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ABSTRACT: Tuberculosis (TB), entrained by Mycobacterium tuber-
culosis, continues to be an enfeebling disease, killing nearly 1.5 million
people in 2019, with 2 billion people worldwide affected by latent TB.
The multidrug-resistant and totally drug-resistant emerging strains further
exacerbate the TB infection. The cell wall of bacteria provides critical
virulence components such as cell surface proteins, regulators, signal
transduction proteins, and toxins. The cell wall biosynthesis pathway of
Mycobacterium tuberculosis is exhaustively studied to discover novel drug
targets. Decaprenylphosphoryl-β-D-ribose-2′-epimerase (DprE1) is an
important enzyme involved in the arabinogalactan biosynthetic pathway
of Mycobacterium tuberculosis cell wall and is essential for both latent and
persistent bacterial infection. We analyzed all known ∼1300 DprE1
inhibitors to gain deep insights into the chemogenomic space of DprE1-
ligand complexes. Physicochemical descriptors of the DprE1 inhibitors
showed a marked lipophilic character forming a cluster distinct from the existing TB drugs, as revealed by the principal component
analysis. Similarity analysis using Murcko scaffolds and rubber band scaling revealed scarce representation of the chemical space.
Further, Murcko scaffold analysis uncovered favorable and unfavorable scaffolds, where benzo and pyridine-based core scaffolds
exhibit the highest biological activity, as evidenced by their MIC and IC50 values. Automatic SAR and R-group decomposition
analysis resulted in the identification of substructures responsible for the inhibitory activity of the DprE1 enzyme. Further, with
activity cliff analysis, we observed prominent discontinuity in the SAR of DprE1 inhibitors, where even simple structural modification
in the chemical scaffold resulted in significant potency difference, presumably due to the binding orientation and interaction in the
active site. Thiophene, 6-membered aromatic rings, and unsubstituted benzene ring-based toxicophores were identified in the DprE1
chemical space using an artificial intelligence approach based on inductive logic programming. This paper, hence, ushers in new
insights for the design and development of potent covalent and non-covalent DprE1 inhibitors and guides hit and lead optimization
for the development of non-hazardous small molecule therapeutics for Mycobacterium tuberculosis.

■ INTRODUCTION
Mycobacterium tuberculosis (M. tuberculosis)-entrained tuber-
culosis (TB) infection is the primary reason for death globally
as a result of a single contagious pathogen.1 As reported by the
recent WHO Global tuberculosis report (2019), TB resulted in
approximately 1.5 million deaths in 2018. The prolonged
duration of therapy and the dearth of novel inhibitors with
sufficient efficacy have incited the incipience of multidrug-
resistant (MDR) and extensive drug-resistant (XDR) TB.2 The
concordant cases of drug-resistant tuberculosis and the fatal
co-infection3 with human immunodeficiency virus (HIV)
further worsen the situation that demands the design and
discovery of a new chemical matter with innovative
mechanisms of action.
The lipid and carbohydrate-rich unique M. tuberculosis cell

wall have many efflux pumps that provide a permeability
barrier to many drugs,4 thus conferring multidrug resistance
and attributes to the success of M. tuberculosis as a common
pathogen. The main structural components of the M.

tuberculosis cell wall are the mycolic acids, arabinogalactan
polysaccharide, and peptidoglycan layer. The arabinogalactan
biopolymers are the basic building blocks required for M.
tuberculosis cell wall synthesis.5 As shown previously, Rv3790/
Rv3791 (DprE1-DprE2) proteins form an epimerase complex.6

The DprE1 enzyme catalyzes the conversion of the substrate
decaprenyl-phospho-β-D-ribose (DPR) to intermediate decap-
renyl-phospho-β-2′-keto-D-ribose (DPX). The enzyme DprE2
then catalyzes DPX to product decaprenyl-phospho-β-D-
arabinose (DPA). The DPA formed is used exclusively as an
activated D-arabinofuranosyl (Araf) substrate for the biosyn-
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thesis of arabinogalactan biopolymer of the M. tuberculosis cell
wall,7 hence making DprE1 and DprE2 critical proteins for the
survival of M. tuberculosis.
Furthermore, there is no alternate pathway of DPX

synthesis, as evidenced by the DprE1 knockouts that induce
cellular disruption and bacterial death.8 DprE1 knockout
studies demonstrate that DprE1 is critical for M. tuberculosis
growth and survival; as a consequence, this makes it a suitable
drug target. Currently, there are more than 15 chemical classes
of DprE1 inhibitors with both covalent and non-covalent
binding mechanisms of action. Covalent inhibitors bind to the
DprE1 protein irreversibly, forming a covalent adduct with
Cys387. Though covalent inhibitors demonstrate efficacy,
several non-covalent DprE1 inhibitors have also been
described.9 The inhibitors of DprE1 include diverse chemical
scaffolds such as azaindoles, aminoquinolones, benzothiazi-
nones, benzothiazoles, dinitrobenzamides, nitrobenzamides,
pyrazolopyridines, quinoxalines, triazoles, and thiadiazoles.10

Currently, benzothiazinone derivatives BTZ-043 and
PBTZ169 with high efficacy against M. tuberculosis are
undergoing phase 2 clinical trials11 followed by a promising
non-covalent inhibitor, azaindole TBA-7371, beginning clinical
trials.12 These chemical interventions and the vulnerability of
DprE113 demonstrate the essentiality of DprE1 and the
potentiality for developing small molecule therapeutics for
targeting DprE1. Phenotypic and high-throughput screening,
molecular docking studies, ligand-protein co-crystallography,
protein−ligand interactions, and optimization processes
unfolded the majority of potential scaffolds to target DprE1.
Thus, there is a need to use chemoinformatics, scaffold
analysis, and available structural information to guide scaffold
optimization, quantitative structure−activity relationships, and
to enhance the pharmacodynamics properties of DprE1
inhibitors. The current study involves the use of detailed
chemoinformatics analysis of small molecules to define the
chemogenomic space of molecules targeting DprE1. The study
entails determining physicochemical characteristics, probing
the chemical and biological features, structural similarity
analysis of ligands, scaffold and fragment-based analysis,
activity cliffs analysis, and dissecting the automatic struc-
ture−activity relationships. Further, we employed a machine
learning-based tool, DCA (DMax Chemistry Assistant),14 to
determine the possible toxicophores in the DprE1 chemical
space by using Kazius’ Ames mutagenicity dataset as the

mutagenicity model. This chemical space analysis will proffer
new insights into the rational design and development of
covalent and non-covalent non-hazardous small molecule
inhibitors against DprE1.

■ RESULTS AND DISCUSSION

Physicochemical Properties. To assess the pharmaceut-
ical descriptors of compounds active against DprE1, we
performed principal component analysis (PCA) based on 10
physicochemical properties on the MIC value dataset and 13
properties on the IC50 value dataset (Figure S1). The three-
dimensional PCA plot is a visual representation of the property
space generated from the database. Table S1 summarizes the
loading value of each property of the MIC value dataset. The
highest loading value in the first PC is by lipophilicity (cLogP),
and the second PC is primarily by the number of hydrogen
acceptors. At the same time, the number of hydrogen donors
and drug-likeness were the main contributors for the third PC.
Table S2 summarizes the highest loading values for the IC50

dataset, where lipophilicity-corrected ligand efficiency (LELP)
and cLogP contribute mainly to the first PC. The number of
hydrogen acceptors was the main contributor for the second
PCs, while drug-likeness was the main contributor for the third
PCs. The predominant contribution of the LELP among the
physicochemical properties implies that the IC50 dataset
molecules are notably hydrophobic, and therefore, there is a
need for ligand efficiency optimization to enhance the affinity
and reduce lipophilicity.15 Furthermore, we performed
principal component analysis for comparative assessment of
structural and physicochemical properties, namely, molecular
weight, lipophilicity, aqueous solubility, number of hydrogen
acceptors and donors, total surface area, polar surface area,
relative polar surface area, drug-likeness, and rotatable bonds of
DprE1 inhibitors (N = 1292), FDA-approved drugs16 (N =
2309), and anti-tuberculosis drugs17 (N = 30). The first three
principal components (PCs) capture 86.40% of covariance.
Thus, the entire physicochemical property space of DprE1
inhibitors can be represented by these three PCs as a three-
dimensional PCA plot (Figure 1). As summarized in Table S3,
PC1 is primarily contributed by the number of hydrogen bond
acceptors and polar surface area (PSA). PC2 has the highest
loadings by lipophilicity, followed by aqueous solubility and
relative PSA. As observed in the two-dimensional PCA plot,
the existing TB drugs are widely distributed in physicochemical

Figure 1. (A) PCA-based three-dimensional and (B) two-dimensional property space scatter plot of FDA-approved drugs (green spheres), DprE1
inhibitors (red spheres), and anti-TB drugs (blue spheres) based on 10 2D descriptors.
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space, majorly along the PC2 axis, with respect to the FDA-
approved drugs, which suggests that entirely diverse chemical
scaffolds show potency against M. tuberculosis. Additionally,
antibacterial molecules are known to be distinctively more
polar with increased total polar surface area and lower
lipophilicity.18 Further, DprE1 inhibitors form a distinct cluster
along the PC3 axis, implying differences in the molecular
property space as compared to the approved drugs. For
instance, DprE1 inhibitors show a strong hydrophobic
character with average cLogP = 2.54 ± 1.48. The introduction
of rational downstream chemical modifications to the scaffolds
for desired changes in structural and physicochemical proper-
ties requires the chemoinformatic knowledge of DprE1
inhibitors’ chemical space as described below.

Scaffold Analysis. The scaffold analysis decomposes the
molecule into a framework (often referred to as the Murcko)
and side chains. The Murcko scaffold organized the scaffold
diversity of 956 known structures of the MIC dataset into 345
distinct scaffolds and the 336 known structures from the IC50
dataset into 117 distinct scaffolds. Figure 2A,B represents the
scaffolds and their corresponding frequencies. Murcko scaffold
analysis revealed scaffolds with the highest frequencies to be 53
and 33 among the MIC and IC50 datasets, respectively.
Subsequently, the Murcko skeleton scaffold was created, which
further generated 183 skeleton scaffolds for MIC and 68 for
IC50 datasets. The skeleton scaffold analysis revealed scaffolds
with the highest frequency of 135 and 44 among the MIC and
the IC50 datasets, respectively. The scaffold diversity is

Figure 2. Murcko scaffold structures vs p value scatter plot. (A) MIC value dataset. (B) IC50 value dataset. The frequency of Murcko scaffolds is
color-coded, with red representing the highest frequency and blue the lowest frequency. The corresponding scaffolds with the highest frequency are
marked by asterisks. (C) Representative examples of three-dimensional parent fragments generated using ECFP6 fingerprint.

Table 1. Scaffold Diversity Analysis of MIC and IC50 Datasets
a

dataset (N) Murcko scaffolds (Ns) singleton Murcko scaffolds (Nss) skeleton scaffolds (Nsc) Nsc/N Ns/N Nss/N Nss/Ns

MIC value dataset 956 345 218 183 0.19 0.36 0.23 0.63
IC50 value dataset 336 117 78 68 0.20 0.35 0.23 0.66

aNsc/N represents the ratio of Skeleton scaffolds (Nsc) to that of MIC or IC50 dataset (N); Ns/N shows the ratio of Murcko scaffolds (Ns) and MIC
or IC50 dataset (N); (Nss/N) shows the ratio of singleton Murcko scaffolds and molecules in MIC or IC50 dataset (N); and (Nss/Ns) represents the
proportion of singleton Murcko scaffolds (Nss) to Murcko scaffolds (Ns)
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calculated as the proportion of the number of scaffolds to the
total number of molecules.19 The diversity analysis of Murcko,
Skeleton, and Singleton scaffolds20 of both datasets implies a
scant representation of chemical space (Table 1).
The Murcko scaffold structures and the related biological

properties (Figure 2A,B) indicate a change in activity with
scaffold diversity. The analysis revealed favorable potent
scaffolds and the ones, which should be avoided (Table 2).
For example, the Murcko scaffolds, 2-(1,4-dithia-8-
azaspiro[4.5]decan-8-yl)-4H-benzo[e][1,3]thiazin-4-one and

1-(pyrimidin-4-yl methyl)-1H-pyrrolo[3,2-b]pyridine show
the highest biological activities for MIC and IC50 datasets,
respectively. Such scaffolds can be further explored to design
novel drug candidates by exploring the structure−activity-
relationship (SAR) information, organizing compound series,
or generating focused compound libraries.21 The favored
scaffolds identified in both datasets from this analysis could be
exploited as a starting point for the rational designing of new
DprE1 inhibitors by performing follow-up computational and
experimental studies.

Table 2. Few Examples of Favorable and Unfavorable Scaffolds among the DprE1 Targeting Small Molecule Inhibitors
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Fragment-based analysis by Scaffold Hunter22 revealed
several three-dimensional parent fragments (Figure 2C),
which represent potential scaffolds or fragments for generating
shape-diverse libraries since three-dimensional fragments are
known to enhance pharmacophore coverage and solubility.23

Furthermore, it will be useful to explore the synthetic feasibility
of the molecules, which possess these structurally related three-
dimensional scaffolds for their inhibitory activity against
DprE1.
Similarity Analysis. A similarity value between molecules

plays an essential role, with the existence of diverse forms of

molecular similarities, varying from chemical similarity
connected with substructure fragment to biological similarity,
which takes into account the three-dimensional geometry and
binding comportment. The structural similarity calculation
analysis using the Rubberbanding Scaling Forcefield (RSF)
approach is useful for understanding the chemical space of
DprE1 inhibitors. This protocol involves stretching, twisting,
and then snapping the chemical bonds to their original place.
RSF approach improves the similarity analysis better than the
conventional PCA-based methods.24 Structural descriptors
derived from the three-dimensional structure of the molecules

Figure 3. Similarity flexophore and neighbor tree visualization; similarity is indicated by color. (A) MIC value dataset. (B) IC50 value dataset.

Figure 4.Molecules with structurally similar pharmacophores. (A) MIC value dataset. (B) IC50 value dataset. Similar pharmacophores are depicted
in red color.
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are used to measure the similarity among molecules. In our
analysis, a flexophore descriptor was generated, exploring the
three-dimensional pharmacophore to find molecules with
similar binding behavior.25 Molecules with similar size,
shape, and pharmacophore points will have high flexophore
similarity indexes.
From the MIC dataset, 2372 pairs were generated with the

96% similarity threshold, while 826 pairs with 94% similarity
threshold IC50 were generated from the IC50 value dataset.
Figure 3 shows the structure similarity chart (flexophore),
where molecules with high similarity are connected with lines
and colored based on the similarity pharmacophore. The
majority of chemical scaffolds in both datasets are clustered
together based on their pharmacophore features (Figure 3),
suggesting low pharmacophore diversity of DprE1 inhibitors in
the DprE1 chemical space (Figure 4). Detailed analysis of a
pharmacophore space of structurally similar compounds may
lead to significant redundancy in chemical molecules’
collection against DprE1. Furthermore, with rapidly evolving
drug-resistant strains of M. tuberculosis, a spontaneous
mutation may confer resistance to several structurally similar
compounds. Therefore, the existing chemical space of
molecules targeting DprE1 should be diversified by including
representative molecules of different scaffolds.
Activity Cliff Analysis. The activity scatter plots (p value)

for each molecule were generated using the activity cliff
analysis (Figures S2 and S3). This analysis yielded all 2297
pairwise comparisons between the 956 molecules of the MIC
value dataset, identifying a cut-off similarity threshold of 89%.
Similarly, 847 pairs were generated between the 336
compounds of the IC50 value dataset with the 87% similarity

threshold. The pairwise comparisons revealed structurally
similar active compounds with unexpected significant potency
differences. A minor structural change completely inverts the
biological activity (Tables S4 and S5). Figures S2A and S3A
represent groups based on neighbor similarity and their
respective SALI value. In the SALI plot, it is possible to
identify compounds with substantial activity differences but
with similar scaffolds (high structural similarity). A higher
percentage of pairs of compounds have activity variance above
two log units of measure (Figures S2B and S3B). For example,
with the paired comparison between pair IDs 841 and 860 of
the MIC value datasets, the determined SALI value was
94.661, the similarity was 0.973, and activity values were 7.39
and 4.93, respectively. In the IC50 value dataset, the pair
comparisons between pair IDs 134 and 221 reveal the
corresponding SALI value to be 55.54, while the similarity is
0.969, and activities are 7.26 and 5.58, respectively. These
observations suggest that these sets of compounds could be
explored for the SAR to design better analogs. An illustrative
example of activity cliff generated for piperidine-based
molecules in the IC50 value dataset is shown in Figure 5.
Significant variations in biological activity are evident among
the quinoxaline scaffold derivatives. To further investigate the
effect of structural differences on the inhibition mechanism, we
carried out protein−ligand binding interaction analysis using
LigPlot+26 for the quinoxaline analogs (Figure 6). The 3-
benzyl group in the quinoxaline is amenable to various
chemical modifications, which induce conformational changes
in the ligand, consequently leading to differences in protein−
ligand interactions.27 Our analysis shows that significant
potency variations among the derivatives of various scaffolds

Figure 5. ″Activity cliff″ analysis of piperidine derivatives. The colors indicate the p value (IC50 value dataset), where the smallest and largest values
are represented by blue and red colors, respectively. The structural variations are highlighted in red.
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targeting DprE1 protein result primarily from single sub-
stitution and offer exciting implications for compound
optimization efforts. Since the presence of prominent activity
cliffs in the DprE1 MIC and IC50 value datasets may act as a
major limiting factor in QSAR predictions, it will be rational to
direct biological activity predictions toward focused regions of
continuous SAR in the DprE1 chemical space.
Structure−Activity Relationship (SAR). Automatic SAR

was employed on the DprE1 dataset resulting in the generation

of various R groups and their associated core fragments. This
was accomplished using the most central ring system of the
scaffolds. We generated two different SARs based on MIC and
IC50 value datasets. For the MIC value dataset, 6 R-groups
associated with 47 core fragments were generated (Figure
S4A). In comparison, for the IC50 value dataset, 4 R-groups
associated with 24 core fragments were generated (Figure
S4B). With this analysis, it was observed that molecules with
the same core fragment exhibit potency variations, implying

Figure 6. Each group (A, B, C, and D) consists of two illustrations. The upper panel represents the chemical structure of the quinoxaline derivative.
The chemical modifications in the 3-benzyl moiety are denoted in red color. The lower panel shows the two-dimensional schematic representation
of the ligand with the neighboring amino acid residues in the crystal structure. Ligands are displayed in stick and ball images. Residues forming
hydrophobic interactions are shown as red eyelashes. In each stick and ball image, carbon, oxygen, nitrogen, fluorine, and chlorine atoms are
depicted by black, red, blue, lime green, and pink balls, respectively. Hydrogen bonds are shown by dotted green lines with their lengths in Å.
Amino acids are tagged by their three-letter code and tracked by their residue index in the PDB records.
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that different R-groups affect the biological activity distinc-
tively. In order to identify the R-groups responsible for the
high biological activity of DprE1 inhibitors, R-group
decomposition was carried out, as shown in Table 3. For
instance, 8-methyl-1,4-dithia-8-azaspiro[4,5] decane at the R-2
group of core fragment 4H-benzo[e][1,3]thiazin-4-one shows
the highest biological activity among the MIC value dataset,
but substitution with a similar 8-methyl-1-oxa-4-thia-8-
azaspiro[4,5]decane or any other group decreases the activity.
The nitro group at R-2 and the trifluoromethyl group present
at the R-4 position of the core fragment remain invariant in
benzo-based scaffolds. The trifluoromethyl group is known to
bind to a hydrophobic groove of DprE1 protein, while the
nitroso group forms the covalent bond with Cys387 of the

active site of the protein.28 Similarly, among the IC50 value
dataset, activity is primarily driven by the substituents N-(2,2-
difluoroethyl) acetamide at the R-1 group and 6-ethyl-N,N,5-
trimethylpyrimidin-4-amine at the R-3 group of the core
fragment 1H-pyrrolo[3,2-b]pyridine. At the same time, the
chemical moieties at R-2 and R-4 positions of the pyridine-
based scaffold vary considerably.

Predictive Toxicology Analysis Using Machine Learn-
ing. The earlier research in using artificial intelligence methods
in drug discovery suggests that machine learning based on
inductive logic programming (ILP) is a practical approach that
efficiently handles significant blocks such as molecular
superposition compared to other SAR methods. The ILP is
very intuitive as it links the various substructures or chemical

Table 3. Structure−Activity Relationship (SAR) of Benzothiazinone and Pyrrole Pyridine Scaffolds
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moieties with their biological properties such as activity,
toxicity, etc., and outputs rules, which a medicinal chemist can
understand.29,30 To establish correlations between chemical
features and biological activities, we used the machine learning
tool DCA, which uses the ILP-based approach to generate a
hierarchically driven hypothesis using structural and sub-
structural information and determine the structure−activity
relationship. The inhibitor models generated through ILP
suggest that inhibitors with specific substructures containing
pyrimidine, pyrazole, or a benzene ring (Figures S5 and S6)
may have higher biological activities, similar to findings
obtained by scaffold analysis.
Additionally, the SAR analysis of the DprE1 dataset revealed

distinct continuity in SAR, implying a continuous relationship
between the molecular structural modifications and gradual
respective potency variations, also referred to as the similarity
property principle (SPP).31 The continuous SAR was
accompanied by a marked discontinuity in SAR, where
minor structural changes lead to huge variations in biological
activity, implicating inconsistency with the SPP and therefore
contributes to activity cliffs as described above. A representa-
tive example of a set of DprE1 inhibitors demonstrating SAR
continuity and discontinuity is shown in Figure 7.

The mutagenicity model was generated based on the
structural information, namely, electron flow, elements, moiety,
and sub-structural relationship of 4337 structures of the
benchmark Kazius’ Ames dataset (2401 mutagens and 1936
non-mutagens), classified into 29 identified toxicophores.32

The above model was then applied to known 1292 DprE1
inhibitors to identify possible toxicophore or mutagenic
substructures present in the DprE1 dataset. The analysis
revealed that 40% of all the reported inhibitors for DprE1 fall
into the probable mutagenic category, clearly indicating that a
high percentage of the molecules will have toxicity-related
issues for M. tuberculosis drug discovery. As this toxicity
analysis is based on the experimental data of the Ames’ dataset,
thus the AI predictions on the DprE1 dataset will be useful, as
research has shown that toxicity predictions based on the
actual experimental toxicity datasets show overall better
performance. It will be advisable to address the toxicity of
these molecules or completely abandon them from further

medicinal chemistry optimizations. The representative exam-
ples of the molecules, both mutagenic and non-mutagenic, are
shown in Figure 8D,E.

■ CONCLUSIONS

The numerous phenotypic screens have led to the discovery of
several promiscuous targets, which include DprE1.33 The
identification of these new striking targets has now shifted the
focus to them as an alternative means to combat multi- or
extremely drug-resistant M. tuberculosis strains. Several decades
of drug discovery are still unsuccessful in targeting these newly
emerging and dreadful strains. Our study focuses on
chemoinformatics analysis to provide keen insight into target
DprE1, offering a new perspective to the early drug discovery
process. Assessment of chemical space involving analysis of
scaffolds, structural similarity, activity cliff, SAR, and
physiochemical properties adds to the revelation that
optimization of scaffold derivatives can assist in designing
new molecules. Additionally, minor variations in the structure
result in significant changes in biological activity. The SAR
study revealed diverse core fragments demonstrating the
highest biological activity in MIC and IC50 value datasets.
Fragment-based analysis showed several three-dimensional
fragments populating the chemical space of molecules targeting
DprE1, which represent an interesting framework for designing
novel three-dimensional-shaped molecules. SALI plots pro-
vided an understanding of the relationship between the
molecular structure and biological activities. The comparative
physicochemical analysis of DprE1 inhibitors, anti-TB, and
FDA-approved drugs revealed that TB drugs occupy a broad
chemical space, which is more disposed toward polar
characteristics. In comparison, DprE1 inhibitors show a
predominant hydrophobic character. Therefore, these insights
can be immensely useful in the rational designing of chemical
libraries to target DprE1 protein. Furthermore, using this ILP
approach, we have predicted the mutagenicity of DprE1
inhibitors, as it is related to carcinogenicity and thus provided
suggestions for the development of non-hazardous drug
molecules for targeting M. tuberculosis. Hence, addressing the
problem of multidrug resistance with a different framework can
help us identify novel compounds and reposition FDA-
approved drugs for possible M. tuberculosis therapeutics. In
conclusion, the ligand-based design approaches might unfold a
series of potentially active molecules in the early drug-
designing process.

■ MATERIALS AND METHODS

Data Collection. A database of DprE1 inhibitors with the
minimum inhibitory concentration (MIC), IC50 value, and
chemical structures was created by reviewing the literature
from PubMed, Web of Science, American Chemical Society,
and Royal Society of Chemistry from the year 2010 to 2019.
We have collected all the structural and experimental
information about ∼1300 small molecule inhibitors of
DprE1, defined as the DprE1 dataset. The database comprises
DprE1 inhibitors with experimentally reported MIC (N = 956)
and IC50 (N = 336) values in μM, while molecules with MIC
or IC50 values exceeding 100 μM were excluded from the
database. For principal component analysis (PCA), we used
the datasets of FDA-approved drugs16 (N = 2309) and anti-
tuberculosis drugs17 (N = 30). The chemical space assessment
involved analysis of scaffold, similarity, structure−activity

Figure 7. Representative examples of DprE1 MIC dataset showing
SAR characteristics. Structural differences are highlighted. The pMIC
values are reported for each compound.
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relationship, activity cliff, and various physicochemical proper-
ties, which were performed using DataWarrior (Version
5.2.0),24 Scaffold Hunter,22 and ECFP634 on a CentOS
Linux7 Intel Xenon CPU E5−2620 v2 @2.10GHz*24
Graphic-LLVM 6.0, 64 bit OS system.
Physicochemical Parameters. The physicochemical

properties essential for drug development like drug-likeness,
molecular weight, cLogP, hydrogen-acceptor, hydrogen-
donors, total surface area (TSA), polar surface area (PSA),
topological polar surface (TPSA), relative polar surface area
(RPSA), and rotatable bond count (RB) were evaluated for the
present datasets, FDA approved drugs,16 and anti-TB drugs.17

The three-dimensional principal component analysis scatter
plot was generated using R studio with rgl package35 for visual
representation.
Scaffold Analysis. As each compound is associated with a

unique scaffold, the core structures of each of the compounds
were analyzed. The scaffold framework was obtained by
removing the terminals of all side chains attached to the ring.
The analysis was performed using the Murcko and Skeleton
scaffolds. The Murcko scaffolds were generated by eliminating
the exocyclic double bonds and α-attached atom.36 Further, a
skeleton scaffold was created using the Murcko scaffold. The
skeleton analysis comprises only the ring, and a carbon atom

was replacing the heteroatoms. Furthermore, we employed
Scaffold Hunter and decomposed molecules of both datasets
into parent and child scaffolds using ECFP6 fingerprint.34

Similarity Analysis. The similarity between the two
molecules was computed by matching flexophore descriptors
derived from the molecular structure. This involved creating a
representative range of conformers.

Activity Cliff Analysis. The critical challenge in all drug
discovery programs is to interpret the association between
structural features and their bioactivity. The minimum change
in the structure of a molecule changes the related biological
activity. The SkeletonSphere descriptors were used to
determine the structure−activity landscape index (SALI).
The SALI values were calculated based on activity cliff analysis
correlating the biological properties with the chemical diversity
of DprE1 inhibitors.37

A A

i j
SALI

1 sim( , )
i j=

| − |
−

where Ai is the activity of i
th molecule and Aj is the activity of

the jth molecule of the DprE1 dataset, and sim(i, j) is the
similarity quotient among the pair of molecules.

Figure 8. (A) Cumulative response plot of percentage of hits (y-axis) and the percentile (x-axis) based on the mutagenicity model. (B) Lift curve of
the mutagenicity model depicting observations from the percentile about the outperformance of the model over a random model. (C) ROC plot of
the mutagenicity model representing the percent of hits (y-axis) and false alarms (x-axis). Representative examples of predicted (D) mutagenic and
(E) non-mutagenic molecules. Functional groups contributing to the mutagenicity/non-mutagenicity of the molecules are shown with distinct
colors; unsubstituted atoms (yellow and purple) on the benzene ring (pink), thiophene (blue), 6-membered aromatic rings (brown and olive),
aliphatic chain (orange), imide group (green), benzene ring (pink) connected to a fluorine atom (grey), thioether group (red), and six-membered
aromatic ring (cyan) connected to an oxygen atom (brown).
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Predictive Toxicology Analysis by Machine Learning.
To establish a relationship between common structural
features of DprE1 ligands and their biological activity profile,
we applied inductive logic programming (ILP)-based software,
DCA.14 ILP derives a hypothesis in a hierarchical fashion by
incorporating the background knowledge of the molecular
structure, namely, electron flow, type of elements, substructure
relationship between different functional groups, and rings of
the molecule to ultimately derive correlation rules between the
structural information and the corresponding experimental
biological activity. Furthermore, we investigated the chemical
features of DprE1 inhibitors, which may prompt mutagenicity
by comparing against the Kazius’ Ames mutagenicity dataset32

comprising 2401 mutagens and 1936 non-mutagens.
Future Perspective. Tuberculosis infection represents an

immense global health care challenge. Therefore, it is
fundamental to design new, potent, and effective drug
regimens against M. tuberculosis, which must address the
emerging drug-resistant TB. The periplasmic location, high
promiscuity, and complete biochemical and genetic character-
ization demonstrate DprE1 as an innovative drug target
amenable to small molecule therapeutics. With three DprE1
inhibitors already undergoing clinical trials, the field is wide
open with copious potential for developing novel DprE1
inhibitors with higher specificity and improved pharmacoki-
netics. While the discovery of the majority of the scaffolds
targeting DprE1 has been facilitated by high-throughput
screening, it would be advantageous to integrate chemo-
informatic and machine learning to accelerate and guide drug
designing. This is the first elaborate computational analysis to
the best of our knowledge that reports the systematic
assessment of chemical space and predictive toxicological
analysis of small molecules targeting M. tuberculosis DprE1
protein. We anticipate that the findings reported here will assist
in scaffold optimization and structure-based drug designing to
form novel anti-tubercular agents.
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