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Abstract

Systemic sclerosis is an orphan, systemic autoimmune disease with no FDA-approved treatments. 

Its heterogeneity and rarity often result in underpowered clinical trials making the analysis and 

interpretation of associated molecular data challenging. We performed a meta-analysis of gene 

expression data from skin biopsies of patients with systemic sclerosis treated with five therapies: 

mycophenolate mofetil, rituximab, abatacept, nilotinib, and fresolimumab. A common clinical 

improvement criterion of 20% or 5 modified Rodnan skin score was applied to each study. We 

applied a machine learning approach that captured features beyond differential expression and was 

better at identifying targets of therapies than the differential expression alone. Regardless of 

treatment mechanism, abrogation of inflammatory pathways accompanied clinical improvement in 

multiple studies suggesting that high expression of immune-related genes indicates active and 

targetable disease. Our framework allowed us to compare different trials and ask if patients who 

failed one therapy would likely improve on a different therapy, based on changes in gene 

expression. Genes with high expression at baseline in fresolimumab nonimprovers were 

downregulated in mycophenolate mofetil improvers, suggesting that immunomodulatory or 

combination therapy may have benefitted these patients. This approach can be broadly applied to 

increase tissue specificity and sensitivity of differential expression results.
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INTRODUCTION

Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin 

fibrosis and lack of FDA-approved therapies. To gain mechanistic insight into the action of 

experimental therapies, clinical trials in SSc have collected genome-wide gene expression 

data from skin biopsies before and after treatment (Chakravarty et al., 2015; Chung et al., 

2009; Gordon et al., 2015; Hinchcliff et al., 2013; Rice et al., 2015a). However, these studies 

face limitations. First, because SSc is a rare disease, clinical trials tend to have small sample 

sizes. Thus, few differentially expressed genes (DEGs) can be detected after multiple 

hypothesis testing correction (Chakravarty et al., 2015; Gordon et al., 2015). Second, not all 

therapy- or disease-relevant genes are regulated at the mRNA level. Identifying the 

functional consequences of treatments for SSc requires analytic methods beyond DEG 

analysis to infer the full biological impact of a therapy’s action.

In this study, we applied a machine learning method that uses “functional genomic 

networks” to learn the connectivity patterns of DEGs and extrapolate to the larger functional 

network in which a therapy is acting. We used our approach to perform comprehensive 

analyses of gene expression data from five independent therapeutic trials in SSc. We 

complement our framework with Gene Set Enrichment Analysis (GSEA) (Subramanian et 

al., 2005) to identify differentially expressed pathways and find broad concordance with our 

results.

Functional genomic networks are gene-gene interaction networks whose links encode 

functional relationships between genes, for example, membership in the same pathway. 

These publicly available, tissue-specific networks were constructed using curated biological 

information (i.e., process annotations), as well as raw biological data (Greene et al., 2015). 

In our meta-analyses, we used linear support vector machine (SVM) classifiers to identify 

the connectivity patterns of the genes modulated during clinically significant treatment 

response. These patterns were then used to identify relevant non-DEGs. We show that this 

extrapolated set of genes includes the known therapeutic targets demonstrating the power of 

our approach.

By examining multiple studies in parallel, we can identify the pathways commonly changed 

with clinical improvement, regardless of perturbation. We provide a comprehensive 

description of pathways altered during different treatments and identify molecular signature 

characteristics of clinical improvement. We show that nonresponders from one trial 

(fresolimumab) have signatures that suggest possible response to other therapies. These 

results may be used to guide drug repositioning for patients who do not respond to a given 

treatment in clinical trials and ultimately for precision medicine in SSc.

RESULTS

We analyzed publicly available gene expression data from clinical trials of five different 

therapeutics in patients with SSc (detailed information about each study is listed in 

Supplementary Table S1 online). These included the immunomodulators abatacept (CTLA4-

IgG) (Chakravarty et al., 2015), mycophenolate mofetil (MMF) (Hinchcliff et al., 2013; 
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Mahoney et al., 2015), and rituximab (anti-CD20) (Lafyatis et al., 2009; Pendergrass et al., 

2012), a tyrosine kinase inhibitor nilotinib (Gordon et al., 2015), and fresolimumab, 

targeting all isoforms of transforming growth factor-β (TGF-β) (Rice et al., 2015a). All of 

these trials used skin disease severity measured by the modified Rodnan skin score as one of 

the outcomes. We applied a common improvement criterion, which was a minimum 

decrease in the modified Rodnan skin score of 20% or five points (Khanna et al., 2006) after 

treatment. The proportion of patients with available skin biopsy gene expression data who 

improved ranged from 27% (rituximab trial) to 83% (abatacept trial) (Table 1). The goal of 

this study was to understand the molecular processes perturbed by these diverse treatments, 

analyze those that did not change, and identify the differences between the subjects who did 

or did not improve.

Network-based machine learning captures known treatment targets despite lack of 
differential expression

We applied a machine learning approach to identify pathways downregulated by treatment 

(Figure 1). Genes with a nominally significant decrease after treatment (uncorrected P < 

0.05, paired t-test) in clinical improvers were supplied as positive examples to an SVM 

classifier (adapted from Greene et al., 2015; Figure 1); genes that showed no evidence of 

differential expression were used as negative examples (0.95 < uncorrected P ≤ 1). The 

classifier learned the connectivity patterns of the DEGs in the Genome-scale Integrated 

Analysis of gene Networks in Tissues (GIANT) skin network and returned a ranking of all 

genes in the genome (Greene et al., 2015). Genes with high positive scores are most 

functionally similar to the nominally significant DEGs from the expression analysis (Greene 

et al., 2015), but are not necessarily differentially expressed. Thus, top-ranked genes may be 

unregulated at the mRNA level or “missed” due to small sample sizes, but are highly 

relevant to response. Similar approaches have been applied to genome-wide association 

study reanalysis (Greene et al., 2015) and to DEGs for novel viral antagonism mechanism 

detection (Gorenshteyn et al., 2015).

As a positive control, we tested whether our approach could prioritize known drug targets 

better than differential expression alone. Abatacept is a fusion protein that binds to CD80 or 

CD86. Using data from an investigator-initiated trial of abatacept in SSc (Chakravarty et al., 

2015), the classifier returned CD86 as the third highest-ranked gene, despite not being 

differentially expressed (P = 1) (Figure 1). Differential expression analysis missed this gene, 

but the DEGs were functionally related to CD86 enabling our approach to find it. Beyond 

single gene targets, we found that our method is better at capturing relevant target gene sets 

than the t-statistic alone, which is used in many DEG approaches (Figure 2a and b).

Nilotinib is a tyrosine kinase inhibitor with a set of known targets (taken from Yoo et al., 

2015, [D2]). This target set shows higher SVM scores than random gene sets of the same 

size (P = 0.0004), but there is no significant difference in t-statistics between target and 

random genes (P = 0.73) (Figure 2b). Our approach also sheds light on how cell types are 

perturbed during treatment. Rituximab has been shown to deplete dermal B cells (Lafyatis et 

al., 2009). B-cell-specific genes, as determined by the immune response in silico study (P = 

0.029) (Abbas et al., 2005) and the Human Protein Reference Database (P <2.2 × 10−16) 
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(Prasad et al., 2009), have higher SVM scores than random. In contrast, t-statistics of B-cell 

genes are either no different than random (immune response in silico; P = 0.38) or the 

difference is less statistically significant (Human Protein Reference Database; P = 1.75 × 

10−9) (Supplementary Figure S1 online, Figure 2c).

Improvement-associated gene signatures indicate common pathways of skin disease 
resolution

We then investigated if the SVM-generated gene signatures for each therapy were 

functionally associated using a z-score method (Huttenhower et al., 2009) (Supplementary 

Figure S2aec online). This approach quantifies whether the top-ranked genes (250) from the 

SVM are more strongly connected to one another in the skin functional network than 

random gene sets of the same size. If two gene sets have a z-score >3, that indicates that they 

are significantly connected and therefore likely functionally related. Every pair of gene 

signatures from each trial was highly significant (Supplementary Figure S2a–c). Notably, 

improver signatures are generally more significant than nonimprover signatures 

(Supplementary Figure S2b) or treatment effect alone (Supplementary Figure S2c), 

suggesting that there is a core biology underlying the resolution of SSc skin disease.

Network theory identifies skin-specific functional gene sets

To determine the common pathways underlying skin disease resolution, we used community 

detection to identify functional modules in the GIANT skin network (Greene et al., 2015) 

(see the Materials and Methods section). Because of the way these networks were 

constructed, community detection identifies gene sets that participate in coherent biological 

processes in a tissue-specific manner. We determined which functional modules had high or 

low SVM scores to ascertain what pathways were downregulated or unchanged by 

treatment, respectively. Figure 3 illustrates functional modules with significantly high or low 

SVM scores as compared with the entire distribution (Wilcoxon test, Bonferroni-adjusted P 
< 0.001). Below, we report functional modules with high SVM scores for multiple therapies 

as indicative of “overlapping” modulated biology across trials (we restricted further study to 

the top 20 modules in each trial for brevity; all met the threshold outlined above). Generally, 

bottom-ranking functional modules encoded housekeeping processes (e.g., ribosome 

biogenesis). This is a useful positive control because we do not expect therapies to target 

such processes.

A module (273) enriched for fibrosis-related processes such as response to TGF-β and 

signaling by platelet-derived growth factor was highly ranked in all studies but abatacept 

(Table 2). Modules enriched in immune-related processes were highly ranked in all studies 

except fresolimumab (Table 2). This suggests that fresolimumab, a monoclonal antibody to 

TGF-β, does not modulate the same processes as other therapeutics, consistent with its 

mechanism of action. In addition, the perturbation of a module enriched for interleukin-6 

signaling (261), specifically targeted by tocilizumab (anti-IL-6R) (faSScinate trial) (Khanna 

et al., 2015), highlights the central importance of IL-6 in SSc skin disease.
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Different immunomodulatory treatments modulate distinct functional processes

Intriguingly, none of the top modules were shared between abatacept and MMF only 
(modules in common across abatacept, MMF, and at least one other treatment were found, 

Table 2). This is despite the fact that improvers in both studies have been reported to have 

high “inflammatory” signatures before treatment that were downregulated after treatment 

(Chakravarty et al., 2015; Hinchcliff et al., 2013). The lack of additional overlapping 

modules suggests potential heterogeneity within the inflammatory molecular intrinsic subset 

(Hinchcliff et al., 2013; Milano et al., 2008; Pendergrass et al., 2012; Johnson et al., 2015) 

that can be targeted by either therapy. To contrast the functional targets of these two 

therapies, we standardized their SVM scores (z-scores) to make a direct numerical 

comparison and identified functional modules significantly different between them 

(Supplementary Figure S3 online). T lymphocyte-, vascular-, and proliferation-related gene 

sets were likely to be differentially affected by abatacept and MMF (Supplementary Table 

S2 online). Abatacept had higher scores for vascular- and collagen-related modules (129 and 

277), although it is possible that this is due to the greater magnitude of the improvement in 

the abatacept trial (Table 1). MMF had higher scores for proliferation (modules 285 and 

302) and type I interferon modules (module 336). This may be due to the broadly 

immunosuppressive nature of MMF, which abrogates lymphocyte proliferation, compared 

with the molecularly precise action of abatacept, which inhibits T-cell costimulation of 

antigen presenting cells. Overall, there were fewer genes with positive SVM scores for 

abatacept.

Comparison of network analyses with GSEA results

As a final control for our analyses, we used GSEA to test each study for differential 

expression of sets of genes (pathways) rather than single genes. GSEA is a method for 

identifying gene sets that are altered between two phenotypes or timepoints. It is a well-

established procedure that is complementary to and provides further validation of our 

network approach. We used a collection of curated “Hallmark” gene sets (Hallmarks) 

(Liberzon et al., 2015). The major limitation of GSEA compared with our approach is the 

requirement that users identify relevant gene sets (in this case Hallmarks) a priori. 

Nevertheless, the GSEA results were broadly concordant with our network results.

We focused on processes in common between studies, which represent biology relevant to 

disease resolution either due to intervention or spontaneous improvement. A single 

Hallmark, epithelial-mesenchymal transition, was significantly decreased after treatment in 

improvers from all five studies. All therapies except for fresolimumab modulated immune 

response-related Hallmarks, for example, IL6/JAK/STAT3 signaling and TNFA/NFKB 
signaling (Supplementary Table S3 online). This agrees with our network-based functional 

module results (Table 2; modules 261, 3, 311, 335, 98), where we found that immune-related 

processes were downregulated by all therapies except for fresolimumab.

All therapies except for MMF resulted in a decrease in TGF-β signaling (Supplementary 

Table S3). This is somewhat in contrast with our network results, where we found that all 

therapeutics but abatacept downregulated genes implicated in response to transforming 
growth factor beta (found in module 273). Some differences between the two methods are to 
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be expected. The identification of functional modules is data driven, in contrast to the 

expert-curated Hallmarks, and we restricted our analysis to top modules only and not all that 

reached significance. However, there were two common “core enrichment” genes that 

significantly contributed to the enrichment in TGF-β signaling across all four studies: 

THBS1 and SERPINE1 (Supplementary Table S3). Both are strongly correlated with 

modified Rodnan skin score (Farina et al., 2010; Rice et al., 2015b). These genes are in 

module 304, which is one of the top 20 modules for MMF. This suggests that although MMF 

did not significantly downregulate TGF-β signaling by GSEA criteria, it is hitting a 

functionally similar set of genes by our network method. Likewise, although abatacept did 

not downregulate genes associated with TGF-β signaling, it did downregulate genes 

enriched for the Reactome pathway Degradation of the extracellular matrix (module 277). 

Thus, although the pathways that significantly overlap between studies depend somewhat on 

the method used, the downregulation of collagen or extracellular matrix deposition signaling 

is commonly found in all studies. In addition, both methods identified differences between 

the immunomodulatory treatments abatacept and MMF, suggesting that these two therapies 

may resolve skin disease severity differently. Most importantly, fresolimumab is the only 

therapy that does not appear to alter immune-related processes as determined by either 

method.

Fresolimumab nonimprovers may benefit from immunomodulatory treatment

Original studies largely ignored the molecular changes measured in nonimprovers. However, 

our results suggest that similar processes were downregulated in nonimprovers after 

treatment across multiple therapies (Supplementary Figure S2b). We hypothesized that the 

use of nonimprover signatures could help distinguish between processes that were truly 

downregulated due to improvement and those affected due to treatment alone, thus, allowing 

us to identify therapies that may be more clinically effective for a particular set of patients.

We used an SVM classifier on the GIANT skin network to classify genes that were uniquely 

downregulated in improvers after treatment (uncorrected P < 0.05); negative examples were 

genes uniquely downregulated in nonimprovers. This resulted in genes with highly positive 

SVM scores being most like genes downregulated in improvers and genes with highly 

negative SVM scores being most like genes downregulated in nonimprovers. We refer to 

these as therapeutic “post lists.” We performed a similar analysis to identify genes most like 

those elevated in improvers (highly positive scores) or in nonimprovers (highly negative 

scores) before treatment (termed “base lists”; see the Materials and Methods section).

We determined if subjects who failed to respond to fresolimumab (nonimprovers) may have 

had active inflammatory pathways that could be modulated by one of the other therapies. 

Functional annotation analyses for the bottom 250 genes in the fresolimumab base list (most 

like genes elevated in nonimprovers before treatment) showed significant enrichment for 

lymphocyte aggregation and type I interferon production. We then asked whether 

fresolimumab nonimprovers were likely to have responded to one of the immunomodulatory 

treatments analyzed, such as MMF.

We determined if bottom-ranking genes in the fresolimumab base list were high-ranking 

genes in the MMF post list—that is, if genes most like those elevated in fresolimumab 
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nonimprovers were also genes most like those downregulated uniquely in MMF improvers. 

First, we compared the fresolimumab base and MMF post lists using a metric called rank-

biased overlap (the extrapolated version; Webber et al., 2010). The rank-biased overlap is a 

measure of the average agreement between two lists that takes the value 1 if they are exactly 

the same, 0 if they are exactly opposite, and 0.5 if the rankings are random with respect to 

each other (Figure 4a). The rank-biased overlap is an analog of rank correlation that is 

appropriate for lists that do not contain all of the same elements, as the base and post lists in 

this study (see Supplementary Methods online). The fresolimumab base and MMF post 

ranked lists have rank-biased overlap = 0.34, suggesting that they are significantly dissimilar. 

We also asked if the bottom 250 genes from the fresolimumab base list were enriched near 

the top of the MMF post list using a pattern-matching strategy (Lamb et al., 2006); the 

Kolmogorov–Smirnov statistic was highly significant (permuted P < 0.001) indicating that 

was the case. Finally, we showed that bottom-ranked fresolimumab base gene sets of various 

sizes had significantly highly positive MMF post-SVM scores (Figure 4b). These results 

suggest that fresolimumab nonimprovers not only had immune-related signatures active 

before treatment and not modulated by therapy, but also that these pathways may have been 

modulated by MMF treatment (Figure 4c).

DISCUSSION

Successfully treating SSc manifestations requires modulation of many biological pathways, 

which must occur downstream of a therapeutic molecule binding to its set of targets. 

Genome-wide gene expression data are now routinely gathered in clinical trials and provide 

insight into the functional consequence of treatment. A limitation is that most analyses only 

examine genes with statistically significant changes at the mRNA level, which may not fully 

capture the clinical impact of treatment.

We applied an approach that leverages functional genomic networks and machine learning to 

extrapolate from DEGs to the broader functional context in which a therapy is acting. Our 

strategy goes well beyond differential gene expression to identify the core processes and 

their critical component genes that change in response to therapy. As a positive control, we 

found that while a therapeutic’s targets are not always differentially expressed, the DEGs are 

highly functionally similar to the known therapy targets.

We cannot rule out the possibility that the subject composition of each of the cohorts 

included in this work influenced our results. However, we show that by putting nominally 

significant DEGs in the context of functional networks we can identify highly relevant genes 

(e.g., target kinases for nilotinib, B-cell genes for rituximab) that the original studies did not 

identify as significant (Figure 2, Supplementary Figure S2). Furthermore, our machine 

learning approach allows us to take advantage of nonimprovers in some studies and apply 

conservative cutoffs for gene sets of interest.

Our results add to the growing body of evidence that molecular phenotyping of SSc patients 

before treatment may increase the likelihood of meaningful clinical response. In particular, 

we observe the abrogation of inflammatory pathways in multiple trials regardless of a 

therapy’s mechanism of action, which supports the hypothesis that the high expression of 
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immune-related genes may represent an active disease state that is most clinically 

actionable.

Across multiple studies, improvers were characterized by post-treatment downregulation of 

immune and fibrotic signaling. Of particular interest was the modulation of epithelial-
mesenchymal transition in improvers from all trials. Genes comprising the epithelial-
mesenchymal transition Hallmark showed significant enrichment in extracellular matrix 
organization and extracellular matrix organization-related functional terms, for example, cell 
adhesion, vasculature development, and collagen formation. This corroborates our previous 

work showing that an extracellular matrix organization functional module occupies a central 

part in the putative network structure of SSc (Mahoney et al., 2015).

However, we also noted subtle differences in the pathways modulated by abatacept and 

MMF, both immunomodulatory therapies, suggesting that there is no “panacea” for the 

inflammatory subset as of yet. Conversely, fresolimumab was shown to be less likely to 

downregulate immune pathways than the other therapeutics, and fresolimumab-treated 

nonimprovers had elevated inflammatory processes at baseline. This suggests that patients 

with elevated baseline inflammatory signature may benefit from an immunosuppressant, 

perhaps in combination with anti-TGF-β therapy.

In this work, we addressed some of the special considerations of pilot studies in a rare 

disease, and we aimed to be conservative, particularly because multiple trials were under 

examination. As the field continues to conduct small trials, it will be important not only to 

amass more molecular data, but also to build new frameworks to analyze and interpret them. 

Our results show that functional genomic networks are a powerful complement to purely 

statistical techniques. By extrapolating from a noisy list of DEGs, we have identified 

common mechanisms of action for multiple therapies, as well as critical differences between 

them.

MATERIALS AND METHODS

DEG analysis

DEG analysis was performed using the Comparative Marker Selection GenePattern module 

(Reich et al., 2006) using default parameters. For pre- and post-treatment comparisons, 

paired t-tests were used; for baseline comparisons, unpaired t-tests were used. The t-
statistics and uncorrected P-values used throughout the text are taken from this analysis. 

Datasets used in this study are available in Gene Expression Omnibus under the following 

accession numbers: GSE66321, GSE55036, GSE76886, GSE65405, and GSE32413.

Functional genomic network analyses

All SVM classifiers were implemented using the network-guided genome-wide association 

study analysis from the GIANT webserver (http://giant.princeton.edu) in the context of the 

GIANT skin network (Greene et al., 2015). The features supplied to the SVM are the 

GIANT skin network edge weights. For improver signatures, the positive examples were 

genes downregulated after treatment in improvers (uncorrected P < 0.05) and the negative 

examples were genes unchanged after treatment (0.95 < uncorrected P ≤ 1); note that where 
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there were enough nonimprovers with gene expression data, DEGs found in both improvers 

and nonimprovers were filtered out to better identify genes relevant to efficacy rather than 

solely to treatment. The same approach was used for nonimprover signatures. To generate 

“base” ranked lists, the positive examples were genes that were higher in improvers before 

treatment (uncorrected P < 0.05) and the negative examples were genes that were higher in 

nonimprovers before treatment (uncorrected P < 0.05). To generate “post” ranked lists, the 

positive examples were genes downregulated in improvers after treatment (uncorrected P < 

0.05) and the negative examples were genes downregulated in nonimprovers after treatment 

(uncorrected P < 0.05). For the boxplots in Figure 2b and c and density plots in 

Supplementary Figure S1a and b, 100 gene sets of the same size as the target or B-cell gene 

sets were randomly sampled and one-sided Mann-Whitney-Wilcoxon tests were used to 

compare the distributions. More information on functional genomic and network methods is 

in the Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic overview of machine learning approach.
Nominally significant genes that decrease after treatment (uncorrected P < 0.05) in clinically 

significant improvers are supplied as positive examples to a linear SVM classifier (DEGs); 

genes that show no evidence of differential expression are used as negative examples. The 

classifier learns the connectivity patterns of the DEGs in the GIANT skin network and 

returns a ranked list of gene symbols (highly positive: most like nominally significant 

DEGs). In the case of abatacept, the classifier returns CD86 as a highly ranked gene—one of 

the molecules that interacts with this biologic—despite being a negative example. APC, 

antigen-presenting cell; DEGs, differentially expressed genes; GIANT, Genome-scale 

Integrated Analysis of gene Networks in Tissues; MHC, major histocompatibility complex; 

SVM, support vector machine.
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Figure 2. The linear SVM classifier captures features beyond just differential expression and 
better separates nilotinib targets from random sets of genes than the t-statistic alone.
(a) Scatterplot of SVM scores versus P-values. The genes with the highest SVM scores are 

highlighted in red. The purple dashed line indicates a P-value = 0.05. (b) Boxplots of SVM 

scores and t-statistics comparing the target gene set versus 100 gene sets of the same size 

(“random”). There is no significant difference in the t-statistic distributions (Mann-Whitney-

Wilcoxon P = 0.73), whereas the difference in the SVM scores distributions is significant 

(Mann-Whitney-Wilcoxon P = 0.0004). (c) B-cell gene distributions (as annotated at the 

protein level using the Human Protein Reference Database) in the rituximab data—t-statistic 

Mann-Whitney-Wilcoxon P = 1.75 × 10−9, SVM score Mann-Whitney-Wilcoxon P <2.2 × 

10−16. SVM, support vector machine.
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Figure 3. Boxplots of functional modules with significantly high or low SVM scores (Bonferroni-
adjusted P < 0.001).
A red label indicates high SVM scores; blue indicates low scores. The gray dashed line 

indicates the median SVM score in each case. MMF, mycophenolate mofetil; SVM, support 

vector machine.
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Figure 4. Several complementary methods suggest that fresolimumab nonimprovers may have 
benefitted from MMF treatment.
(a) Density plot of the rank-biased overlap (RBO) null distribution (permuted SVM scores). 

The red arrow indicates the true RBO (0.34) between fresolimumab base and MMF post 

ranked lists. (b) Boxplot illustrating that fresolimumab base bottom-ranked gene sets of 

increasing size (100, 250, 500, and 1,000 genes) have significantly highly positive MMF 

post-SVM scores. (c) Schematic overview of findings. Fresolimumab nonimprovers have 

elevated immune-related genes pretreatment; immune-related genes are uniquely decreased 

in MMF improvers. MMF, mycophenolate mofetil; SVM, support vector machine; TGF-β, 

transforming growth factor-β.
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