabolic and attentional demands3$, as
well as exhibiting more extended spatial distributions of
activity3*40 and less neuronal selectivity*!, which could account
for the increased control efforts needed to actively retain and steer
the neural system towards this dynamic network state. Notably,
we also found that the stability of the cognitively demanding state
was further associated with better working memory performance,
complementing previous evidence demonstrating that increased
brain state stability is accompanied by greater behavioral per-
formance across a spectrum of tasks*2:43,

Further, switching to the cognitively more demanding and less
stable state required more control energy than the inverse tran-
sition. The direction of these differences suggests that the cog-
nitively more demanding state was more difficult to access, a
notion that is in line with the idea of associated switch costs when
turning to more difficult tasks*%. Importantly, these analyses were
performed while controlling for the effects of mean brain acti-
vation; therefore, the results cannot be explained as mere epi-
phonema of global or local brain activity levels as measured by
fMRI, which have previously been shown to be task- and
cognitive-load dependent3$4>. When examining the regional
contributions of brain areas to the control of state switching, we
are able to differentiate between (i) a universal set of brain regions
mainly located in prefrontal and parietal cortices supporting both
transitions, and (ii) medial structures in default-mode related
areas that showed particularly strong involvement in 0- to 2-back
transitions. These results are in line with previous predictions
from network control studies indicating that PFC areas are
essential for controlling transitions into hard-to-reach states?2:4°,
and further support the assumed role of frontal-parietal circuits
in steering brain dynamics?” and their prominent role in shifting
tasks®#8-0 The findings also emphasize the importance of the
coordinated behavior of brain systems commonly displaying
deactivations during demanding cognitive tasks!.

Secondly, in line with the prediction of the dual-state theory of
network function, we show that the ability to control brain
dynamics during working memory is differentially modulated by
D1/D2 dopamine receptor functioning. D1-receptor signaling in
frontal circuits has been previously shown to facilitate working
memory by tuning signal-to-noise ratios in pyramidal
neurons'>2, enabling stable network activation patterns that
support the maintenance of neural representations4’53. In con-
trast, D2-receptor activation in PFC can lead to decreased GABA
and NMDA receptor-related currents, thereby counteracting D1-
receptor activity and ultimately enabling higher flexibility and
switching between cognitive representations*. While these
insights focus on cortical microcircuits and are derived from
animal studies and theoretical modeling, our results complement
previous work demonstrating that similar principles govern the
modulatory actions of D1 (and D2 receptors) at the macroscopic
level of brain-wide networks, particularly in frontal-parietal
circuits®.

It is important to note that our data provide an association of
whole-brain processes with PCIs derived from prefrontal areas,
and that previous studies have demonstrated differential expres-
sion patterns of dopamine receptors for prefrontal and striatal
areas as well as differential (and even antagonist) behavior of
dopamine receptor stimulation in striatal and prefrontal
circuits®>4. Therefore, it seems plausible that our results mainly
reflect dopamine actions as observed in PFC-related circuits,
which are also the dominant control nodes in our model
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facilitating both state transitions. Both observations would sup-
port a model of frontal-parietal circuits serving as hub regions
modulated by D2-receptor signaling, which controls and facil-
itates the flexible adaptation of brain-wide activity and con-
nectivity patterns!448:49:5556_ While our model concentrates on
PFC-related dopamine action, it does not exclude the increasingly
important concept that emphasizes the additional role of striatal
input and output gating as dopamine-related mechanisms con-
tributing to a stability-flexibility tradeoff critical for cognitive
control, task-switching, and working memory’~>7>8, However,
studying the differential contributions of striatal and frontal
dopamine signaling on working memory in future studies will
require a finer-grained task design to disentangle the several
cognitive subprocesses that are currently mingled in the two
conditions of our N-back task. The idea of dopamine-related
frontal-parietal circuits as important regions for flexibly con-
trolling the reconfiguration of brain-wide activity patterns is
further supported by our pharmacological intervention, where we
observe a specific increase of control energy for switching brain
activation patterns after D2-blockade, but no effect on the sta-
bility of these patterns. Here, future work quantifying brain-wide
D1- and D2-receptor levels in vivo in combination with phar-
macological manipulations would provide valuable and strongly
needed data to disentangle the specific contributions of the spatial
distribution and different receptor subtypes to working memory
processes.

Thirdly, we show that individuals with schizophrenia show
reduced controllability and stability of working memory network
dynamics, consistent with the idea of an altered functional
architecture and energy landscape of cognitive brain networks.
Cognitive deficits in schizophrenia have been repeatedly linked to
altered dopamine-related brain activations in prefrontal circuits,
showing a complex U-shaped dependency shaped by genetics,
task difficulty, medication, and dopamine levels>13:33:56,29-62 Tp
previous work we have shown that these deficits are accompanied
by less stable, brain-wide network configurations during working
memory!3, extended by our current observations that the stability
of brain activation patterns is specific to cognitive demanding
states. Importantly, our samples were balanced in terms of
working memory performance, and therefore the observed dif-
ferences are unlikely a mere result of performance levels.

Although less stable, cognitive states were more difficult to
access, which seemingly contradicts our results of increased
control energy after D2-blockade, but is in line with clinical
observations that D2-blockade does not ameliorate cognitive
symptoms in schizophrenia®. Instead, our additional analysis on
the variability of trajectories suggests that the increased demand
for control energy in our individuals with schizophrenia is
potentially a direct result of a more diverse and therefore harder-
to-navigate control landscape. This landscape is mainly shaped by
the topology of the underlying structural connectome®, for
which meso-scale alterations, such as reduced modularity and
disruptions of the rich-club®-%7, are prominent in schizophrenia.
Such alterations are thought to result in a biased trade-off
between integration and segregation®®-79, and in an increased
subtle randomization’!. Our results therefore provide a
mechanistic explanation for how connectome disruption can lead
to altered brain dynamics and cognition in schizophrenia.

Several aspects of our work require special consideration.
Firstly, to relate brain dynamics to cognitive function, we focus on
discrete “meta-level” brain states where each state is summarized
by a single brain activation pattern rather than a linear combi-
nation of multiple brain activity patterns. These brain states do
not purely reflect a single process but instead involve several
cognitive subprocesses. Future studies could use specific para-
digms to disentangle these subprocesses, in combination with

more direct and higher time-resolved measures of brain activity
such as MEG. Secondly, although we could demonstrate a link
between brain dynamics, measured by means of control energy,
and predicted prefrontal dopamine receptor expression, the link
is indirect and requires confirmation by direct measurements.
Thirdly, we cannot exclude the possibility that disorder severity,
duration, symptoms, or medication may have influenced network
dynamics in individuals with schizophrenia (see SI). Finally, while
the sample sizes of our pharmacological and patient study are
rather small, we were able to show comparable effects of dopa-
minergic manipulation on control properties using a second drug
(see SI), further supporting the validity of the underlying
rationale.

In summary, our data demonstrate the utility of NCT for the
non-invasive investigation of the mechanistic underpinnings of
(altered) brain states and their transitions during cognition. Our
data suggest that engagement of working memory involves brain-
wide switching between activity states and that the steering of
these network dynamics is differentially, but cooperatively,
influenced by dopamine D1- and D2-receptor function.

Methods

Participants and study design. All participants provided written informed con-
sent for protocols approved by the Medical Ethics Committee II of the Medical
Faculty Mannheim at the Ruprecht-Karls-University in Heidelberg, Germany. For
the first study including healthy controls and patients with schizophrenia, we
included a total of 202 subjects (178 healthy controls, 24 individuals with schi-
zophrenia, Table 1). A trained psychiatrist or psychologist verified the diagnosis of
schizophrenia based on ICD—10 criteria.

For the second, pharmacological intervention study (Registration number:
DRKS00005267 in the German Registry for Clinical Studies), 17 healthy individuals
completed a subject- and observer-blind, placebo-controlled, randomized three-
period cross-over study (Table 2). Participants were invited for a fixed interval of
7 days with each scanning session taking place at approximately the same time of
day. On each of three scanning visits, individuals either received a single oral dose
of 400 mg Amisulpride, 3 mg Risperidone, or Placebo. MRI scanning took place 2 h
after drug administration, with the N-back paradigm commencing ~10 min after
the start of the scan. One subject was excluded from the analysis due to an
excessive body-mass index (BMI > 30).

Data acquisition

fMRI. For the first study in healthy controls and individuals with schizophrenia,
BOLD fMRI was performed on a 3T Siemens Trio (Erlangen, Germany) in
Mannheim, Germany. Prior to the acquisition of functional images, a high-
resolution T1-weighted 3D MRI sequence was conducted (MPRAGE, slice thick-
ness = 1.0 mm, FoV = 256 mm, TR = 1570 ms, TE = 2.75 ms, TI = 800 ms, a =
15°). Subsequently, functional data were acquired during performance of the N-
back paradigm (for details, see supplemental material) using an echo-planar
imaging (EPI) sequence with the following scanning parameters: TR/TE = 2000/30
ms, o = 80° 28 axial slices (slice-thickness =4 mm + 1 mm gap), descending
acquisition, FoV = 192 mm, acquisition matrix = 64 x 64 128 volumes. The visual
stimuli of the N-back paradigm were presented using Presentation (https://www.
neurobs.com).

For the pharmacological intervention study, BOLD fMRI was performed on a
3T Siemens Trio Scanner (Erlangen, Germany) using an echo-planar imaging (EPI)
sequence with the following parameters: TR = 1790 ms, TE = 28 ms, 34 axial slices
per volume, voxel size =3 x 3 x 3 mm, 1 mm gap, 192 x 192 mm field of view, 76°
flip angle, descending acquisition. Since the focus of this paper was on dynamical
brain state transitions in the context of dopamine and working memory
performance, other fMRI paradigms acquired in the pharmacological study are not
reported here. These fMRI paradigms include an emotional face-matching
paradigm (Hariri task), a reward anticipation paradigm (monetary incentive delay
task), and a resting-state scan. These data were not analyzed here as the topic of
this work was restricted to the study of brain network dynamics during working
memory processing and the data from these tasks are not suitable for testing
hypotheses pertaining to the working memory domain. Outcome parameters on
working memory-related brain activity are reported in the supplemental materials.
The pharmacological challenge study with amisulpride and risperidone is
registered with the German Clinical Trials Register (DRKS) under the registration
number DRKS00005267). There are currently no plans for reporting other
outcome measures of this trial.

Diffusion tensor imaging (DTI). DTI data were acquired by using spin-echo EPI
sequences with the following parameters: TR 14000 ms, TE 86 ms, 2 mm slice
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thickness, 60 non-collinear directions, b-value 1000 s/mm2, 1 b0 image, FOV 256
mm.

Connectome construction. For the DTI data, the following preprocessing steps
were performed with standard routines implemented in the software package
FSL72: (i) correction of the diffusion images for head motion and eddy currents by
affine registration to a reference (b0) image, (ii) extraction of non-brain tissues’>,
and iii) linear diffusion tensor fitting. After estimation of the diffusion tensor, we
performed deterministic whole-brain fiber tracking as implemented in DSI Studio
using a modified FACT algorithm”4. For each subject, 1,000,000 streamlines were
initiated. Termination criteria included a maximum angle of 75 degrees and a
minimal streamline length of 10 mm. We used a step size of 1 mm and did not
apply smoothing. Streamlines with a length of <10 mm were removed””. For the
construction of structural connectivity matrices, the brain was parcellated into 374
regions (see Supplemental Information). To map these parcellations into subject
space, we applied a nonlinear registration implemented in DSI Studio. We esti-
mated the structural connectivity between any two regions of the atlas by using the
mean fractional anisotropy values between respective brain regions. This procedure
resulted in a weighted adjacency matrix A whose entries A reflect the strength of
structural connectivity between two brain regions.

Because DTI data was not acquired during the pharmacological intervention
study, we used the link-wise averaged connectivity matrix across all healthy
subjects from study 1 to model the transition between individual brain states in the
pharmacological intervention study3?-l. A comparison of the structural
connectomes between groups can be found in Supplementary Table 2.

Brain state definition. Because we were interested in investigating how the brain
controls and transitions between global brain states underlying circumscribed
cognitive processes (such as those supporting working memory, attention, and
motor behavior), we defined brain states as stationary patterns of activity during
the execution of these processes. It is important to note that the temporal reso-
lution of fMRI and the design of the N-back task limit the investigation of dif-
ferential cognitive processes contributing to memory performance on fast time
scales. Therefore, we cannot investigate the detailed temporal dynamics of working
memory processes. However, our simplified design allows us to extract meaningful
brain states elicited by a controlled cognitive process and therefore enables us to
relate brain dynamics to cognitive function. Specifically, we defined individual
brain states as spatial patterns of beta estimates associated with activity across brain
regions of interest during both conditions of the N-back task’®. For that purpose,
after standard preprocessing procedures in SPM12/8 (including realignment to the
mean image, slice time correction, spatial normalization into standard stereotactic
space, resampling to 3 mm isotropic voxels, and smoothing with an 8 mm full-
width at half-maximum Gaussian Kernel)131477, we estimated standard first-level
general linear models for the N-back task, separately for each individual. Except for
the SPM version, both studies followed the same preprocessing procedure. These
GLM models included regressors for the 0-back and 2-back conditions of interest,
as well as the 6 motion parameters as regressors of non-interest. To define the brain
activity pattern associated with each condition of the task, we extracted GLM (beta)
parameter estimates for the 0-back and 2-back conditions separately’® and we
averaged them across all voxels in each of the 374 regions without applying any
threshold. This procedure yielded a 374 by 1 vector for each condition (Xo-packo Xa-
back) Per subject representing how strongly the BOLD response in each brain region
was associated with the working memory (2-back) or the motor control condition
(0-back), respectively. These vectors (Xo_packs X2-back) defined the final and target
brain states for the following network control analyses.

Network control theory

Optimal control theory framework. To model the transition between 0-back and 2-
back brain states, we used the framework of optimal control, following prior
work?32478 implemented in MATLAB. Based on individual brain states X = [x,,...
X,] (in our case simplified to n =2 states: 0-back and 2-back, see above) and a
structural brain network A for each subject, we approximated the local brain
dynamics by a linear continuous-time equation,

x(t) = Ax(t) + Bu(t) )

To model the flow among task-related brain activity states. In the model, x(f) is the
state of the system at time ¢, A is the wiring diagram of the underlying network, B
denotes an input matrix defining the control nodes, and u() is the time-dependent
control signal?343, Note that while the initial state (xo) and the target state (x;) are
empirically defined, any states of the system at other times are virtual intermediate
steps in the trajectories of the state-space model. In that state-space, we aim to
identify a trajectory between state X, and state xy that is minimal in terms of the
necessary control input signals as well as the distance of the trajectory. This choice
is motivated by two complementary ideas: first that the brain minimizes its energy
expenditure to perform that transition and second, that optimal transitions
between states should be non-random walk in state space. These notions can be
formalized by defining an optimization problem that minimizes a given cost
function. We define this cost function by the weighted sum of the energy cost of the
transition and the integrated squared distance between the transition states and the

target state. The problem of finding an optimal control input u* that induces a
trajectory from an initial state X, to a target state xy reduces to the problem of
finding an optimal solution to the minimization problem of the corresponding

Hamiltonian?4:

min[H(p,x, u,t) = x'x + pu"u + p"(Ax + Bu)] 3)

The parameter p in this equation allows to penalize the energy used by the
optimal input in relation to the deviation from the optimal trajectory when solving
for the optimal control. As we had no specific hypothesis that either of these
elements of the cost function should prevail, we used the default of p=1.

By setting the input matrix B = I, the identity matrix, we allow all brain
regions to be independent controllers*>78. This is motivated by our analysis
question to use a system-level and data-driven approach to identify regions
contributing most to the transitions in an unbiased way in line with previous
work”9-81, A description and discussion of the parameter choices, as well as
additional analyses and discussion on the relation of control energy and fMRI
activity measures can be found in the supplemental material.

Control energy, stability, and impact. Control energy for each node k;, i=1, ..., m
(m = total number of brain nodes), was defined as

T
Bo= [ wior @
t=0
i.e., the squared integral over time of energy input that the node has to exhibit to
facilitate the transitions from the initial state to the target state?%4378, While the
neurobiological foundations of control properties in the brain are not yet well
understood, and our framework for defining control energy is based on a linear
systems approach and cannot be directly related to the physical definition of the
word energy (with joule as derived unit), this definition can be interpreted as the
effort of a brain region needed to steer the activity pattern of itself and its con-
nected brain regions into the desired final activation state, for example by tuning
their internal firing or activity patterns by recurrent inhibitory connections.
Accordingly, the total control energy for the entire brain was defined as the sum of
all control energy across all nodes

E=%LE, ©)

yielding one value for each transition per subject. To ensure a normal distribution
of metric values for subsequent statistical testing, we applied a logarithmic trans-
formation (base 10) to the control energy’s.

From the control energy, we can also obtain the control stability and control
impact. Stability was defined as

1

~ 10g0(E, ) ©

i.e. the inverse control energy needed to maintain a state, or in other words, the
control energy needed to go, e.g., from 2-back to 2-back®3. The rationale here is,
that the energy required to maintain a state is inversely related to the distance of
the state from a local minimum on the energy landscape. States that are distant
from a local minimum will also dissipate quickly under spontaneous activity, while
states at the local minimum will not. Thus, the temporal stability of a state is
inversely related to the control energy required to maintain a state. For further
details, we refer the interested reader to refs. 2380:82.83 To further investigate the
influence that a single brain region has on the entire system’s dynamics during state
trajectories, we computed the control impact of each node by iteratively removing
one brain region from the network and re-computing the change in control
energy?4.

Suboptimal trajectories. To investigate the energy landscape surrounding the
minimum energy (in this sense ‘optimal’) trajectories, we quantified the variability
of suboptimal trajectories by adding subtle random perturbation to the minimum
energy trajectories over 200 iterations. Note that we employed a discrete-time
dynamical system rather than a continuous-time system for these analyses, as
discrete-time systems are computationally more tractable. To discretize our linear
continuous-time system, we employed the following transformations

AZAT @

T,
B2 ( / . eA(Trf)dT> B ®)

where A and B are the corresponding structural matrix and control input matrix in
a discrete time system and T is the sampling time. As there is no prescriptive way
to choose T, we estimated T = ;5 RT, where RT is the rise time of its fastest mode,
i.e.,, the time that the system requires to go from 10 to 90% of its fastest step
response. In the resulting discrete-time dynamical system

x(t + 1) = Ax(t) + Bu(t) 9)

and

at each discrete time step #, we applied a principal component analysis (PCA) to the
cloud of suboptimal points to reduce dimensionality. Because the previous
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simulations show that the first PCA component explains more than 90% of var-
iance, we continued by using the first component as a summary measure of sub-
optimal trajectories. To estimate the relative distance between suboptimal and
optimal trajectories, we computed the percentage of variation of the maximum
distance of the projected suboptimal points on the first principal component from
the optimal one. This procedure resulted in a normalized measure giving the
percentage of deviations for the 200 suboptimal trajectories from the optimal
trajectory. Due to the heuristic nature of the algorithm applying a random per-
turbation, results can vary from run to run. Therefore, to increase replicability of
our results, we repeated our analysis 10 times per subject (10 x 200 = 2000 sub-
optimal trajectories per subject).

Gene-based PCls

Genotyping, imputation, and quality control. In this study, we used human genome
data of 63 healthy subjects who were genotyped using HumanHap 610 and 660w
Quad BeadChips. For all subjects, standard quality control (QC) and imputation
were performed using the Gimpute pipeline (Chen, Lippold et al. 2018)3% and the
following established QC steps were applied. Step 1: Determine the number of male
subjects for each heterozygous SNP of chromosome 23 and remove SNPs whose
number is larger than 5% of the number of male samples. Step 2: Determine the
number of heterozygous SNPs on X chromosome for each male sample, and
remove samples that have the number of heterozygous SNPs larger than 10. Step 3:
Remove SNPs with missing genotyping rate >5% before sample removal. Step 4:
Exclude samples with missingness > 0.02. Step 5: Exclude samples with autosomal
heterozygosity deviation |Fhet| > 0.2. Step 6: Remove SNPs with the proportion of
missing genotyping >2% after sample removal. Step 7: Remove SNPs if the Hardy-
Weinberg equilibrium exact test P-value was <1 x 10~°. Step 8: PCA was applied to
detect population outliers. Imputation was carried out using IMPUTE2/
SHAPEIT$>-87, with a European reference panel for each study sample in each 3
Mb segment of the genome. This imputation reference set is from the full 1000
Genome Project dataset (August 2012, 30,069,288 variants, release “v3.macGT1”).
The length of the buffer region is set to be 500 kb on either side of each segment.
All other parameters were set to default values implemented in IMPUTE2. After
imputation, SNPs with high imputation quality (INFO > 0.6) and successfully
imputed in 220 samples were retained. From the final well-imputed dataset with
63 subjects, we extracted 8 SNPs for DRD2 and 13 SNPs for DRD126:27:88, For the
subsequent genetic imaging analyses, we only used 64 subjects for whom all data
modalities (DTI, fMRI, and imputed genome-wide SNP data) were available.

Polygenic co-expression index calculation. Recent publications have shown that gene
sets defined using co-expression networks and selected for their association with
the genes DRD1 and DRD2 provided replicable predictions of n-back-related brain
activity and behavioral indices in line with the role of prefrontal dopamine in
working memory?7-88-%0, The gene sets have been previously identified using
weighted Gene Co-expression Network Analysis [WGCNAZ28] applied on the
Braincloud dataset (N =199) of post-mortem DLPFC gene expression®® resulting
in 67 non-overlapping sets of genes based on their expression pattern. The co-
expression gene sets including DRD1 and DRD2 were summarized into PCIs based
on SNPs that predicted co-expression of these genes (called co-expression quan-
titative trait loci, or co-eQTLs). For the current analysis, we extracted the 13 SNPs
linked to DRD1 and 8 SNPs linked to DRD2 expression as previously
identified?®27-88, and computed a weighted sum for both receptors similar to a
genetic risk score computation for each individual. These PCIs scores served as a
proxy of D1/D2 receptor expression in the DLPFC.

For further details please see supplemental information.

Statistical inference. Statistical inference was performed using the Statistical
Package for the Social Sciences 24 (IBM SPSS Statistics for Windows, Version 24)
and R (https://www.Rproject.org/). All statistical comparisons were performed
while controlling for age and sex and were tested two-sided. Because we were
interested in control properties of brain state transitions independent of differences
in the amount of mere activation, we controlled for the respective parameters
reflecting the individual differences in activations in all analyses involving control
properties. In particular, for all analyses involving stability measures, we addi-
tionally controlled for the average brain activity defined as the GLM parameter
estimates over all regions in the 0-back and 2-back conditions. As the control
energy of a transition depends highly on the absolute difference in the magnitude
of the brain activity between its initial state and its final state (i.e., in our case the
brain-wide activation difference between both task conditions) and as we were
interested in the unique control properties independent of traditional activation
differences, we additionally controlled for the difference in the mean brain activity
in each analysis involving control energy. The difference in the mean brain activity
was computed as the absolute average difference in the unthresholded GLM
parameter estimates over all regions between 0-back and 2-back conditions. In all
analyses involving polygenic scores for D1-/D2-expression, we further used the first
5 principal components from the PCA on the linkage-disequilibrium pruned set of
autosomal SNPs to control for population stratification. Differences between
control energy/stability of both conditions were assessed using repeated-measures
ANOVA with the condition as a within-subject factor. Drug effects were modeled
using a repeated-measures ANOVA with drug and condition as within-subject

factors. As healthy control and individuals with schizophrenia differed in one of the
quantified DTI imaging quality parameters (tSNR, see Table 1), we also controlled
for tSNR in each analysis involving both groups.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this study are available upon reasonable request from the
corresponding author. Data sharing is subject to GDPR restrictions. Raw data containing
sensible information that can be used to identify individuals, such a whole-genome data,
cannot be shared under current data protection laws. Source data are provided with
this paper.

Code availability
Associated Code can be found here: https://github.com/search?q=network_control_and_
dopamine Source data are provided with this paper.
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