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response in the skeletal muscle of aged mice
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Abstract The impairment of mitochondrial metabolism
is a hallmark of aging. Mitonuclear imbalance and the
mitochondrial unfolded protein response (UPRmt) are
two conserved mitochondrial mechanisms that play crit-
ical roles in ensuring mitochondrial proteostasis and
function. Here, we combined bioinformatics, physiolog-
ical, and molecular analyses to examine the role of
mitonuclear imbalance and UPRmt in the skeletal mus-
cle of aged rodents and humans. The analysis of

transcripts from the skeletal muscle of aged humans
(60–70 years old) revealed that individuals with higher
levels of UPRmt-related genes displayed a consistent
increase in several mitochondrial-related genes, includ-
ing the OXPHOS-associated genes. Interestingly, high-
intensity interval training (HIIT) was effective in stim-
ulating the mitonuclear imbalance and UPRmt in the
skeletal muscle of aged mice. Furthermore, these results
were accompanied by higher levels of several
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mitochondrial markers and improvements in physiolog-
ical parameters and physical performance. These data
indicate that the maintenance or stimulation of the
mitonuclear imbalance and UPRmt in the skeletal mus-
cle could ensure mitochondrial proteostasis during ag-
ing, revealing new insights into targeting mitochondrial
metabolism by using physical exercise.
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Introduction

Aging is understood as a phenomenon that is marked by
the progressive loss of cell functions. Mitochondrial
dysfunction is often observed in several cell types in
response to aging. It has been previously evidenced that
losses of proteostasis, mitochondrial dysfunctions, and
changes in intercellular communication are some of the
major hallmarks of aging [8]. The association between
mitochondrial dysfunctions and aging occurs because
mitochondria are complex architecture organelles which
require highly orchestrated cellular communication
mechanisms to maintain their functions [13]. The loss
of mitochondrial proteostasis or the imbalance between
mitochondrial and nuclear protein synthesis elicit at
least two specialized cellular mechanisms responsible
for restoring mitochondrial homeostasis, called
mitonuclear imbalance and mitochondrial unfolded pro-
tein response (UPRmt). Mitonuclear imbalance rises
due to the stoichiometric imbalance between
mitochondrial-encoded proteins (such as MTCO1, an
mtDNA-encoded ETC protein) and nuclear-encoded
proteins (such as ATP5a or SDHA, nDNA-encoded
ETC components). The MTCO1/SDHA ratio has been
well described as a marker of mitonuclear imbalance,
which culminates in greater UPRmt activation [6].
UPRmt protects the mitochondrial structure against
proteotoxic damage, guaranteeing optimal functions,
such as the assembly of the oxidative phosphorylation
(OXPHOS) machinery [10]. In response to misfolded
proteins or dysfunctional OXPHOS machinery, UPRmt
is activated to recover mitochondrial functions [11, 16].
However, it is important to mention that UPRmt could
be activated in other circumstances, independently of a
mitonuclear imbalance, including during cellular apo-
ptosis [18] and carcinogenesis [7].

Curiously, mtDNA and nDNA communication are
affected during aging in worms and flies, downregulat-
ing the activity of UPRmt components, mainly the mi-
tochondrial chaperones and proteases [10, 12]. Aiming
to identify markers of mitonuclear imbalance and
UPRmt in the skeletal muscle of rodents and humans,
we first screened a comprehensive library database of
gene expression in the skeletal muscle of aged humans
(for details, see Appendix 1). The heatmap analysis
clearly revealed that aged men (60–70 years old) with
a preserved level of UPRmt genes (Yme1L1, Hsp60,
Lonp1, and CLpP) displayed greater levels of several
mitochondrial-related genes in their skeletal muscle
(Fig. 1a), while elderly subjects with a lower UPRmt
displayed lower levels of mitochondria-related genes.
Also, UPRmt markers (Yme1L1, Hsp60, Lonp1, and
CLpP) in the skeletal muscle were positively correlated
with locomotor activity (red lines) and negatively cor-
related with body weight (blue lines) (Fig. 1b). Further-
more, we found a strong positive association between
the UPRmt genes and OXPHOS complexes I–V (Fig.
1c). Our initial data are in accordance with a previous
study that demonstrates that UPRmt is a conserved
mechanism across species, including worms [10], flies
[12], and rodents [6], and it is highly associated with
OXPHOS integrity and mitochondrial metabolism dur-
ing the aging process.

It has been demonstrated that boosting nicotinamide
adenine dinucleotide (NAD+) levels could trigger
mitonuclear imbalance and UPRmt to improve mito-
chondrial function and metabolism, increasing physical
performance [5, 14]. Also, targeting UPRmt in the skel-
etal muscle by boosting NAD+ levels could improve
whole-body metabolism and inhibit mitochondrial dys-
functions during pathological conditions such as obesi-
ty, in rodents [1] and in humans with type 2 diabetes
[17]. Interestingly, physical exercise indirectly increases
NAD+ accumulation [3]. Furthermore, electrical stimu-
lation induces UPRmt markers in the skeletal muscle
cells [9]. Recently, we demonstrated that aerobic

�Fig. 1 Bioinformatic analysis revealed positive association
between markers of UPRmt and mitochondrial metabolism in
skeletal muscle of aged humans. a The heatmap displays the
association between UPRmt markers and OXPHOS-related genes
and mitochondrial metabolism. b The association analyses be-
tween markers of UPRmt and whole-body physiological parame-
ters. c Spearman’s correlation analyses between UPRmt genes and
OXPHOS components in skeletal muscle of aged humans. Each
point represents a sample. Statistical significance was fixed at
r > 0.4 and *p < 0.05
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training induced the mitonuclear imbalance and UPRmt
markers, including the heat shock protein HSP60 and
the proteases Lonp1 and Yem1L1, in the skeletal muscle
of old mice [4]. Collectively, these studies lead us to
hypothesize that high-intensity interval training could be
an interesting non-pharmacological strategy to activate
the mitonuclear imbalance and UPRmt in the skeletal
muscle, counteracting the mitochondrial impairments
that occur during aging.

To test our hypothesis, male C57BL/6 J mice aged
24 months old were subjected to 4 weeks of high-
intensity interval training (HIIT) (for details, see
Appendix 1 and Supplementary Table 1). Initially, to
guarantee the high intensity of the physical exercise
t ra in ing , we moni tored and conf i rmed the
hyperlactatemia after each training session (see
Appendix 3). Next, we found that HIIT robustly induced
the mitonuclear imbalance (increased MTCO1/SDHA
ratio) in the skeletal muscle of aged mice (Fig. 2b). In
addition, the HIIT-exercised mice displayed higher
levels of gene expression of the UPRmt markers ATP-
dependent metalloprotease-1 (Yme1L1) and the Lon
protease homolog-1 (Lonp1) (Fig. 2c), and Lonp1 pro-
tein levels (Fig. 2d). We also observed a discrete but
nonsignificant increase in Yme1L1 CLpP protein con-
tent in the skeletal muscle of trained group (Fig. 2d).

Next, we sought to evaluate the key players in mito-
chondrial metabolism. Exercise training increased cit-
rate synthase expression (Fig. 2e), suggesting enhance-
ments in mitochondrial function. Furthermore, exercise
training also increased the protein content of mitochon-
drial biogenesis markers, such as the voltage-dependent
anion channels (VDAC), the nuclear respiratory factor-1
(NRF-1), and the mitochondrial transcription factor A
(Tfam), when compared with the old sedentary group
(Fig. 2f).

Thereafter, we monitored the mitochondrial DNA
copy number in the gastrocnemius of aged animals after

exercise training. It has been previously evidenced that
HIIT improves mitochondrial metabolism and content
in skeletal muscle [2, 15]. Our results evidenced that
HIIT-exercised aged animals presented higher expres-
sion of mitochondrial-encoded genesmt-ND1, mt-CytB,
and mt-D-loop (Fig. 2g), suggesting increased mtDNA
in the skeletal muscle of these animals. Lastly, our
results suggest that 4 weeks of HIIT was able to modify
the whole-body metabolism of aged animals. Compar-
ing the sedentary with the exercised animals, the HIIT
protocol reduced total body weight (Fig. 2h) without
any differences in food intake (data not shown). In
addition, the HIIT-exercised animals presented greater
physical performance in grip strength (Fig. 2i) and
treadmill running tests compared with aged sedentary
animals (Fig. 2j–k).

To confirm that mitochondrial alterations are specif-
ically associated with physical exercise but not with the
morphological alterations caused by a long-term proto-
col, we subjected a group of male C57BL/6 J aged mice
to a single bout of high-intensity interval exercise
(HIIE). As expected, a single session of exercise did
not change the total body weight or adiposity content
(data not shown). Interestingly, a single session of HIIE
induced the mitonuclear imbalance (MTCO1/ATP5a
ratio) in the skeletal muscle of aged animals, which
was accompanied by discrete changes in the protein
levels of UPRmt markers (results are present in
Appendix 2). These data confirm that physical exercise
induces mitonuclear imbalance in the skeletal muscle of
old mice independently of morphological alterations.

Taken together, our data provide consistent evidence
that aged humans with preserved UPRmt markers dis-
play greater mitochondrial-related genes in the skeletal
muscle, in particular, the OXPHOS-related genes. Im-
portantly, we propose that a physiological stimulus such
as regular physical exercise or even a single bout of
exercise could activate the mitonuclear imbalance and
UPRmt in the skeletal muscle of aged mice. These
findings suggest that the maintenance or the stimulation
of mitonuclear imbalance and UPRmt could be critical
for mitochondrial proteostasis in the skeletal muscle
during the aging process, reinforcing the idea that HIIT
is an efficient non-pharmacological therapeutic strategy
to counteract age-related dysfunctions in mitochondrial
metabolism.
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�Fig. 2 The effects of high-intensity interval training (HIIT) on
mitonuclear imbalance, UPRmt, and mitochondrial metabolism in
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protocol designed for aged animals. b Exercise induces
mitonuclear imbalance and improves the gene expression (c) and
protein content (d) of UPRmt markers. RT-qPCR and western blot
analyses were also performed to evaluate: e citrate synthase and (f–
g) markers of mitochondrial biogenesis. h Total bodymass (n = 9).
Results achieved during grip strength (i) and treadmill running
tests (j–k). Each point represents a sample, varying according to
the experiment performed. Statistical significance was fixed at
*p < 0.05
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