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Abstract

Multiple source apportionment approaches were employed to investigate PAH sources which 

contribute to small craft harbor (SCH) sediments in Nova Scotia (NS), Canada. A total of 580 

sediment samples were analyzed using PAH diagnostic ratios, Unmix Optimum receptor 

modeling, and by assessment of the composition of the PAH profile. PAH diagnostic ratios suggest 

PAHs are primarily of pyrogenic (thermal) origin, while UnmixO modeling identifies four 

individual sources which best describe surficial sediments and suggests contributions from both 

pyrogenic and petrogenic origins. These include coal combustion, automobile exhaust, and 

biomass incineration. PAH profile assessment determined an overwhelming contribution of high 

molecular weight PAHs, which exhibited a strong correlation with total PAH concentrations.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are pollutants observed in aquatic, terrestrial, and 

atmospheric environments around the world. PAHs are considered priority pollutants as they 

demonstrate carcinogenic and mutagenic properties and have shown to have subsequent 

adverse effects on organisms in a wide range of studies (Fang et al., 2012; Stout et al., 2015). 

PAHs enter the environment from a variety of different sources including pyrogenic, 

petrogenic, and natural sources (Lima et al., 2005; Jiang et al., 2009). Pyrogenic PAH 

sources are characterized by high temperature combustion and/or pyrolysis of fossil fuels or 

organic matter, which release PAHs into the atmosphere through exhaust and soot (Masood 

et al., 2016). PAHs released from high temperature processes tend to be of high molecular 

weight and have increased persistence in the environment (4–6 aromatic rings) (Smith et al., 

2009; Mostert et al., 2010). PAHs of petrogenic origin are formed from petroleum (crude 

and refined) and occur due to direct inputs from accidental spills, petroleum combustion, 

discharges, terrestrial run off, and by natural petroleum seeps (Masood et al., 2016). 

Petrogenic PAHs (produced by lower temperature processes) tend to be of lower molecular 

weight (2–3 aromatic rings) (Mostert et al., 2010). Forest fires, diagenesis, and natural 

petroleum seeps can also contribute PAHs to the environment, and are classified as natural 

sources (Wang et al., 2007; Mahanty et al., 2011). PAHs primarily enter the environment by 

initial release into the atmosphere from incomplete combustion processes and then 

subsequently enter soil, sediments, and water bodies from various processes including 

fluvial, overland, nonpoint, groundwater, and other hydrogeological processes (Stout & 

Emsbo-Mattingly, 2008). The anthropogenic reliance and historical use of fossil fuels has 

contributed to PAHs in the environment globally (Stout et al., 2004; Zemo, 2009). From an 

ecological risk perspective, petrogenic PAHs may be more readily bioavailable in aquatic 

environments as compared to pyrogenic PAHs (Thorsen et al., 2004). Pyrogenic PAHs are 
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often less bioavailable given their ability to settle more rapidly into sediment and sorb to 

sediment particles (Koelmans et al., 2006; Chen & Chen, 2011).

Source apportionment of PAHs in the environment has been well studied over the last 40 

years (Tobiszewski & Namieśnik, 2012; Nádudvari et al., 2018). PAH sources which most 

readily contribute to sediments include coal tar, and/or wood, coal, or petroleum combustion 

sources (Abdel-Shafy & Mansour, 2016). As such, understanding specific contributing PAH 

sources to sediments is of importance for environmental management. However, the 

assessment of sedimentary PAH sources presents challenges for typical source 

apportionment approaches. PAHs often undergo physical or chemical changes (Neff et al., 

2005) from their emission (source) to sediment (receptor) which can cause discrepancies 

between comparison of observed and known PAH profiles (Norris & Henry, 2019). 

Furthermore, sediment data is often formed by few samples, spanning varying temporal 

periods. This may average contaminant concentrations over time, further increasing the 

potential for discrepancies between observed and known PAH source profiles (Uchimiya & 

Masunaga, 2007; Uchimiya et al., 2007; Norris & Henry, 2019). A new receptor model, 

Unmix Optimum (UnmixO), developed by the US EPA, demonstrates increased applicability 

for addressing PAHs in sediment as compared to other source apportionment modelling tools 

by accounting for the above challenges (Norris & Henry, 2019). Many methodologies exist 

that can be applied in sediment PAH source apportionment estimations, which are often 

applied concurrently to strengthen source estimations by means of corroborative evidence 

(Stout & Graan, 2010).

To date, a spatially summarized analysis of PAH source apportionment has yet to be 

completed for surficial sediments in Nova Scotia (NS). Harbor managers of NS SCHs have 

little insight to sources impacting sediments, which may have associated environmental or 

financial liabilities. Therefore, this study aims to characterize PAH sources from sediments 

collected from 31 NS SCHs between 2001–2017, by implementing multiple lines of 

evidence. The three lines of evidence used in support of this investigation include: PAH 

diagnostic ratios, UnmixO receptor modeling, and PAH compositional analysis. This study 

aims to provide harbor decision makers in NS with information that supports the 

maintenance and prioritization of SCH sites, particularly in regard to source control of 

contaminants. Similarly, this study builds on earlier PAH characterization completed at these 

SCHs (Davis et al., 2018).

2. Materials and Methods

2.1 Study area

Sediments assessed in this study were retrieved from 31 SCHs across the coastal province of 

NS, Canada. The 31 SCHs were distributed across the gulf (n=9), eastern (n=6), and 

southwestern (n=16) management regions in NS, as defined by the Department of Fisheries 

and Oceans (DFO). The spatial distribution of these SCHs is outlined in Fig 1.
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2.2 Sediment data

PAH information was assessed by secondary analysis of sediment data for 31 individual 

SCHs in NS, Canada. The 16 PAH compounds assessed as part of this study are species 

classified as priority pollutants by the United States Environmental Protection Agency (US 

EPA, 2014). Sediment data was kindly provided by the Canadian federal government 

(Department of Fisheries and Oceans Small Craft Harbour Branch (DFO SCH) and Public 

Services and Procurement Canada (PSPC)) and encompassed federally mandated sediment 

sampling reports between 2001–2017. Surficial sediment sampling (0–10 cm) was primarily 

conducted as part of the federal Marine Sediment Sampling Program prior to dredging 

activities at all sites. The term “sediment” will refer to those collected at the depth of 0–

10cm throughout this study. The 31 SCHs were sampled at varying intervals during the 

temporal period. Most samples included surficial sediments and all samples were analyzed 

by Standards Council of Canada accredited commercial laboratories. SCHs in this study 

(n=31) are classified as core fishing harbors by DFO SCH. Further details regarding SCH 

selection, geographical location of specific SCHs, and the physicochemical characteristics of 

sediments analyzed is described in previous work by Davis et al. (2018).

2.3 PAH diagnostic ratios

PAH diagnostic ratios are a common source apportionment approach to PAHs, and PAH 

isomeric pairs (e.g., PAH species with the same atomic structure; fluoranthene and pyrene) 

as these pairs are expected to weather similarly in the environment (Tobiszewski & 

Namieśnik, 2012; Wise et al., 2015).

Diagnostic ratios seek to distinguish between pyrogenic and petrogenic sources of PAHs, but 

their application can be limited in further distinguishing between specific pyrogenic or 

petrogenic sources because of the potential for overlap among ratios (Stout et al., 2004; 

Galarneau, 2008). Caution should be applied in using diagnostic ratios because of the 

similarities observed between sources, especially those which are pyrogenic (Galarneau, 

2008). The use of diagnostic ratios to estimating PAH sources has been debated in the 

literature and faces criticism (see Zhang et al., 2005; Galarneau, 2008; Katsoyiannis et al., 

2011; Katsoyiannis & Breivik, 2014). Specifically, the concepts of PAH integrity in the 

environment, inadequacy of ratio estimations to known sources, spatial influence on ratio 

accuracy, PAH transport effects, PAH source mixing in the environment, and PAH source 

variability in the environment, all represent topics of concern. Despite this, ratios are widely 

used and applied in various environments for source apportionment estimations of PAHs 

(Dickhut et al., 2000; Yunker et al., 2002; Tobiszewski & Namieśnik; 2012). As such, 

diagnostic ratios are carefully and critically applied in this study alongside two other lines of 

evidence to support source apportionment estimations that rely on both qualitative and 

quantitative lines of evidence. Only sediment samples which demonstrated detectable 

concentrations of PAH species were included in ratio applications.

The following diagnostic ratios were applied and interpreted by transitional values, i.e. 

values which indicate possible sources, from the greater literature:

• Mass 178: Anthracene/(Anthracene + Phenanthrene)
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• Mass 202: Fluoranthene/(Fluoranthene + Pyrene)

• Mass 228: Benzo[a]anthracene/(Benzo[a]anthracene + Chrysene)

• Mass 276: Indeno[1,2,3-cd] pyrene/(Indeno[1,2,3-cd] pyrene + Benzo[g,h,i] 

perylene)

• ∑LMW/∑HMW PAHs

2.4 Unmix modeling

Unmix is a multivariate receptor model developed by the US EPA that determines source 

apportionment of contaminants by factor analysis. Specifically, Unmix uses principal 

component analysis (PCA) to reduce the dimensions of the data and identify factors 

(sources) which best fit the data (Henry, 2003; Watson et al., 2008). Unmix looks for all 

possible edges produced from the data and uses the identification of an edge (hyperplane) to 

suggest a contribution from factors identified from the model algorithm (Henry, 1997, 2003; 

Watson et al., 2008). Unmix can be used without previous understanding of specific sources 

impacting the data (Larsen & Baker, 2003).

2.4.1 Unmix Optimum modeling—Unmix Optimum (UnmixO) is an advanced, new 

application of Unmix. UnmixO seeks to identify sources by using constrained non-linear 

optimization algorithms to refine the area (or volume) formed by vertices (factors).

UnmixO was applied in this study as it demonstrates increased applicability for NS sediment 

data by specifically accounting for a dataset with few high values and many values below 

detection, and by not requiring known source PAH profiles for analysis. These benefits were 

amplified during an exercise in which UnmixO was compared to Positive Matrix 

Factorization (PMF) and Principal Component Analysis (PCA) with the current sediment 

dataset. The results of this comparison are as follows:

• PMF results did not show a sharper contrast between sources. UnmixO fit high 

PAH values better than PMF, which is important as few data contain high PAH 

values. The UnmixO solution is developed primarily on the higher points which 

minimizes the impact of having a large number of values below detection in a 

dataset, which occurs in the applied dataset.

• The UnmixO Chi-sum calculation includes uncertainty while USGS has found 

the PMF uncertainties are high and cannot be used in the Chi-Sum calculation. 

This is an important consideration in comparing observed profiles to known 

source profiles.

• Factor analysis (PCA with varimax rotation) identified only 3 factors with 

interpretable loadings compared the 4 sources identified by UnmixO. UnmixO 

results were reported in this paper since the factor scores have significant 

negative values and the estimates for PCA/MLR are semi-quantitative (Mar et 

al., 2005).

UnmixO was applied to NS SCH sediment data by use of an optimized interior point 

algorithm (Norris & Henry, 2019). A loose tolerance level (constraint level 1.1) was used 
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and an error level of 15% was used in this model application by a Monte Carlo method 

(Timmerman et al., 2007).

A total number of 509 observations were used in the model, with 14 individual PAHs 

included as variables. The 14 species were: acenaphthene (Ace), anthracene (Ant), Benzo[a] 

anthracene (BaA), benzo[a]pyrene, benzo[b]fluoranthene (BbF), benzo[k]fluoranthene 

(BkF), benzo[g,h,i]perylene (BghiP), chrysene (Chr), fluoranthene (Flu), fluorene (Fl), 

indeno[1,2,3-cd] pyrene (IP), phenanthrene (Phe), pyrene (Pyr). 1 and 2- methylnaphthalene 

(1-MN and 2-MN) and perylene (Per) were excluded from the model due to a high number 

of missing data points among samples. Acenaphthylene (Acy), dibenz[a,h)]anthracene 

(DBahA) and naphthalene (Nap) were excluded as they provided outliers that degraded the 

fit of the model. Further details regarding the UnmixO analysis procedure are detailed in 

Norris & Henry (2019).

Sources identified by the Unmix Optimum model were further investigated by the following 

approaches:

• Consideration of fractional and percent source composition of individual PAHs 

within UnmixO sources as compared to the literature (Table 1).

• The calculation of the normalized square difference and Chi2 sum of each 

UnmixO source as a comparison to 22 source profiles from the literature (see 

Van Metre & Mahler, 2014). A lower calculated Chi2 sum indicates increased 

similarity/closeness between profiles (Van Metre & Mahler, 2014).

2.5 PAH Profile Composition Assessment

Sediments were assessed by reviewing the proportions of PAHs within samples that are 

present as part of the entire PAH profile. The PAH profile represents the collective PAHs 

assessed in NS sediments (19 PAHs typically). Organizing the PAH profile into defining 

characteristics can support source apportionment estimations as different individual PAHs, 

or groups of PAHs (e.g., 4-ring PAHs), can indicate emission sources. The number of atomic 

rings, molecular weight, classification of low molecular weight (LMW) or high molecular 

weight (HMW), and whether a PAH is deemed to be associated with “combustion” 

processes are all examples of defining characteristics. The number of atomic rings a PAH 

possesses, and whether a PAH is associated with combustion source, are the two 

characteristics assessed in this study.

Samples were summarized within the regions of NS (gulf, eastern, southwest) to determine 

the distribution of PAHs, as per their number of atomic rings. Raw PAH concentration data 

was used to calculate the total weight (mg/kg dry weight) of each atomic ring category (2–6 

rings). The proportion of PAHs in each atomic ring category were calculated as a percent of 

the total PAHs present across all samples in the region. US EPA 16 priority PAHs were 

assessed and categorized.

Similarly, the concentration of known combustion PAHs (∑Comb PAHs) was calculated by 

summing the amount of [Flu, Pyr, BaA, BbF, BkF, BaP, DBahA, BghiP] in all individual 

samples (across all 31 harbors). To investigate the relationship between ∑Comb PAHs and 
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∑PAH16, Pearson correlation analysis was conducted in Minitab Statistical Software® 

(Minitab Inc, State College, PA, 2010). In accompaniment to the above approaches, 

individual PAHs were assessed through comparison to the greater literature in support of 

source apportionment.

3. Results and discussion

3.1 Source apportionment using PAH diagnostic ratios

Four PAH diagnostic ratios were applied to distinguish between pyrogenic and petrogenic 

PAH sources. Ranges used to interpret the calculated mean ratio values for NS SCH 

sediments were derived from the expansive study completed by Yunker et al. (2002) in the 

Fraser River region of British Columbia, Canada, and from research completed by Dickhut 

et al. (2000) in Chesapeake Bay, US.

The Flu/(Flu+Pyr) ratio provides insight to petroleum, petroleum combustion, and 

combustion sources. Ratio values < 0.4 indicate petrogenic sourcing, values between 0.4–0.5 

are indicative of petroleum combustion, while values >0.5 suggest wood, grass, and/or coal 

combustion (Yunker et al., 2002). An overwhelming grass, wood and coal combustion 

signature was identified as all regions and the combined sediments reflected mean ratio 

values above the combustion value of 0.5 (Fig 2). Mean ratio values among regions ranged 

between 0.57–0.59. This range of values aligns closely with the regional ratio values 

determined by Yunker et al. (2002) in the Fraser River system, which were in the range of 

0.53–0.56. Mass 202 PAHs (Flu and Pyr) are common from biomass-focused fire events 

(Masclet et al., 1995; Jenkins et al., 1996; Oanh et al., 1999; Fine et al., 2001; Schauer et al., 

2001). Similarly, both Flu and Pyr are commonly observed from sediments in remote 

locations and from extracted sediments dated to pre-industrial times (Yunker et al., 1999; 

2000).

The Ant/(Ant+Phe) ratio distinguishes between petrogenic and combustion sources, as 

values <0.1 indicate petrogenic and those > 0.1 indicate combustion (Yunker et al., 2002). 

Values among regions ranged from 0.34 to 0.39 for this ratio, all in agreement of combustion 

sources (Fig 3). Yunker et al. (2002) suggest that ratio values for Ant/(Ant+Phe) are 

expected to be higher in urban areas, with remote areas likely to demonstrate values below 

or close to 0.1. The values presented for NS SCHs exceed those determined by Yunker et al. 

(2002) for Vancouver Harbor, which reflected ratio values of 0.26 (+/− 0.01), and the Fraser 

River, which demonstrated values of 0.17 (+/− 0.01). Interestingly, the Flu/(Flu+Pyr) and 

Ant/(Ant+Phe) ratios appear to be related, as values > 0.4 for Flu/(Flu+Pyr) are often 

accompanied by values >0.1 for Ant/(Ant+Phe). This relationship is supported by values 

presented in this study.

The BaA/(BaA+Chr) ratio provides insight to petrogenic and combustion (pyrogenic) 

sources and includes a range for mixed sourcing. Values <0.2 indicate petrogenic sourcing, 

values between 0.2 and 0.35 indicate mixed sourcing, while values >0.35 are indicative of 

combustion sources (Yunker et al., 2002). Dickhut et al. (2000) indicate that ratio values of 

0.53±0.06, 1.11±0.06, and 0.79±0.13 align with automobile emissions, coal/coke, and wood 

burning processes, respectively. Regions demonstrate values ranging from 0.41–0.46, 
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indicating combustion sources (Yunker et al, 2002). (Fig 4). Values >0.35 for BaA/(BaA

+Chr) are often accompanied by values >0.4 for the Flu/(Flu+Pyr) ratio for urban locations, 

which is currently reflected in this study (Yunker et al., 2002). In comparison to Dickhut et 

al. (2000) ratios, values align closely with automobile emissions. An evaluation of 

diagnostic ratios by Katsoyiannis and Breivik (2014) determined that the BaA/(BaA+Chr) 

ratio is the most robust ratio as compared to all other ratios (which include single PAHs) 

applied in this study, as this ratio is not greatly impacted by travel distance from emission 

source to receptor.

The IP/(IP+BghiP) ratio provides insight to petroleum, petroleum combustion, and 

combustion sources. Values <0.2 indicate petroleum, values between 0.2 and 0.5 indicate 

petroleum combustion, and values >0.5 indicate wood, grass, and/or coal combustion 

(Yunker et al., 2002). Dickhut et al. (2000) propose values of 0.33±0.06, 1.09±0.03, and 

0.28±0.05 for automobile emissions, coal/coke, and wood burning processes, respectively. 

This ratio demonstrates the greatest variability among regions and values range from 0.22–

0.51 (Fig 5). All regions, excluding the Southwest, demonstrate values in the petroleum 

combustion range, while the Southwest region presents a value that indicates wood, grass 

and/or coal combustion (Yunker et al., 2002). In comparison to values presented by Dickhut 

et al. (2000), the Gulf aligns closely with wood burning processes, while the remaining 

regions align closely with automobile emissions.

Similar diagnostic ratios to those reported in this study have been applied to sediments 

across other harbor sites in NS over the last 20 years. Surficial sediments of Halifax Harbor 

(1999) were assessed by diagnostic ratios, which suggested that combustion PAH sources 

were the greatest contributors (Hellou et al., 2002). Sediments of the Bay of Fundy were 

recently assessed by both Flu/(Flu+Pyr) and IP/(IP+BghiP) ratios, both of which indicated 

that samples were from mixed combustion processes from biomass and fossil/solid fuels 

(Yang et al., 2018). Multiple stations within Sydney Harbor, NS, sediments have been 

assessed by diagnostic ratios and suggest a strong coal combustion signature (Walker et al., 

2015). Multiple PAH diagnostic ratios, including BaA/(BaA+Chr), have indicated a strong 

coal combustion and coal handling signature of sediments and soils gathered in and around 

the Sydney Tar Pond (STP) area in Sydney, Nova Scotia (MacAskill et al., 2016). Ratio 

analyses by Walker et al. (2017) further support the influence of coal combustion as a 

dominating PAH emission source in Sydney. This site is of particular importance given that 

seven of the 31 selected SCHs are within 200km from Sydney. Sydney was historically 

home to a large steel facility and coking operation that produced and emitted vast amounts 

of contaminants into the surrounding environment, including PAHs (Smith et al., 2009; 

Walker et al., 2013a; 2013b; MacAskill et al., 2016).

The ratio of LMW to HMW PAHs aims to distinguish between petrogenic and pyrogenic 

sources. Values < 1 suggest pyrogenic sources, while a value >1 suggests petrogenic sources 

(Hwang & Foster, 2006; Zhang et al., 2008). Regions demonstrated values which ranged 

from 0.32–0.43, suggesting pyrogenic sources may be most impactful in NS SCH sediments 

(Fig 6).

DAVIS et al. Page 8

Sci Total Environ. Author manuscript; available in PMC 2021 June 10.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



3.2 Source apportionment using Unmix

UnmixO identified four factors (sources) which best describe PAHs in NS sediments (Table 

1). Factor 1 and Factor 2 contribute 32 and 47%, respectively, to the total PAHs among 

samples, while Factors 3 and 4 contribute to a much lesser extent at 11 and 10%, 

respectively.

Factor 1 is characterized by high loadings of HMW PAHs, including Chr, BbF, BkF, BaP, IP 

and BghiP (Fig 7a). Normalized squae difference (Chi2 sum calculations) indicate a 

closeness to profiles from the greater literature, and a lower calculated value indicates 

similarity between profiles (Van Metre & Mahler, 2014). Coke oven emissions (Chi2 

sum=155.76), coal tar sealant profiles (174.07, 281.23, 329.83), traffic tunnel air (374.80), 

and gasoline vehicle particulate emissions (418.71) profiles demonstrated the lowest Chi2 

sum calculation when compared to Factor 1. The large proportion of IP, BghiP, and BbF and 

BkF suggest vehicular emissions of gas and diesel (Duval & Friedlander, 1981). Similarly, 

Chr, BaP, BaA are compounds which suggest coal combustion (Larsen & Baker, 2003; 

Sofowote et al., 2008). Factor 1 is estimated to be a mixed source of coal combustion and 
vehicular emissions (both diesel and gasoline).

Factor 2 is characterized by high loadings of Flu and Pyr and to a lesser extent, BaA and Chr 

(Fig 7b). Similar to Factor 1, Factor 2 is dominated by HMW PAHs. Normalized square 

difference (Chi2 sum calculations) indicate a closeness to pine-wood soot particles from the 

greater literature (389.25). The four-ring PAHs which dominate factor 2 are often produced 

by the burning of biomass, coal combustion, or industrial/residential incineration processes 

(Simoneit et al., 2005, Ravindra et al., 2006a). The dominating PAHs of this factor [Flu, Pyr, 

BaA and Chr] are considered tracer species for coal combustion processes as well (Duval & 

Friedlander, 1981). Factor 2 is estimated to be a biomass/coal combustion source.

Factor 3 is characterized by high loadings of Phe and Ant and is dominated by higher 

loadings of LMW PAHs (Fig 7c). Normalized square difference (Chi2 sum calculations) 

indicate a closeness to many of the 22 literature profiles, as the calculated values remain 

close to another. Residential heating (141.72), used motor oil profiles (147.83 and 164.22), 

and coal tar (169.44) are the most closely related profiles. Phe and Ant, which present the 

highest loadings in this Factor, can be indicators of biomass burning, coal combustion, and 

coke production (Duval & Friedlander, 1981, Harrison et al., 1996). Factor 3 is estimated to 
be a mixed petrogenic-dominated source (i.e. motor/hydraulic oil)

Factor four is characterized by high loadings of Phe, Ace, and Fl and is dominated by higher 

loadings of LMW PAHs (Fig 7d). Normalized square difference (Chi2 sum calculations) 

indicate a particular closeness to 15 of the 22 literature profiles, as the calculated values 

remain close to one another. Diesel particles (109.78), residential heating (147.75), diesel 

vehicle particulate emissions (153.71), and coal tar (203.54) indicate the greatest similarity 

to factor 4. Diesel boat engines show that Phe and Fl are commonly emitted in elevated 

concentrations (as compared to other PAHs) in both particulate and gaseous form from 

engine exhaust (Lin et al., 2006; Hsieh et al., 2009). Fl and Phe, two of the highest loadings, 

are present within coal (Achten & Hoffman, 2009). Similarly, Phe supports biomass burning, 

coal combustion, and coke production sources (Duval & Friedlander, 1981, Harrison et al., 
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1996; Wang et al., 2013). Factor 4 is estimated to be a mixed source of petrogenic and 
pyrogenic origins.

3.3 Source apportionment by PAH Profile Composition Assessment

Fig. 8 shows the distribution of 2–6 ring PAH species among samples in the Gulf, Eastern, 

and Southwest regions of NS. The distribution of PAHs in each category (%) is very similar 

among regions. HMW PAHs (4–6 ring) dominate samples, while LMW PAHs (2 or 3 ring) 

form a smaller proportion. This distribution aligns with the ratio presented in Fig. 6 

(LMW/HMW PAHs), that reflects the larger proportion of HMW PAHs, as compared to 

LMW PAHs. The abundance of HMW PAHs is an indication that combustion processes are 

likely the dominating source of PAHs as these processes often produce HMW PAHs (Mosert 

et al., 2010). There is increased likelihood of HMW PAHs directly entering aquatic 

environments through deposition, as compared to LMW PAHs (McCready et al., 2000). In 

aquatic environments, HMW PAHs are more likely to maintain their integrity, because of the 

carbonaceous matter they associate with (soot, black carbon, char) can provide protection 

from degradation (Achten & Hoffman; 2009; Tobiszewski & Namieśnik; 2012; Yunker et 

al., 2011). This relationship supports the increased accumulation of HMW PAHs in 

sediments, and their persistence in aquatic environments (Koelmans et al., 2006; Yunker et 

al., 2014).

The dominance of HMW PAHs in surficial sediments within Atlantic Canada, especially the 

dominance of fluoranthene and pyrene, has been observed. Previous studies of sediments 

along the Bay of Fundy (of which 5 of the current study 31 SCHs reside) have supported 

these findings (Hellou et al., 2005; Yang et al., 2018). Similarly, surficial sediments of the 

Halifax Harbor demonstrate the same trend (Hellou et al., 2002). Previous work by Davis et 

al., (2018) indicate that this holds true for the 31 NS SCHs of this current study, as 

fluoranthene and pyrene (both HMW) are the top two dominating PAHs among samples, 

followed by phenanthrene.

The relationship between typical combustion PAHs [∑Comb] and the ∑PAH16 value among 

samples is represented in Fig. 9. PAHs which are typically produced from combustion 

processes include: Flu, Pyr, BaA, BbF, BkF, BaP, DBahA, BghiP, and IP (Prahl & Carpenter, 

1983). All compounds are HMW and contain between 4 and 6-rings. Pearson correlation 

analysis indicated a strong positive relationship between ∑Comb and ∑PAH16 (r2= 0.958, 

n=580). This relationship is best interpreted as the dominance of combustion derived PAHs 

as part of the total PAH profile among sediment samples. Davis et al. (2018) have identified 

that many of the combustion associated PAHs above are present in NS SCH sediments in the 

greatest concentrations, particularly Flu and Pyr. As such, one would expect to see a 

positively correlated relationship between combustion PAHs (which are HMW) and total 

PAHs of a sample as these compounds are expected to form the greatest proportion.

PAH profile compositional assessment in other sediments in Atlantic Canadian harbors have 

further suggested the dominance of PAH combustion sources. Molecular abundance and 

carbon isotope assessment of PAHs in sediments within St. John’s Harbor in Newfoundland, 

Canada, had previously indicated that the majority of PAHs present were of combustion 

origins, with vehicular emissions suggested as the dominating source (O’Malley et al., 
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1996). Similarly, sediments assessed in the Bay of Fundy showed a greater abundance of 3–

6 ring PAHs, as compared to 2–3 ring PAHs, suggesting that they were likely the product of 

combustion sources (Yang et al., 2018).

3.4 Source estimation using multiple lines of evidence

The multiple lines of evidence employed to investigate source apportionment strongly 

indicate that NS sediments are dominated by combustion (pyrogenic) PAH compounds, with 

petrogenic PAHs contributing at a much smaller extent (Table 2).

Coal combustion has been identified as a dominant source of PAHs in NS sediments. In NS, 

the majority of coal combustion processes were historically centralized to the Cape Breton 

region due to the large steel facility that operated for nearly a decade (Ferrara et al., 2007; 

MacAskill et al., 2016). Currently, NS has four coal and/or petroleum coke (pet coke) 

powered plants responsible for part of the province’s power generation (Fig. 1). The plants 

are located in Lingan, Point Aconi, Point Tupper, and Trenton (NS Power, 2017). Point 

Aconi is the only thermal power generating plant in NS which uses pet coke, while the other 

three plants operate using coal. Previous studies in Canada have indicated that PAH 

concentrations decrease with increasing distance from known sites which contribute pet-

coke dust (Xu, 2018). Therefore, it could be expected that PAHs that are the product of coal 

or pet coke combustion processes may reside in harbors in close proximity to these sites. 

With this information in mind, it can be inferred that PAHs in the atmosphere across NS are 

likely mobile, yet the distance in which they may be transported is reliant on other factors 

(wind, emission sources). Future studies could incorporate these variables into source 

apportionment investigations to elucidate greater resolution of potential sources of PAHs in 

sediments.

Biomass incineration and vehicular emissions also demonstrate strength as PAH emission 

sources contributing to NS SCH sediments. Biomass incineration may contribute given that 

burning (incineration) of biomass is very common in NS. Residential burning of wood 

through stoves or furnaces is a favorable option for Nova Scotians because it is cost-effective 

and may reduce heating bills (Efficiency Nova Scotia, 2018). Similarly, Natural Resources 

Canada Office of Energy Efficiency in 2009 indicated that residents of NS drive the furthest 

distances in their vehicles as compared to all other provinces in Canada. The geography of 

the province is expected to contribute to this statistic, as alternative transportation options 

are limited in many regions of the province, the average household has at least one vehicle, 

and that the city of Halifax is home to more than 40% (431,479 residents as of 2017) of the 

province’s population (NRCAN, 2009). Therefore, the increased usage of vehicles by NS 

residents may be a contributing factor of vehicular emission PAHs.

Regular boat traffic by fishing vessels at SCH sites may be a contributor of ‘vehicular 

emission’ PAHs, of which are emitted from a diesel engine. UnmixO source 4 demonstrates 

high loadings of compounds (Fl, Phe) which are known to be contributed into harbor 

environments by diesel boat engines, yet it is well understood that naphthalene (Nap) is the 

PAH compound which may be considered the strongest indicator of this emission source as 

it is emitted in concentrations which are far greater than Fl or Phe. Unfortunately, Nap was 

excluded from the Unmix model which makes diesel boat engine emissions difficult to 
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estimate. However, assessed Nap concentrations among SCHs were relatively low in 

comparison to Fl and Phe, and of all assessed PAHs, Nap demonstrated the lowest number of 

exceedances when compared to sediment quality guidelines (Davis et al., 2018). As UnmixO 

Factor 4 contributes only 10% to the total PAHs among samples, this suggests that the 

potential impact of diesel engine emissions from SCH vessels may be minimal.

The PAH sources identified through the lines of evidence indicate that PAHs in SCH 

sediments are not likely the product of harbor-specific activities at SCHs (fishing vessel 

traffic, fuel, spills). For federal custodians of SCHs, this is an indication that both 

environmental and financial liabilities are reduced as PAHs do not appear to be the product 

of on-site point sources, of which they may be responsible to control and manage. PAH 

sources impacting sediments appear to be a product of various terrestrial combustion 

activities, which are difficult to define and subsequently control. To compound this issue, 

temporal delineation of PAH contamination in SCH sediments is not easily defined. As all 

sediments assessed were surficial sediment samples, from SCHs which undergo routine 

dredging, the ability to make inference to historical and/or ongoing PAH sources is 

extremely difficult. To address this challenge, the use of sediment cores in the future would 

provide valuable insight to further evaluate PAH sources in SCH sediments and delineate 

contamination over time.

4. Conclusion

This study investigated source apportionment of PAHs in NS sediments across 31 SCHs, by 

employing three lines of evidence. The three lines of evidence support the notion that NS 

sediments are most impacted by combustion sources, likely attributed to historical and 

current coal combustion processes in the province and further supported by residential 

incineration of wood products and vehicular usage by Nova Scotian residents. Petrogenic 

sources appear to impact NS sediments, yet to a much lesser extent, an indication that 

harbor-specific activities by users (i.e., boat traffic, fuel spills) are not likely large 

contributors of PAHs to SCH sediments. Therefore, results indicate that the environmental 

and/or financial liability of PAHs in SCH sediments may be reduced for federal harbor 

custodians as PAH sources are not well defined.

The findings of this study suggest that NS aligns with global trends in that pyrogenic PAHs 

tend to dominate sediments and that the origin of these PAHs is greatly influenced by 

various anthropogenic combustion activities. Pyrogenic PAHs within NS SCH sediment may 

demonstrate increased physic-chemical stability (given an increased molecular weight), 

thereby potentially reducing the ecological impact PAHs may have on aquatic ecosystems. 

Furthermore, the understanding that pyrogenic PAHs (and their inherent characteristics in 

the marine environment) most greatly impact NS sediments is important as certain 

managerial activities at SCHs may affect the risk in which they may pose (i.e., dredging, 

remedial activities). The effects of long-range transport and/or localized emissions of PAHs 

in NS and temporal delineation of PAH contamination requires further scrutiny and analysis 

and would ultimately help to support a more robust understanding of PAH transport and 

emission sources in the localized NS context and beyond. This study has also acknowledged 

the utility of newly developed UnmixO modeling for evaluating PAH sources in historical 
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sediment data with few high values, and many values falling below detection; previous 

versions of Unmix struggled with this type of data.
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Highlights

• Sediment was assessed for source apportionment of polycyclic aromatic 

hydrocarbons

• Multiple lines of evidence investigated PAH sources from NS harbor 

sediments

• US EPA Unmix Optimum modeling was applied to reveal potential PAH 

sources

• PAHs produced from pyrogenic processes appear as the dominating source

• Results suggest terrestrial activities greatly contribute PAHs to sediment
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Fig. 1. 
Spatial distribution of selected 31 small craft harbor sites across Nova Scotia, Canada. 

Harbors are represented as black dots, and triangles represent the approximate locations of 

four Nova Scotia Power coal and/or pet coke power generation stations. The black triangle 

represents Point Aconi, the only thermal power generating station that uses pet coke, while 

all other stations use coal (red) [Adapted from Davis et al. (2018)].
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Fig. 2. 
PAH diagnostic ratio plot of Flu/(Flu+ Pyr). Standard deviation of the mean is presented. 

n=116, 83, 162, and 361 for the Gulf, Eastern, Southwest and Combined regions, 

respectively. C: Combustion; WGC: Wood, grass, coal; PC: Petroleum Combustion; P: 

Petroleum.
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Fig. 3. 
PAH diagnostic ratio plot of Ant/(Ant+Phe). Standard deviation of the mean is presented. 

n=116, 83, 162, and 361 for the Gulf, Eastern, Southwest and Combined regions, 

respectively. C: Combustion; P: Petroleum.
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Fig. 4. 
PAH diagnostic ratio plot of BaA/(BaA + Chr). Standard deviation of the mean is presented. 

n=127, 86, 189, and 402 for the Gulf, Eastern, Southwest and Combined regions, 

respectively. C: Combustion; M: Mixed Sources; P: Petroleum.
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Fig. 5. 
PAH diagnostic ratio plot of IP/(IP+BghiP). Standard deviation of the mean is presented. 

n=78, 79, 154, and 311 for the Gulf, Eastern, Southwest and Combined regions, respectively. 

C: Combustion; WGC: Wood, grass, coal; PC: Petroleum Combustion; P: Petroleum.
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Fig. 6. 
PAH diagnostic ratio plot of LMW to HMW PAHs. Standard deviation of the mean is 

presented. Samples used were n= 224, 108, 248, and 580 for the Gulf, Eastern, Southwest 

and Combined regions, respectively. P: Petrogenic, C: Combustion (Pyrogenic)
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Fig. 7a-d: 
Fractional composition of 14 individual PAH species in a) UnmixO Factor 1; b) UnmixO 

Factor 2; c) UnmixO Factor 3; d) UnmixO Factor 4.
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Fig. 8. 
Compositional assessment of PAHs in sediments of NS SCHs by the number of atomic 

rings. US EPA Priority 16 PAHs were included within the atomic ring categories, while 1 

and 2-methylnapthalene (1-MN and 2-MN) and perylene (pery) excluded. Concentrations of 

these compounds (1-MN, 2-MN and pery) were included to calculate the total PAH value 

and subsequently form the remaining percentage for each region.
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Fig. 9. 
Correlation analysis between ∑COMB PAHs and ∑PAH16 in SCH sediments in NS. 

∑COMB PAHs is the sum of [Flu, Pyr, BaA, BbF, BkF, BaP, DBahA, BghiP], while ∑PAH16 

encompasses the 16 PAHs listed as US EPA priority pollutants. Coefficient of determination 

(R2) is presented (n=580).
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Table 1.

Percentage of total PAH (TPAH) and individual PAH species in each UnmixO factor (source).

Factor 1 Factor 2 Factor 3 Factor 4

Compound(s) Composition % Composition % Composition % Composition %

TPAH 1.67 1.7 2.43 2.4 0.588 0.6 0.521 0.5

Acenaphthene 0.00205 0.1 0.00332 0.1 0.000661 0.1 0.0696 13.4

Anthracene 0.0025 0.1 0.0133 0.5 0.224 38.1 0.000479 0.1

Benzo[a]anthracene 0.179 10.7 0.23 9.5 0.00141 0.2 0.00711 1.4

Benzo[a]pyrene 0.247 14.8 0.0642 2.6 0.00151 0.3 0.00581 1.1

Benzo[b]fluoranthene 0.246 14.7 0.0531 2.2 0.00895 1.5 0.0102 2.0

Benzo[g,h,i]perylene 0.128 7.7 0.00171 0.1 0.00636 1.1 0.00508 1.0

Benzo[k]fluoranthene 0.231 13.8 0.00327 0.1 0.0237 4.0 0.00373 0.7

Chrysene 0.342 20.5 0.139 5.7 0.0197 3.4 0.0173 3.3

Fluoranthene 0.00434 0.3 1.13 46.5 0.00806 1.4 0.00124 0.2

Fluorene 0.00312 0.2 0.0018 0.1 0.0353 6.0 0.061 11.7

Indeno[1,2,3-cd]pyrene 0.119 7.1 0.028 1.2 0.00361 0.6 0.000188 0.0

Phenanthrene 0.0109 0.7 0.0129 0.5 0.212 36.1 0.163 31.3

Pyrene 0.0356 2.1 0.693 28.5 0.0339 5.8 0.0282 5.4
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Table 2.

Summary of key findings from three lines of evidence used in support of PAH source apportionment in NS 

SCH sediments.

Approach Details Key Finding (s) Estimated Source

Diagnostic Ratio

Fluoranthene/(Fluoranthene + Pyrene) All regions present values >0.5 Wood/grass/coal combustion 
(Yunker et al., 2002)

Anthracene/(Anthracene + 
Phenanthrene) All regions present values >0.1 Combustion (Yunker et al., 

2002)

Benzo[a]anthracene/
(Benzo[a]anthracene + Chrysene) All regions present values >0.35 Combustion (Yunker et al., 

2002)

Indeno[1,2,3-cd] pyrene/(Indeno 
[1,2,3cd] pyrene + 

Benzo[g,h,i]perylene).

Gulf, Eastern and Combined present 
values between 0.2–0.5, while Southwest 

region is >0.5

0.2–0.5 indicates petroleum 
combustion, while >0.5 

supports wood/grass/coal 
combustion (Yunker et al., 

2002)

LMW PAHs/HMW PAHs HMW PAHs dominate NS SCHs, all 
regions demonstrate a ratio value of <1.

Combustion (Hwang and 
Foster, 2006; Zhang et al., 

2008)

Unmix Optimum 
Receptor Modeling

Unmix Optimum identified four sources 
which best fit NS SCH data.

Source 1 presents high loadings of 
including BaP, BkF, BbF, BaA. Source 1 

contributes 32% to total PAHs.

Coal combustion/vehicle 
emissions

Source 2 presents high loadings of Flu 
and Pyr. Source 2 contributes 47% to 

total PAHs.
Coal/biomass combustion

Source 3 presents high loadings of Phe 
and Ant. Source 3 contributes 11% to 

total PAHs.
Mixed petrogenic source

Source 4 presents high loadings of Phe, 
Ace, and Fl. Source 4 contributes 10% to 

total PAHs.

Mixed source of petrogenic 
and pyrogenic origins.

Compositional 
Analysis

Assessment (%) of 2–6 ring PAHs 
across Gulf, Eastern, and Southwest 

regions.

4-ring PAHs compose over 50% of all 
PAHs among regions.

HMW PAHs (4–6 rings) form the greatest 
proportion among all regions.

The abundance of HMW 
PAHs suggests combustion 

origin (McCready et al., 
2000)

Correlation analysis of PAHs [∑Comb] 
and ∑PAH16

Strong positive relationship between 
∑Comb and ∑PAH16 (r2= 0.958)

Combustion derived PAHs 
dominate the total PAH 

profile
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